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Abstract

Tensor identities for finite dimensional representations of arbitrary semi-
simple Lie algebras are derived and are applied to the construction of
left-projection operators which project out the shift components of tensor
operators from the left. The corresponding adjoint identities are also derived
and are used for the construction of right-projection operators. It is also
shown that, on a finite dimensional irreducible representation, these identities
may be considerably reduced. Commutation relations between the shift
tensors of a tensor operator are also computed in terms of the roots appearing
in the tensor identities.

1. Introduction

The importance of tensor operators is apparent in several branches of physics and
mathematics. Firstly there are the state labelling problems in which a semi-simple
Lie algebra K is contained in a larger Lie algebra L and whose vector space
complement in L (denoted K1) transforms as a tensor operator of K;

Secondly, we have the possibility of inducing representations of the Lie algebra L
from a given representation of the Lie algebra K by considering the properties of
the tensor operator Kx. Such a process may be regarded as being analogous to the
theory of induced representations for Lie groups. Finally, we may consider certain
infinite dimensional representations of the Lie algebra L which may be reducible
into finite dimensional representations of a semi-simple sub Lie algebra K.
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[2] Semi-simple Lie algebras 291

We shall be primarily concerned with tensor operators for an arbitrary semi-
simple Lie algebra L and their shift properties when acting on finite dimensional
irreducible representations of £,. A theorem of Baird and Biedenharn [1] states
that the number of linearly independent tensor operators transforming with an
irreducible representation, V, is equal to the dimension of V. Using characteristic
identity techniques we shall show how a tensor operator may be resolved into its
distinct shift components by application of right- and left-projection operators.
The problem of determining all tensor operators in a given irreducible represen-
tation of a semi-simple Lie algebra has been studied in recent years by a number
of authors [13, 14]. The problem was essentially solved for vector operators for
the Lie aigebras gl(n, F), so(n, F) and sp(2n, F) in the pioneering works of Green [6]
and Bracken and Green [2] who showed how the characteristic identities may be
applied to the construction of projection operators which project out (from the
left) the shift components of an arbitrary vector operator. This work has recently
been generalized by Hannabuss [9] and Okubo [15] to tensor operators for arbitrary
semi-simple Lie algebras.

In this paper we shall generalize the work of Green by considering an appropriate
matrix A over a semi-simple Lie algebra L and its adjoint A. The characteristic
equations of these operators are derived and it is shown how they may be applied
to the construction of projection operators which project out the shift components
of tensor operators. The application of the ̂ -identity (adjoint identity) for arbitrary
semi-simple Lie algebras is new and is used for the construction of right-projection
operators. As we shall see the right-projection operators are more useful since they
are the ones which must be applied in practice.

In Section 4 we shall show that the polynomial identities satisfied by the matrices
A and A will in fact reduce on a given irreducible representation. We shall also
give a simple criterion for determining which representations will occur in the
Clebsch-Gordan decomposition of a tensor product between two irreducible
representations. Moreover, it will be shown that there is a 1-1 correspondence
between the factors appearing in the reduced identity and the representations
occurring in the Clebsch-Gordan series.

In the final section of this paper we consider the situation in which we have a
tensor operator Tfor a semi-simple Lie algebra L where L and T generate a larger
Lie algebra K. In this way, we admit a wide variety of Lie algebras. Although many
properties of tensor operators have been studied, little is known about the commu-
tation relations satisfied by the shift components of a tensor operator. We conclude
by developing a technique for determining such commutation relations for tensor
operators with commuting components which may also be applied in certain cases
to tensor operators with non-commuting components.

Throughout this paper we shall consider tensor operators for arbitrary semi-
simple Lie algebras. However, extensions to the reductive Lie algebras are often
trivial and we shall not hesitate to apply our results to such cases in examples.
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2. Polynomial identities and tensor operators

Let L be a semi-simple Lie algebra over a field F and let H denote a fixed Cartan
subalgebra of L with dual space H*. We denote the set of roots of L relative to
H by <1> and the set of positive roots by $+. Finally, let {xly ...,*,}(/ = dimL),
be a basis of L and let {x1, ....x*} be its dual basis with respect to the Killing form
ofL.

We call a collection of operators {TJ indexed like components of vectors in a
representation space V of a finite dimensional representation IT of L a tensor
operator of L if the components T4 transform according to the rule

xeL, (1)

where TT(X) denotes the matrix representing x on the space V.
Dually we call a collection of components {T*} a contragredient tensor operator

of L if the components transform according to the rule

[x,Ti] = -7rixYjTK (2)

If v is an irreducible representation of L with highest weight A then we call the
tensor operator an irreducible tensor operator of weight A.

Following Kostant [11] we denote the universal enveloping algebra of L by
U(L) and consider the map

8: £/(!,)-> (End F)®E/(L)

defined forxeL by

xeL,

which we extend to an algebra homomorphism to all of U{L). In general 8(u) for
arbitrary w in U(L) is a more complicated expression. For example, if x,yeL then

d(xy) = 8(x) 8(y) = n(xy) ® 1 + ir(y) ®x+ir(x) ® y +1 ® xy.

When z is an element of the centre Z(L) of U(L), Kostant shows that the operator
8(z) satisfies a certain polynomial identity. In this paper we shall consider the
operator

z = \{8(z)—n{z) ® 1 - 1 ® z).

Note that when acting on an irreducible representation V(ji) of L with highest
weight fx the operator 8(z) reduces to {IT®TT^(Z) and z reduces to the operator
considered by Hannabuss [9] and others.
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Following Carey, Cant and O'Brien [3], when z is the universal Casimir element
cL we may express cL in terms of the basis elements of L and their duals;

cL = i S 0K*r) xr+1**1) xr).
r=l

Throughout this paper we shall denote the operator -cL by A.We may regard ^
as a matrix operator with entries

A) i l l Wxr)^+7r(x01*r). (3)

The matrix A may be regarded as a generalization of the matrix a appearing in
the work of Bracken and Green [2, 6]. We define an adjoint A of the matrix A
by writing

li — — Ai
Ai - Ar

More generally we define

i j % (4)

(where the repeated affix k is understood to be summed over). In this way we may
define arbitrary polynomials in A and A.

If T is a contragredient tensor operator we may regard A as an operator from
the left on T and A as an operator from the right on T by defining

(TAf = T*A\. (5)

With this definition we have

= - i i OK*,) j x'+nixnj xr) P.
r = l

Substituting equation (2) into this expression gives

(AT)* = I i(ixlrxr,T
t]-[jf,Ti]xr+lXr^,Tt]-[xr,T

i]xr)

Thus
AT-TA = [cL,T]. (6)
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On the other hand, we have

r=\

r = l

\ 2

Substituting this into equation (6) gives the result

(2A-TT(CL))T=[CL,T). (7)

Equations (6) and (7) are a generalization of equations (13), (24) and (64)
appearing in the work of Green [6].

We shall now show that when V is an irreducible module over L that the matrices
A and A satisfy a certain polynomial identity.

Throughout the remainder of this paper let F(A) denote a finite dimensional
irreducible L module with highest weight A and let TTX denote the representation
of L afforded by F(A). Henceforth we shall let A denote the matrix

A = - 5

From the Cartan decomposition of the semi-simple Lie algebra L we may
choose a basis for L consisting of root space elements together with a basis for the
Cartan subalgebra H. Hence let us consider a basis {h1,...,hm; xa,oceQ>} where
{hi,..., AtfJ is a basis for H and xa is a non-zero element of the root space La.

The dual basis may therefore be written

where x" is the unique element of i _ a which is dual to xa under the Killing form
of L. We may therefore write the universal Casimir element in the form

cL= M
i=l ae<b (8)

Now let VQi) be an irreducible finite dimensional representation of L with highest
weight [L and maximal weight vector v0. Then
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where
ta = [xa,x

a].

Since cL is an invariant of L it must take the constant value shown on the entire
space V(JJ,).

It is convenient to introduce the labelling operator A which, when acting on an
irreducible representation of L with highest weight \i, coincides with the weight /x.
We may regard A as a "vector" operator with components A(ht) which take the
constant values ̂ (hj) on an irreducible representation of L with the highest weight p.

We may therefore express the universal Casimir element in terms of the
components of the labelling operator A by writing

Suppose now that {Â  ...,Afc} are the distinct weights occurring in V{X). Then
we may decompose an irreducible contragredient tensor operator T with highest
weight A into shift tensors Tfi which decreases the eigenvalue of the labelling
operator on an irreducible representation of L by the weight Xt;

L-W,)

or
(10)

Hence from equation (9) we obtain

I W (11)

Substituting equation (11) into equation (7) gives the identity

[ 1 1 " > 1 1

2
(12)

We may simplify this expression greatly by making the following substitutions
(see Humphreys [10]);

where 8 = £2ae®+
 a and (,) is the inner product on H* induced by the Killing

form of L. We may interpret the operators (A, A) and (A, 28) as those operators
which take the constant values (/*,/x) and (JJ.,28) respectively on an irreducible
representation of L with highest weight fi.
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From this we obtain

C i = (A,A+2S)

and we may write equation (12) in the form

(A - KA, A+28) + K \ , 2(A + 8) + A,)) Tm = 0. (13)

Similarly substituting for A using equations (6) and (7) gives us the equation

Tm{A- KA, A+28) - K \ , 2(A + 8) - A,)) = 0.

These equations may be regarded as a generalization of equations (14), (19) and (30)
appearing in Green [6]. As in Green's case the matrices A and A satisfy the poly-
nomial identities

n {A - KA, A+28) + KAi( 2(A + 8) + A )̂ = 0, (14)
i l

0. (15)

To see this suppose V(ji) is a finite dimensional irreducible representation of L
with highest weight fj.eA+. Then acting on V(p) the operator A becomes

Hence 4̂ may be interpreted as an operator on the tensor product representation
V(X)®V(ji).

Suppose now we write the Clebsch-Gordan decompositon of F(A) ® V(JJL\ into
irreducible representations of L by

where n(i) denotes the multiplicity of the weight \ in F(A). Clearly this may be
done due to the fact that there is a 1-1 correspondence between the weights
occurring in the decomposition of F(A) ® VQi) and the weights Ai of F(A) (see,
for example, Kostant [11]).

Then on each space VQi+XJ the operator A takes the constant value

which (using XV(CL) — (v.v+28) for veH*) equals
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From this it is an easy matter to deduce that acting on the space V(ji) the operator
A satisfies the polynomial identity

E[ (A - MA, A+28) - \{\, 2{ii+8) + A,)) = 0.

This result in fact follows from the easily established fact that a diagonal matrix D
with distinct eigenvalues dx, ...,dk satisfies the polynomial identity

A similar argument may be carried out for A.
Replacing the weight yx by our labelling operator A the identities (14) and (15)

are then seen to hold.
Note that these identities are independent of the basis chosen for L and V(X).
Equations (14) and (15) are a generalization of the identities appearing in the

work of Green. The identity satisfied by the matrix —A is the identity appearing
in the work of Hannabuss [9] and Carey, Cant and O'Brien [3].

From now on we write the identities (14) and (15) in the form

A^O, (16)

where
A{ = KA, A+28) - KAi, 2(A + 8) + A,),

Xi). (17)

Now let Z denote the field F(Alf ...,Ak) where F[xv ...,xk] denotes the poly-
nomial algebra over the underlying field F in indeterminates xlt...,xm with field
of quotients F(xv ...,xm).

Since the components A(Â ) of the labelling operator A take constant values on
irreducible representations of L we may regard A as an invariant operator of L,
that is,

[A,L] = 0.

From this we see that Z is a field of invariants of I,.
We have already shown in equation (13) that

By a simple induction argument we may show that if p(x) is any polynomial
over Z then

(18)
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Substituting p{x) = Ui^x-A^ into (18) gives

From this we obtain
£,I| f l=8i€7|f l , (19)

where Ej are the projection operators

(£$ <20>
We may write the decomposition of the contragredient tensor T into its distinct

shift components 7^ by writing

T-hk (21)

If the weight Â  occurs with multiplicity n(i) then Tm may be further decomposed
into n(i) distinct parts each with the same shift property. Substituting equation (19)
into equation (21) gives

Tn-EiT. (22)

Hence the operator E'i projects out from the left, the shift components of the
contragredient tensor T corresponding to weight \ .

Using the jl-identity we may construct projection operators

which satisfy

and

Hence the operators Et project out shift components of a contragredient tensor
operator from the right.

The advantage of using the operators Et in this situation is that when acting on
an irreducible representation of L with highest weight ft. the labelling operator A
may be replaced by the weight /x and the roots A^ appearing in the A identity
take known scalar values. Clearly this is not the case when we consider the left
projections E^

Suppose now that f is a tensor operator of highest weight A. Then we may
decompose f into shift components 7|fl,
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where each shift component f{i] satisfies

[A(h),fm] = Uh)fK, heH. (23)

We may regard the matrix A as an operator from the left on f and the matrix A
as an operator from the right on f by writing

and

By carrying out an analogous argument for tensor operators we may readily
verify the identities

J (24)

where Ai and Af are the operators defined in (17).
From this it follows that

Tm = EiT=TEi. (25)

Hence we see that the operators Ex project out the shift components of tensors
from the right while the Et project out the shift components from the left. In this
situation it is more profitable to use the operators Et.

From equations (14) and (15) we obtain

AEt = AiEi and

and more generally we may show by induction that ifp(x)e2[x] then

In particular EiEj = £#£j and EiEj = 8itEj so that Et (respectively E^) form
an orthogonal set of idempotent operators. Moreover, from equations (21) and (22)
we obtain a resolution of the identity on our space of tensor operators,

1 = S*
i=l

(26)

Hence if p(x) is a polynomial over 2 then we may write

(27)
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We may in fact extend this definition to arbitrary functions of the matrices A and
A. Following recent work of the author [5], we may define an inverse for the
matrix A by setting

Then, using the characteristic identity we see that

and A-1 satisfies the usual properties of an inverse matrix. Note that the inverse is
only well defined on irreducible representations of the Lie algebra L where the
eigenvalues of the operators Af are all non-zero. Following the classical theory of
numerical matrices we may define the determinant of the matrix A to be the product
of its eigenvalues Ai. In view of our previous remarks we see that the inverse of A
exists only on representations in which the determinant of A is non-zero.

3. Casimir invariants

Following the notation of the previous section we may obtain a set of Casimir
operators for a semi-simple Lie algebra by taking the trace of polynomials in
A and A with respect to the A-indices which occur. In particular we define the
fundamental invariants

Jm(A) = trA04»>)
by

and

... nx(x
k)]xix'... xk

... + tr [n A(**) n A(*0 • • • irA(x*)] ** xs... xk), (28)

where the sum is over all sets of m integers i,j, ...,k satisfying 1 </,y, ...,
Let us now choose a basis of L to be {hv ...,hm; xa,x

a; aeO+} where xa is a
non-zero element of the root space La and x" is the unique element of the root
space X_a which is dual to xa under the Killing form of L. Then the dual basis is
{h\...,hm; xa,x

a; «e<I>+}. With this choice of basis for L the matrix A may be
written:

SOWA'WaOA)- S
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Suppose now we choose a basis of K(A) consisting of weight space elements.
Since the elements xa, x$ shift the weights occurring in K(A) the matrices irx(.xa)
and irx(xP) contains no diagonal entries. In fact these matrices are nilpotent
endomorphisms of F(A) and a basis for V(X) may be chosen so that the matrices
">(*<«) a r e strictly upper triangular while the nx(xP) are strictly lower triangular.
On the other hand, the matrices ir^AJ and TT^/I*) are diagonal.

In the bases considered above we see that the diagonal entries of the matrix
operator A must consist of elements of the Cartan subalgebra H and we may write

1 m
A) = -2 S^AW'+^Wi). (29)

It should be noted that if T is an irreducible contragredient tensor operator of
weight A then the above choice of basis for V(\) is equivalent to choosing compo-
nents r* of T which are weight space elements under the action of Z, defined by (2).
Now suppose {Ax,..., Ar} r( = dim K(A)) are the weights (not necessarily distinct)
occurring in K(A) and suppose the component T* has weight - Â  so that

*, heH.

Comparing this with equation (2) gives

""AWJ = &j Â (A). (30)

Hence we may write

1 m

2 t=i

Therefore the first-order Casimir may be written in the form

\ r m

where the sum on j is over all weights Ay occurring in V(X) (possibly with
multiplicities).

For semi-simple Lie algebras this operator is necessarily zero. However this is
not so for arbitrary reductive Lie algebras. For a reductive Lie algebra we may
express /X(A) in terms of the labelling operator as follows.

On an irreducible representation of a reductive Lie algebra with highest weight (i,
i takes the constant value

k
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where the sum on j is over the distinct weights occurring in F(A) and n(j) is the
multiplicity of the weight A,. Hence we may write

/i(A) = -j>CO(A,,A). (33)

This is a generalization of equation (3) appearing in the work of Green [6].
Now let us consider the second-order Casimir 72(A) and the operators (A2)\.

Acting on a maximal weight vector v0 of L with highest weight \x. the operator
(A2)j takes the constant value (see Appendix A)

ae<D+

where

Hence we may express the second-order Casimir I2(A) in terms of the labelling
operator A by writing

£ frA() ^(j] (J (34)
i=l aed>+

We note here that formulae (33) and (34) are in actual fact independent of our
choice of basis for L and V(\).

We may make formulae (33) and (34) fully explicit by using the Kostant-
Steinberg [12] formula for multiplicities and a well-known formula [16] for calcu-
lating traces on weight spaces.

Note that, although we have defined the determinant of the matrix A to be the
product of its eigenviaUes Aj, the trace of the matrix A is not in general the sum
of its eigenvalues.

The method just considered for evaluating the Casimirs ^(A) unfortunately
becomes complicated for higher values of m. There is, however, a more systematic
way of evaluating the Casimirs /m(A). From equations (27), we see that ifp(x) is
any polynomial over 2, we may write

(35)

Hence the problem of evaluating the traces of polynomials in A and A and in
particular the Casimirs 7m(A) reduces to the problem of evaluating the traces of
the operators Et and E^
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This problem was first solved for the Lie algebras O(n), Sp(2n) and U(n) by
Green [7]. Recently a more systematic approach for evaluating these traces has
been developed by Edwards [4] and Okubo [15].

Suppose V(ji) is an irreducible representation of L with highest weight \L. Then
acting on V(JJ.) the operator A may be written

. _ 1 J

As remarked earlier, A may be regarded as an operator on the tensor product
representation V(X) ® V(p). Let us now consider the total trace of A with respect
to both the A and \i indices which occur. We denote this trace by trx&/iA. It can
be shown (details in Appendix B) that the total trace of powers of A are related to
the Casimirs 7m(A) by the formula

More generally, ifp(x)eZ[x] then

trA®^X^) = tixp(A)Dim
and, in particular,

(36)

Following the notation of Section 2, let us write the Clebsch-Gordan decompo-
sition of K(A) ® V(ji) in the form

V(X)® V{p) =

where n(i) denotes the multiplicity of the weight A4 in V(X). It was shown in Section
2 that on each space V(JJ,+Xt) the operator A takes the constant value A4 which is
given by equation (17) with the labelling operator A replaced by the weight /x.

More generally we may show by induction that if p(x) is any polynomial over 2
then on the space V(ji+\^ the operator p(A) takes the constant value /»(Aj).
It follows immediately that

In particular we obtain

trA0/( Ei = n{() Dim VQi+A^). (37)

Comparing equations (36) and (37) then gives
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Substituting in Weyl's dimension formula gives the result

In a similar way we may show that

Using our labelling operator we may now write

(A+6, a)
(38)

A)
tr * «r,^ rr

ae<D+ (A+d, a)

From equations (35) and (38) we may now evaluate the traces of arbitrary
polynomials in A and A.

4. Reduction of the identity

We have already shown in Section 2 that the matrix operator A satisfies a
certain polynomial identity. However, in a particular irreducible representation
A may satisfy a reduced polynomial equation of lower degree. It is our aim in this
section to obtain the minimum polynomial identity satisfied by the matrix A on
a given finite dimensional irreducible representation F(/z).

From the remarks in the previous section we see that the matrix A, in a given
finite dimensional irreducible representation V(ji) of highest weight fi, may be
regarded as an operator on the tensor product representation V(X) ® V(JJ). The
reduced identity satisfied by the matrix A is in fact related to the Clebsch-Gordan
decomposition of V(X) ® V{ji). In general we may write the Clebsch-Gordan
decomposition of V(X) ® V(JJ) in the form

V(A) 0 F(/i) = e n{i) VQi+A*),

where {A1;..., Xk} are the distinct weights occurring in V(X) and n(i) is the multi-
plicity of the weight At. However, for a given irreducible representation VQJL) not
all of the representations VQi + X^ will appear in the Clebsch-Gordan series.

We shall now determine precisely which irreducible representations occur in
the Clebsch-Gordan decomposition of F(A) ® VQJL) and hence determine the
reduced identity of the operator A.
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It is known (see, for example, Humphreys [10]) that if V(JJ) is a finite dimensional
irreducible representation of a semi-simple Lie algebra L with highest weight /x.
and ae<E>+ then

(/*,«) 2*0.

We shall use this fact to prove the following result.

PROPOSITION. Let {Ax, ...,Xk} be the distinct weights occurring in V(\). Then
the irreducible representation V(ji+Xt) will occur in the Clebsch-Gordan decompo-
sition of V(X) ® V(ji) if and only if (ji + 8 + Xiy a) ̂  0 for every a in $+.

PROOF. Suppose V{p. + AJ occurs in the Clebsch-Gordan series. Since V(ji + AJ
is finite dimensional and irreducible we see that (/x + Ai; a) ̂  0 for every a in O+.
Hence if aeO+ then Qi+Ai+ 8, a) must be non-zero otherwise we would obtain

Conversely suppose (ji + 8 + Xiy a) is non-zero for every a in <1>+. We prove that
VQji+Xi) must occur in the Clebsch-Gordan decomposition of F(A)® V(JJ.) by a
contradiction argument. Suppose V(jx + Xt) does not occur in the Clebsch-Gordan
series. The associated projection operator Ei must vanish on V(ji). In particular,
the A-trace of Ei must vanish and, from formula (38), this implies that
(/x+S + Ai5 a) = 0 for some a in O+, a contradiction.

Thus V(ji + X{) must occur in the Clebsch-Gordan decomposition of V(X) ® VQJ.)
and the result is proved.

Now let /(A, n) denote the index set

{/; (Xi+[i + 8,<x)^0 for all «eO+}.

Then we may write the Clebsch-Gordan decomposition of V(X) ® V(JJL) in the form

Suppose now that f is an irreducible tensor operator of highest weight A. Since
r{i] = TEi we see that the shift tensor f^ vanishes on VQJ.) if and only if Et vanishes
on V(jx). Hence on the space V(jx), we may write the decompositon of the tensor
operator f into its distinct shift components in the form

This states that the number of linearly independent tensor operators, trans-
forming with an irreducible representation V(X), when acting on an irreducible
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representation V(ji) is

This sharpens the result obtained by Baird and Biedenharn [1].
In a similar way we may show that the operator Ei vanishes on V(JJ) if and only

if (/x + S — \ , a) = 0 for some aGO+. Hence we may resolve a contragredient
tensor T into its shift components Tm by writing

where
/(A, fj.) = {i; On + 8 - Xi, a) ̂  0 for all a e <D+}.

Then on the space VQJI) the number of linearly independent contragredient tensor
operators transforming with an irreducible representation F(A) is

From these remarks we see therefore that in an irreducible representation V(JJ)
the matrices A and A satisfy the reduced identities

and
JI (A - i(\ A+28) - M , 2Qx + 8) - A,)) = 0.

Clearly these identities are the minimal polynomial identities satisfied by A and A
on V(JJ.) and may be regarded as a generalization of the reduced identities dis-
covered by Green [6] for the special case of GL(ri).

5. Commutation relations

In this section we shall be primarily concerned with a semi-simple Lie algebra L
which is embedded in a larger Lie algebra K. From Weyl's theorem K must be a
totally reducible representation of L under the adjoint action of L and hence we
have a decomposition

where Tis a tensor operator of L;
If LQ denotes the subspace of K consisting of invariant operators of L we may

assume that
[r,r jciex,,. (39)

https://doi.org/10.1017/S0334270000001685 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000001685


[18] Semi-simple Lie algebras 307

This is the usual situation which occurs in the state labelling problems and covers
most situations of interest in physics.

In view of equation (39) we shall henceforth refer to a tensor operator
(respectively contragredient tensor operator) as an operator with components Tt

(respectively T*) which transform according to (1) (respectively (2)) and also
satisfy the commutation relations

[7^7}] = *«+%, (40)

where x^ belongs to L and cw is an invariant operator of the Lie algebra.
Given these commutation relations for tensor operators it is of interest to

determine the commutation relations satisfied by their shift components. The
characteristic identities have recently been applied to the labelling problems
O(«)c U(n) and U(m)<= Sp(2m) by Green, Hurst and Ilamed [8] and their approach
relied heavily on a knowledge of such commutation relations. It is our aim to show
how the characteristic identities may be applied to evaluate such commutation
relations in more general situations.

Following our previous notation let T be an irreducible contragredient tensor
operator of weight A and let A be the matrix as defined by (3). Finally let {Xlt.... Afc}
be the distinct weights occurring in F(A) and suppose Tm is the shift component of
T corresponding to the weight Â .

From equations (12) and (17) we may write the roots A^ of the identity (16) in
the form

( A A )

From equation (10) we immediately obtain

[Ai,TMi = (Ai,A,)ry). (41)

Now let us introduce the weight matrix (My) = ((Aj, A )̂). We may therefore write

and hence

^ . (42)

If the matrix M is invertible we may invert equation (42) by writing

r]. (43)
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In such a situation we have, using (43),

which, from the Jacobi identity, may in turn be written

f, Ad, r«] - Mjft\T«, Tfi], A,].

If c is an invariant operator for the Lie algebra L we see that c cannot alter the
weight of an irreducible representation of L so that we may regard c as commuting
with the labelling operator A. Hence we have [c, AJ = 0 and, in view of the
commutation relations (40), we may write

Hence we have

= [Tffl,T«].

Therefore [rg,, Tfi] is symmetric in a and fi and it follows that

is also symmetric in a and j3. On the other hand, [T01, Tfi] = — [Tfi, Ta] is obviously
antisymmetric in a and fi from which it must follow

A similar argument holds for tensor operators T.
Hence we have proved that if F(A) is an irreducible representation of L with

distinct weights {A1( ...,Afc} and whose tensor matrix Mij = {\, Ay) is invertible
then any tensor operator (in the sense of equation (40)) of weight A necessarily has
commuting components.

For example, this result states that any vector operator for U(n) must in such
circumstances have commuting components.

W< remark here that the converse of this result does not hold in general (consider
the labelling problem U(2) <=• Sp(4) for example). The tensor matrix may be regarded
as a generalization of the Cartan matrix for semi-simple Lie algebras. However,
unlike the Cartan matrix the tensor matrix will be singular in many cases. For
example, if the distinct weights occurring in F(A) are linearly dependent elements
of H* then the determinant of the tensor matrix M must vanish since we will have
linearly dependent rows. Such a situation must occur when the number of distinct
weights exceeds the dimension of the Cartan subalgebra.
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Suppose T is a contragredient tensor operator with components Ta. From the
commutation relations (40) we may write

where x is an element of the Lie algebra L and c is an invariant of L. We conclude
by showing how the characteristic identities may be applied to the evaluation of
commutators Tfa, Tfa in certain special cases.

Resolving Tinto its distinct shift components T[fl allows us to write

% (44)

Note that each commutator [TfaTfc] has shift weight Afc + A, since, for every h
in H, we have

[Mh), [Tfo Tfa] = - (A& + A,) (h) [Ifo 7ft].

Separating out terms shifting from one irreducible representation to another and
noting that the right-hand side of (44) has shift zero we have, for each

pa
A

Note that the commutators [Tfi]t Tfa] and [Tfa, Tfi}] both necessarily occur in this
sum. When these are the only two commutators occurring in this sum (which
always occurs when the tensor matrix is invertible) we may write

or (45)

In this case the commutators [rgj, Tfc] may be evaluated. When / =j we must have

In the case when iVy we may evaluate the commutators by a simple application
of the characteristic identity. Now

From equation (13) the first commutator on the right must vanish and we obtain

(A-A$[TfoTfo = (^A,)7g,7%-[^« 7-g,]77fl. (46)

On the other hand, the symmetry condition (45) gives

= -(A,, A , ) ^ r g ] + [A«, Tfi}] Tfo (47)
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Subtracting (47) from (46) then gives

- ([A*, 7*15,] 7% + [A«, Tffl] 7ft). (48)

Using (2) and the definition of the matrix A we may simplify the second term
appearing on the right of equation (48) by writing

*« Tfi] 7ft = I S ([**, 7ft] [*„ 7%] + [jcf, 7ft] [*',

+ [*r, 7ft] [xr, rgj]+[*„ rf^ [*, T^\). (49)

A simple calculation shows that

Hence the right-hand side of equation (49) may be written

(&L-"x{c£i){TkTfa+ThTfo, (50)

where cL is the universal Casimir element for the tensor TmT

Note that when 7^7^+ Ty]T[i) is an irreducible contragredient tensor operator,
of weight v say, then cL will take the constant value ir£c£). More generally, it is
conceivable that T^T^ + T^T^ will not be irreducible in which case it will be
decomposable into a sum of irreducible contragredient tensors on which the
operator cL will take constant values.

Substituting (50) into equation (48) allows us to write

The commutator [Tfa, Tfa] vanishes when i =j and when i^j we have, substituting
for Ai and Ay using equation (17),

In a similar way, using the adjoint identity, we may apply this procedure to an
irreducible tensor operator T to give the commutation relations

and
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Since this paper was motivated from Green's work [6] on GL(n) we conclude by
considering the example GL(ri).

The generators aj of GL(ri) satisfy the commutation relations

We take as a C.S.A. the vector space spanned by the operators a\. In this case an
element A of H* may be identified with an n-tuple (Alf Â  ..., An) where Ar = A(ap.
We may write our labelling operator A in the form (A1; A2,..., A^.

Now let V(X) denote the fundamental vector representation of GL(n) and
write isj for a typical elementary matrix (all entries vanishing except for 1 in the
(i,j) position). In this case our matrix operator A may be written

which is Green's adjoint matrix. On an irreducible representation of GUji) with
highest weight (A1;..., A^ the matrix A satisfies the polynomial identity

r = l

A GL{n) vector operator may be defined as an operator with n components
satisfying

Such an operator necessarily has commuting components since the tensor matrix
of T is My = &y which is certainly invertible. From this it follows that T may be
resolved into a sum of shift vectors

r=l

where TM increases the eigenvalue of the labelling operator Ar by one unit leaving
the other Ak unchanged;

From equation (52) it follows that the shift components 7Jr] of T satisfy the
commutation relations

In this case the tensor T[r]Tm+T[k]T[r] is a symmetric two-rank tensor operator
and is hence irreducible. It may be further shown that these tensors form the shift
components of the symmetric two-rank tensor Tij = T* ® T*.

A similar analysis may also be carried out for 0{n).
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Appendix A

Here we evaluate the diagonal entries of the operator A2 in the basis considered in
Section 3.

We have

f)]t x"xfi+ [TT A(

We may simplify this expression by noting that if a,/?E<I>+ then the matrices
Txix01) irx(xP) and •Tx(xa)'7T\(xi) have no diagonal entries. Similarly -nA(xa) TTA(X/J)

has no diagonal entries unless a = /?. From these considerations and equation (30)
we may write

{= 2

Hence acting on a maximal weight vector v0 of weight /x we obtain

where

Appendix B

Here we calculate the eigenvalues of the Casimir invariants 7m(A) in terms of
the total trace of the operator Am when acting on an irreducible representation

of L with highest weight p.
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Acting on VQi) we may write

313

+ 77A(**0 77 A(x*») . . .

where the sum is over integers kt from 1 to /. Hence we obtain

+ tr A(TTA(X^) 77A(*fc2) . . . 77A(xfcJ) tT^TT^**?) »„(«*•) . . . 77

Now let us introduce a set of basis vectors | a> for VQi). Then we may write

a,k

.. . 77x(X kJ) < OC

< a a >

S (tr

Hence from equation (28) we obtain

Since Im(X) is an invariant of Z, it follows that
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