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Advances in genomics generated the concept that a better understanding of individual char-
acteristics, e.g. genotype, will lead to improved tailoring of pharmaceutical and nutritional
therapies. Subsequent developments in proteomics and metabolomics, in addition to wear-
able technologies for tracking parameters, such as dietary intakes, physical activity, heart
rate and blood glucose, have further driven this idea. Alongside these innovations, there
has been a rapid rise in companies offering direct-to-consumer genetic and/or microbiome
testing, in combination with the marketing of personalised nutrition services. Key scientific
questions include how disparate datasets are integrated, how accurate are current predictions
and how these may be developed in the future. In this regard, lessons can be learned from
systems biology, which aims both to integrate data from different levels of organisation (e.g.
genomic, proteomic and metabolomic) and predict the emergent behaviours of biological
systems or organisms as a whole. The present paper reviews the origins and recent advance-
ment of ‘big data’ and systems approaches in medicine and nutrition. Conclusions are that
systems integration of multiple technologies has generated mechanistic insights and
informed the evolution of precision medicine and personalised nutrition. Pertinent ethical
issues include who is entitled to access new technologies and how commercial companies
are storing, using and/or re-mining consumer data. Questions about efficacy (both long-
term behavioural change and health outcomes), cost-benefit and impacts on health inequal-
ities remain to be fully addressed.

Precision medicine: Nutrigenomics: Personalised nutrition: Systems biology: Proteomics

Genomics and the origins of ‘big data’ in understanding
human biology

As a scientific discovery that befitted the turning of a
millennium, the initial sequencing of the human genome
by two independent groups was announced jointly by the
president of the USA and the prime minister of the UK
to much fanfare in June 2000(1). Published the following
February in tandem, in the journals Nature(2) and
Science(3), these initial draft sequences were the result
of several decades of technological achievements(4) and

represented biomedical science’s first major foray into
‘big science’(5). Multiple incremental advances in several
fields, including molecular biology, chemistry, physics
and robotics, led to the revolutionary innovation of
capillary-based DNA sequencing instruments. These,
alongside advances in computer science, ultimately per-
mitted the reconstruction of these first draft sequences(6).

At the time of completion of the human genome pro-
ject (HGP), the estimated cost of sequencing a single
human genome was US$100 million, and could be
achieved in 9 months using 350 of the state-of-the-art
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capillary DNA sequencers running in parallel(7). In the
two decades since, further remarkable advances in
sequencing technology have driven the cost of sequencing
a human genome down exponentially, with costs
approaching only US$1000 per genome since 2015(8).
Large-scale massively parallel sequencing, or next-
generation sequencing technologies, now make possible
the shotgun sequencing of several thousand human gen-
omes a month(7). By necessity at each stage, advances in
sequencing technologies have been accompanied by
advances in bioinformatics and data analysis pipelines
that have inextricably linked the fields of genomics and
computational biology(9). This has permitted the identifi-
cation of variation in the human genome in a variety of
different contexts in an unprecedented manner.

Since the HGP, multiple large-scale genomics efforts
have focused on identifying and understanding the
scale of human genetic variation. The first of these, the
International HapMap project begun in 2002, aimed to
catalogue common human genetic variants (SNPs) and
how they linked together (a haplotype). Initially focused
on characterising common SNPs, present at 5 % or
greater allele frequency, in four populations with ances-
try from Africa, Europe and Asia(10), HapMap was sub-
sumed into the 1000 Genomes project begun in 2008
after the introduction of next-generation sequencing,
which ultimately provided much greater resolution of
genetic variation in fourteen populations(11). In addition
to characterising 38million SNPs present at 1 % or
greater allele frequency, the 1000 Genomes project
mapped 1⋅4million short insertions and deletions
(indels), and more than 14 000 larger deletions. Such
mapping efforts greatly expanded our understanding of
the breadth of human genetic variation and made feas-
ible genome-wide association studies (GWAS) relating
multiple genetic variants to common complex diseases.

The path towards precision medicine

Essentially large case–control cohort studies, GWAS
compare the distribution of SNPs in thousands of people
with and without a particular disease. The first raft of
these studies was published in 2007, providing insight
into multiple common chronic diseases and prompting
Science magazine to declare human genetic variation
the breakthrough of the year(12). Perhaps most signifi-
cant, and considered ‘paper of the year’ by the
Lancet(13), was an unprecedented study from the
Wellcome Trust Case Control Consortium, a group of
fifty research groups across the UK. This work identified
genetic associations in cohorts of 2000 patients with one
of seven chronic diseases (type 1 and type 2 diabetes,
hypertension, coronary artery disease, Crohn’s disease,
rheumatoid arthritis and bipolar disorder) in comparison
to a set of 3000 control participants(14). Indeed, since its
participation in the international HGP, the UK has con-
sistently remained at the forefront of large-scale efforts in
genomics, with the Wellcome Trust Case Control
Consortium laying the groundwork for the subsequent
UK Biobank and 100 000 Genomes projects.

Initiated in 2006, the UK Biobank is a prospective
population-cohort of 500 000 individuals that has gath-
ered genome-wide genetic data along with linked detailed
physical and clinical information on the participants who
were aged 40–69 years at recruitment(15). Notable both
for its scale and commitment to data sharing, the project
follows participants through health-related records and
national registries for hospital admissions, cancer diag-
noses and deaths. Whereas the UK Biobank used array
technology to analyse 825 927 genetic markers in healthy
volunteers followed over time; the more recent 100 000
Genomes project, begun in 2013 after a significant reduc-
tion in the cost of next-generation sequencing, has
applied whole-genome sequencing to patients with either
rare diseases or cancer(16). Rare diseases are typically
Mendelian, caused by single gene defects, and manifest
before age 5 years. Accurate genetic diagnosis can
make an enormous difference in disease management
for the patient and inform families about the risk of
recurrence. Similarly, understanding what genomic
alterations have taken place in cancer can provide diag-
nostic and prognostic information and has been critical
in the development of targeted therapies for select epithe-
lial malignancies(17).

Inherent in these large-scale genomics projects has
been the belief that with a better understanding of genet-
ics will come improved treatments for individuals.
Therefore, a not insignificant aim of the 100 000
Genomes project was to imbed the infrastructure
required to provide a genomic medicine service within
the UK National Health Service(16). It has long been
recognised that many chronic diseases such as cancer,
which phenotypically look broadly similar, vary signifi-
cantly in molecular aetiology. Consequently, the same
medication given to a group of heterogeneous patients
may be beneficial in some patients and not in others,
and potentially also toxic for some patients and not for
others. The worst-case scenario for patients would be
to receive medicine that has no benefit and is toxic.
Stratified medicine (see Table 1 for definitions) simplistic-
ally aims to subgroup and identify patients that will
benefit from treatment without experiencing toxicity.
Subgroups can be based on a combination of disease sub-
types, clinical features, demographics, risk profiles, bio-
markers or molecular assays. Possibly the best known
example of stratified medicine has been the molecular
subtyping of breast cancer based on hormone receptor
(the oestrogen and progesterone receptors) and human
epidermal growth factor receptor 2 expression(18).
While the most successful applications of stratified med-
icines to date have largely been in cancer and genetic dis-
eases, many other therapies with associated biomarkers
are beginning to be adopted (by the UK National
Health Service) or are in the development pipeline(19).

Therefore, the vision of personalised or precision
medicine in most areas of medicine is arguably still aspir-
ational. Precision medicine aims ultimately to tailor
treatments to an individual based on molecular features
(plus lifestyle and environment) of a patient and/or
their disease; ideally also using companion diagnostics
to determine responders and non-responders to the
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therapy. While the terms stratified, systems, personalised
and precision (Table 1) have been used interchangeably,
and in some cases fiercely debated(20), the term precision
medicine is now preferred and has been more commonly
used in the medical literature since 2010 (Fig. 1(a)). In
calling for a new (molecular) taxonomy of disease
towards precision medicine, concerns outlined by the
US National Research Council were that the term perso-
nalised could be misinterpreted as implying that unique
treatments can be designed for each individual, in part
because it had been widely used in advertisements for
commercial products(21). These concerns were echoed
by the European Society for Medical Oncology in their
Precision Medicine Glossary(22). Additional reasons out-
lined by the European Society for Medical Oncology
were that precision medicine better reflects the highly
accurate nature of new technologies that permit base
pair resolution dissection of cancer genomes; whereas
personalised medicine could describe all modern oncol-
ogy practice that takes into account patient factors
such as personal preference, cognitive aspects and
co-morbidities in addition to treatment and disease
factors(22).

Functional genomics

As the HGP was drawing to completion, came the goals
of functional genomics; namely applying high-
throughput genome-wide approaches to studying gene

transcription, translation and protein–protein interac-
tions. Along with the overuse of the suffixes -ome and
-omics(23), emerged research efforts in transcriptomics,
proteomics and metabolomics. There was an early recog-
nition that ultimately if viewed together, comprehensive
datasets along the entire ‘omics cascade’ would provide
significant insights into the response of biological systems
to genetic, environmental or disease-mediated perturba-
tions(24). Initial functional genomic insights came from
transcriptome profiling experiments, with early applica-
tions in the nutritional sciences including the identifica-
tion of genes regulated by dietary zinc(25,26). The
genomic sequence information from the HGP in combin-
ation with advances in lithography led to high-density
DNA arrays that made it possible to measure the levels
of gene expression for tens of thousands of genes simul-
taneously; superseding the more laborious and technic-
ally challenging differential display approach(27).

However, while an individual’s genome and transcrip-
tome yield insight into ‘what can happen’, critical to pre-
cision medicine are clinical biomarkers, which are most
commonly proteins or metabolites and speak to ‘what
is happening’(24). Proteins and metabolites are chemically
much more complex and heterogeneous than nucleic
acids; and therefore, much more challenging to isolate,
identify and measure. Consequently, publications in the
fields of proteomics and metabolomics have risen subse-
quent to, and at a lower rate than, those in genomics and
transcriptomics (Fig. 1(b)). Unsurprisingly then, the
human proteome, the functional compartment encoded

Table 1. Terminology

Term Definition

Stratified medicine Defines current practice in pharmaceutical medicine of identifying and subgrouping patients for optimal treatment with
least toxicity. Subgroups can be based on a combination of disease subtypes, clinical features, demographics, risk
profiles, biomarkers or molecular assays.

Precision medicine Goes beyond stratification to tailoring treatments to individuals based on molecular features of the patient and the
disease. Implies the use of multi-omics data in assessing molecular features and companion diagnostic/prognostic
indicators to predict the toxicity and likely responders and non-responders. Preferred term over personalised
medicine(21,22).

Personalised
medicine

Taken and used by many to mean the same thing as precision medicine. No longer preferred because of its widespread
commercial use and concerns it implies unique treatments can be designed for individuals(21).

Systems biology An interdisciplinary field that combines molecular and computational approaches to study systemic network behaviours
and predict the behaviour of biological systems (cells, tissues, organisms) as a whole.

Systems medicine Subfield of systems biology underpinning precision medicine and the integration of clinical and multi-omic data into
predictive models.

Systems
pharmacology

Subfield of systems biology focused on characterising mechanisms of drug actions, interactions and off-target effects at
a systems level. Extends physiologically based pharmacokinetic-pharmacodynamic modelling, incorporating genetic
variation and whole-cell metabolism.

Nutrigenomics In the broadest sense the study of any interactions between nutrition and the genome; implies the use of high-throughput
tools of functional genomics(105). While often used interchangeably with nutrigenetics, can be differentiated as the study
of the effect of nutrients/diet on gene expression and, consequently, the proteome and the metabolome(106,107).

Nutrigenetics The study of how genetic variation influences differential response to nutrients/diet and risk of nutrition-related disease.
Stratified nutrition Nutrition advice/intervention given to groups of individuals based on shared characteristics. For example,

population-level dietary guidelines are stratified accounting for sex, age, pregnancy/breastfeeding; and dietetic/clinical
nutrition tailors on phenotypic and disease information.

Personalised nutrition The tailoring of nutritional advice/diets to optimise health based on an individual’s characteristics. At increasing depths of
personalisation may include dietary, phenotypic and genotypic information(56). Commercially infers nutrigenetic
profiling.

Precision nutrition More recent term, used interchangeably with personalised nutrition but implying an in-depth quantitative level of
understanding(55) from genetic and digital health profiling (e.g. dietary, physical activity, glucose).
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by the genome, emerged as a next logical biological chal-
lenge to be tackled internationally after completion of the
HGP(28). The Human Proteome Organization was
founded in 2001 in large part to promote and coordinate
open access initiatives in this field(29). With recognition of
the critical role of small-molecule (<1500Da) metabo-
lites in clinical diagnostics and as pharmaceutical agents,
complementary efforts in metabolomics followed in short
order(30).

Whereas sequencing an entire genome is now relatively
inexpensive and technologically feasible by next-
generation sequencing within a few hours, measuring a
proteome or metabolome in its entirety is still not pos-
sible from a single experimental approach. Nonetheless,
advances in MS and NMR spectroscopy, along with bio-
informatics, databases and annotation, mean that we can
now measure many, many more proteins and metabolites

in single runs than two decades ago. Building on early
tissue-specific (plasma, liver, brain), antibody and data
standard development initiatives, the human proteome
project was formally launched by the Human Proteome
Organization in 2010(31). The work of fifty international
collaborating research teams is organised by chromo-
some, biological processes and disease categories and
has since been reported collectively annually. As of
2019, robust MS data have been reported for 89 % of
the 19 823 predicted coding genes, and separate
antibody-based histochemical evidence exists for the
expression of 17 000 proteins(32). While such cataloguing
efforts are not without their detractors(33), the efforts of
‘discovery science’ clearly can and have fostered
hypothesis-driven approaches(34). In the context of the
human proteome project, multiple strands of research
have identified biomarkers and characterised molecular
mechanisms of human disease, contributing to efforts
towards precision medicine(32).

Systems biology

Systems biology as a discipline, although proposed as
early as 1966(35), became truly established in the after-
math of the HGP(36,37). Representing the antithesis of
reductionism, systems biology combines molecular and
computational approaches to understand highly complex
interactions within, and ultimately predict the behaviour
of, biological systems as a whole(38,39). From early in its
conceptualisation, both the generation and the integra-
tion of different levels of biological information (e.g. gen-
omic, transcriptomic, proteomic, metabolomic), in order
to yield predictive mathematical models, were articulated
as fundamental to systems biology(36). Therefore,
whereas the high-throughput datasets of genomics and
proteomics provide the foundation for the ‘reconstruc-
tion’ of biological networks at the genome-scale; it is a
computational simulation that yields insights into the
systems structure and dynamics, and predicts biological
outcomes(39,40).

The first institute for systems biology was founded in
1999 in the USA by Leroy Hood, whose early work had
made seminal contributions to the fields of genomics and
proteomics through the development of high-throughput
instrumentation for DNA and protein sequencing; in add-
ition to this, he led significant sequencing efforts that con-
tributed to the HGP(41). Undoubtedly a visionary, who
viewed continued advances in high-throughput measure-
ment technologies, databases and tools for integrating
the various levels of biological information, essential to
systems biology(36); Hood’s institute radically brought
together biologists, chemists, computer scientists, engi-
neers, mathematicians, physicists and physicians; and has
continued to pioneer new technologies (including single-
cell microfluidics) and new computational platforms in
the ensuing decades(42). Perhaps most revolutionary, how-
ever, was Hood’s early vision for what he first termed ‘pre-
dictive, preventive and personalised medicine’ and later
renamed ‘P4 medicine: predictive, preventive, personalised
and participatory medicine’(43,44). Relevant to the concept

Fig. 1. (Colour online) Recent growth in publications in the
PubMed database using specified terms. (a) Number of
publications using adjectives precision, personalised, systems or
stratified in conjunction with medicine since 2007. Data were
generated by performing a PubMed [All Fields] search with terms
searched within double quotation marks, e.g. “precision
medicine”. Personalised medicine was searched as: “personalised
medicine” or “personalized medicine”. (b) Growth in publications
in genomics, transcriptomics, proteomics and metabolomics
since 2001. Genomics, proteomics and metabolomics were
searched as: “genomics”[MeSH] or “genomics”[All Fields].
Transcriptomics was searched as: “gene expression
profiling”[MeSH] or “transcriptomics”[All Fields].
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of personalised nutrition discussed below, there was early
recognition in the systems biology field that nutrition is a
critical environmental factor that interacts with genetics
(and metabolism) to determine health or disease, particu-
larly later in life(45,46).

From the systems biology perspective, the disease is
viewed as arising from either genetically and/or environ-
mentally perturbed networks in the affected organ.
Computational modelling allows the determination of
how systemic networks are changing in individual cells,
tissues or organisms, dynamically influencing patho-
physiology of the disease. Systems medicine and systems
pharmacology, considered the subfields of systems biol-
ogy underpinning precision medicine(47), aim to integrate
genetic, clinical and omic data into network models,
representing an in silico human that can yield emergent
insights (Fig. 2)(48). Systems pharmacology is a logical
extension of physiologically-based pharmacokinetic
modelling, offering methods to account for genetic vari-
ation impacting whole-cell metabolism and the regula-
tion of key drug metabolism enzymes(49). Whereas
applications in pharmacology may be aimed at predict-
ing responders/non-responders to a drug or identifying
mechanisms of action underpinning drug off-target
effects; equally systems approaches may be applied to
predicting the response to dietary intervention given an
individual’s background genetics, microbiome, life stage
and/or disease state (Fig. 2)(38,48,50).

Proving that systems-level integration of genetic data
with clinical and multiple omic datasets is feasible and
can yield personalised predictive insights and facilitate a
preventative health intervention (involving nutrition) was
a landmark study published in 2012(51), led by Michael
Snyder, another pioneering leader in developing systems

approaches to functional genomics and proteomics(52).
The study combined whole-genome sequencing with tran-
scriptomic, proteomic, metabolomic and autoantibody
profiles in blood from a single individual, Professor
Snyder himself, measured sequentially over a 24-month
period. Apart from the significant computational feat in
terms of data integration, this work was fascinating in
monitoring Snyder’s dynamic response to two viral infec-
tions, as well as his onset of type 2 diabetes and response
to dietary and lifestyle intervention. While Snyder’s ele-
vated risk for diabetes was predicted by genome-sequence
analysis, the onset of a frank high glucose and elevated
glycated haemoglobin phenotype occurred about 10
months into the study and appeared to have been trig-
gered by infection with the respiratory syncytial virus.
Choosing to implement a dramatic change in diet, exercise
and ingestion of low doses of acetylsalicylic acid, over the
course of the following 8 months, Snyder was able to
reduce his glucose and glycated haemoglobin levels to
normal(51). The work uniquely characterised molecular
pathways involved in both onset and resolution of viral
infections and diabetes at extraordinary depth, with
unique insights provided by the combination of transcrip-
tomic, proteomic and metabolomic profiling. Other exam-
ples of multi-omic data integration in this way that have
informed cancer as well as rare and common diseases
have recently been reviewed(53).

Personalised nutrition and consumer genomics

As in medicine, the meaning of personalised in the
context of nutrition has been deliberated(54–56); and ter-
minology (Table 1) continues to evolve with the more

Fig. 2. (Colour online) Systems approaches integrate genetic, clinical and ‘omic’ data into in silico models. Simulations aim to
understand network dynamics and predict the response to dietary or pharmaceutical intervention accounting for an individual’s genetics,
lifestyle, life stage, health and/or disease state. Reprinted with permission(48).

J. B. Moore304

P
ro
ce
ed
in
gs

o
f
th
e
N
u
tr
it
io
n
So

ci
et
y

https://doi.org/10.1017/S0029665120006977 Published online by Cambridge University Press

https://doi.org/10.1017/S0029665120006977


recent use of the term ‘precision’ emerging in the scien-
tific literature in the past 5 years (Fig. 3). Analogous to
the ambitions of precision medicine, the aim of persona-
lised or precision nutrition is to tailor nutritional advice/
diets to optimise health based on an individual’s
characteristics(55). For a nutritionist or clinical dietitian,
these characteristics have long included anthropometry,
dietary history and preferences, information on lifestyle
and physical activity, along with clinical parameters
and biochemical markers of nutritional status. But after
the sequencing of the human genome came an era of
increasing research interest in nutrigenomics and nutrige-
netics (Table 1 and Fig. 3), and the accompanied vision
of providing personalised dietary advice to prevent
diet-related diseases based on genetic differences and
the predicted response to nutrients derived from genetic
profiling(57,58). Notably, while scientists have remained
largely circumspect about clinical utility and the
extent to which genetic or polygenic risk scores can
explain overall risk for common, multifactorial diseases
(e.g. obesity, diabetes, fatty liver) or micronutrient
status(59,60); an astonishing number of direct-to-consumer
(DTC) genetic testing companies have proliferated offer-
ing personalised nutrition advice to individuals based on
nutrigenetic testing via the Internet(61).

Public interest in these commercial genetic services
has rapidly grown in the past 5 years. The number of
genotyped consumers started rising exponentially in
2016 and surpassed 10 million worldwide at the beginning
of 2018(62). The notorious, ultimately temporary, US
Food and Drug Administration ban of medically-relevant
testing by 23andMe in 2013 means the majority of DTC
genomic tests sold to date were marketed and sold as
ancestry services(59,62). In addition to raising a host of eth-
ical questions around data privacy, forensic genealogy,
personal identity and race(63,64), this prompted a very
market-based work around the regulatory legislation for
health-based genetic testing(65). Specifically, a crop of

third-party interpretation services has arisen that will
interpret raw genotyping data that are provided to consu-
mers by many DTC ancestry genetic services without
having done the testing per se(65,66). Separately, in a
much criticised reversal, in 2017, the US Food and
Drug Administration approved a 23andMe genetic health
risk test of limited clinical sensitivity (limited positive and
negative predictive values)(67). Moreover, a significant
number of companies are marketing ‘health and wellness
insights’ that are largely unregulated and relate to com-
mon (nutrition-related) disease risk(61,68). In a survey of
246 companies offering online DNA testing, done in
2016, a majority (136) offered some form of health-related
testing service(61). Seventy-four companies offered nutrige-
netic testing, many of which also offer tailored diet
services, food supplements and/or meal plans; and
thirty-eight companies offered tests for athletic ability.

There are multiple scientific concerns with the perso-
nalised nutrition promises offered by DTC nutrigenetic
testing companies, given the marked absence of pub-
lished studies assessing either analytical or clinical/
predictive validity of these tests. A merely analytical con-
cern is the reliability of the sequence data in the first
instance. A concerning study of confirmatory testing in
referrals to a clinical diagnostic laboratory found 40 %
of variants in a variety of genes reported in DTC raw
data to be false positives(66). In terms of predictive valid-
ity, the majority of genetic risk estimates returned by
DTC companies are based on only a select number of
genetic variants. This is in contrast to the numerous
(>100) genetic loci identified by the largest (>100 000
individuals) GWAS done to date, which still only explain
a fraction (20 % or less) of the heritability of common
diet-related chronic diseases such as obesity and type 2
diabetes(69,70). Moreover, very recently, completely
novel genome-wide polygenic risk scores (GPRS) have
been developed for obesity, type 2 diabetes and other
common diseases; facilitated by improved algorithms
and very large GWAS(71,72). In the case of obesity, the
GPRS comprised 2·1 million common genetic variants
and significantly outperformed a score that incorporated
only the 141 independent variants that had reached
genome-wide levels of statistical significance in the
prior GWAS(69,72). A 13 kg gradient in weight and a
25-fold gradient in risk of severe obesity were observed
in adults across GPRS deciles. Although practical con-
siderations on how such a GPRS might be implemented
and inform interventions for obesity prevention
remain(73); and methodological and clinical utility ques-
tions have been raised(74) about an equally novel GPRS
for coronary artery disease(71). Nonetheless, these
GPRS studies call into question any DTC genetic test
and personalised nutrition advice around body weight
made on a handful of SNPs.

Related to nutrition status, and equally suspect in
terms of predictive validity, is personalised nutrition
advice from multiple companies claiming to help consu-
mers maintain healthy levels of vitamins, antioxidants
and minerals, on the basis of a handful of genetic var-
iants. In contrast to obesity and type 2 diabetes, to
date much fewer loci have been associated with the

Fig. 3. (Colour online) Increase in publications in the PubMed
database related to nutrigenomics and stratified, personalised or
precision nutrition. In the cases of stratified, personalised and
precision nutrition, terms were searched within double quotation
marks, e.g. “precision nutrition”[All fields]. Personalised nutrition
was searched as: “personalised nutrition” or “personalized
nutrition”. Nutrigenomics/nutrigenetics was searched as:
“nutrigenomics”[MeSH] or “nutrigenomics”[All Fields] or
“nutrigenetics”[All Fields].
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biomarkers of micronutrient status(60). These explain
only a small fraction of variance in micronutrient status.
Moreover, not all vitamins and minerals have been stud-
ied, and there are no data examining response to intake/
supplementation. Perhaps even more relevant for the
concept of personalised nutrition beyond the much
debated ‘missing heritability’(75) is that both micronu-
trient status and the risk for many common diseases
are only partially determined by genetics; with the envir-
onment playing a critical and often dominant role.
Similar to the heterogeneity observed in response to
pharmaceutical agents in clinical trials, human subjects
are inherently variable in their responses to food and
nutrient/dietary interventions(56,76,77). Beyond genetics,
inter-individual variation in a host of factors (sex, habit-
ual dietary habits, physical activity, epigenetics, gut
microbiome) affects an individual’s absorption, distribu-
tion, metabolism and excretion of dietary compounds
and metabolites(78).

Wearables and digital health

In addition to advances in multi-omic technologies, the
miniaturisation of electronic devices in the past decade
in particular has heralded tremendous innovation in,
and adoption of, mobile technologies, sensors and wear-
able devices. Globally, smartphone (considered mobile
computing devices) usage increased by 40% between
2016 and 2020, and an estimated 45 % of the world’s
population now owns one(79). Worldwide revenue for
the wearable tech industry was estimated at $23 billion
in 2018 and is anticipated to reach $54 billion by
2023(80). The so-called wearables now permit individuals
to track a multitude of parameters including diet, phys-
ical activity and sleep; and physiological measurements
such as heart rate, body temperature, blood pressure,
oxygen saturation and glucose levels(81). Although heart
rate monitors for exercise have existed since the early
80s, the first clip-on accelerometer activity tracker, the
Fitbit, appeared on the market in 2007. By 2013, Fitbit
(and other companies) had released a wristband tracker
capable of measuring sleep as well as activity.

Since then there has been a market explosion of DTC
wearables and medical devices, along with associated
apps, aimed at encouraging individuals to actively par-
ticipate in their own health/wellness behaviour change
or disease management(81,82). These have included most
recently smartwatches capable of taking an electrocar-
diogram reading with an accompanying app running a
Food and Drug Administration-approved algorithm for
recognition of atrial fibrillation(83). By 2015, there were
more than 500 different healthcare-related wearables
available facilitating real-time data collection of lifestyle
and physiological measurements both by individuals and
for research(84,85). In addition to the application of new
technologies for dietary assessment(86), of particular rele-
vance to personalised nutrition and the goal of preven-
tion of diet-related diseases, has been the improvements
in wearable devices for continuous glucose monitoring
(CGM). In DTC fashion, data may now be released to

a user’s phone and sensors can now be worn for up to
2 weeks. This lengthening of sensor life has greatly facili-
tating recent research efforts using CGM, which have
underscored the remarkable high level of variability
between people in response to the same meals(76,87).

In a notable study for computationally driven persona-
lised nutrition, Zeevi et al. developed a predictive algo-
rithm for postprandial glycaemic response through
profiling an 800-person Israeli cohort without diabetes
who underwent CGM for 7 d, while recording food
intake, activity and sleep in real-time via their mobile
devices(76). The machine learning algorithm integrated
gut microbiome data derived from 16S rRNA metage-
nomics profiling, as well as blood parameters, anthropo-
metrics, dietary intakes, activity and CGM data profiled
over the week in the development cohort and first vali-
dated in an independent cohort of 100 individuals. The
algorithm’s predictions for glycaemic responses correlated
significantly better to the CGM measured responses than
carbohydrate counting (correlation, R = 0⋅71 v. 0⋅38) or
energetic counting (R= 0⋅33) models often utilised; a
result that has now been replicated in independent
American populations(88,89). Lastly, in a smaller rando-
mised trial in twenty-six individuals, it was shown that
the algorithm could accurately predict good and bad
diets. In a 1-week crossover design, participants had
lower glycaemic responses and favourable changes in the
composition of their gut microbiomes in response to
their predicted good diet in comparison to a week on
the bad diet.

Although the interpretation of the high interindividual
variability in glycaemic response observed by Zeevi et al.
has been criticised(90), multiple research studies since
have also concluded that there is both high intraindivi-
dual and interindividual variation in glycaemic response
to both standardised meals and mixed diets(87,91,92); with
implications for the often debated concepts of glycaemic
index and glycaemic load(93,94). Notably, the work by
Hall et al. also applied a data-driven approach to
CGM defining ‘glucotypes’ based on how variable the
glycaemic responses were in aggregate overtime for fifty-
seven healthy participants with no diagnosis of diabetes
(on screening five met criteria for type 2 diabetes and
fourteen had prediabetes). They show a relationship
between their novel machine learning classification
(low, moderate, severe) of glucose variability and clinical
measures of aberrant glucose metabolism. Where severe
glycaemic variability correlated with higher values for
fasting glucose, oral glucose tolerance test glycated
haemoglobin and the steady-state plasma glucose test
for insulin resistance. Similar to the work by Zeevi
et al., they also demonstrated tremendous heterogeneity
in the glycaemic responses to three standardised meals
of either bread and peanut butter, a protein bar or corn-
flakes and milk. While the expected relationship between
carbohydrate/fibre content of the meals and severity of
glycaemic response was observed (cornflakes conspicu-
ously producing a ‘severe’ response for 80 % of partici-
pants), for each meal there were high and low
responders in terms of blood glucose spikes. The authors
show that even among their normoglycaemic
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participants, those classed with a ‘severe glucotype’ had
glycaemic responses in prediabetic and diabetic ranges
15 and 2% of the time. However, whether these indivi-
duals are at an increased risk for developing diabetes
or other metabolic diseases requires long-term follow-up
studies, as does the investigation of the utility of CGM
for early-risk detection.

A critical question for public health is whether or not
insights from ‘big data’ generated from wearables and
multi-omic profiling can empower individuals to behav-
ioural change. Two other recent studies, remarkable for
their scope of phenotyping and big data analyses orche-
strated, suggest that, at least in an intervention setting,
changes with health benefits can be motivated(95,96).
The first of these, the Pioneer 100 Wellness Project, was
the realisation of Leroy Hood’s aforementioned vision
of P4 medicine(95). Here, 108 individuals had their whole
genome sequenced and were followed for a 9-month
period with daily activity tracking and extensive clinical
testing along with the analyses of their metabolomes, pro-
teomes and microbiomes. Significantly, participants also
received monthly behavioural coaching on ‘actionable
possibilities’ based on their profiles to improve their indi-
vidual health via diet, exercise, stress management, dietary
supplements or doctor referral as necessary. Longitudinal
improvement in a host of clinical analytes related to nutri-
tion, diabetes, CVD and inflammation were observed.
The second study was an extension of Michael Snyder’s
self-piloted systems approach to 109 individuals at risk
for type 2 diabetes(96). Participants’ genomes were whole
exome sequenced and participants were followed pro-
spectively with multi-omic profiling done quarterly for
up to 8 years (median, 2⋅8 years) along with CGM and
activity monitoring. Again, unique insights into temporal
changes in molecular physiology were made along with
‘actionable health discoveries’ for participants, and 81%
reported some change in their diet and exercise habits.

Conclusions

The past two decades have brought unprecedented
advances in omics, wearables and digital technologies.
Undoubtedly, systems integration of multiple technologies
has generated mechanistic insights and informed the evo-
lution of precision medicine and personalised nutrition.
These have prompted the recent launching of the most
ambitious precision medicine cohort study to date, the
All of Us Research Program, which aims to collect genetic
and health data (utilising electronic health records and
digital health technology), along with biospecimens for
biomarker analyses, from at least one million diverse indi-
viduals in the USA(97). Nonetheless, work to date has
been limited to the ground-breaking discovery studies
led by a few elite research groups, and significant research
and societal challenges yet need to be overcome prior to
widespread adoption in clinical and public health set-
tings(98,99). Considerable data integration and methodo-
logical issues in the study design must be addressed. In
addition to issues around data dimensionality reduction,
data storage, handling and sharing, there are complex

challenges regarding study design, analytical assumptions
and statistical validation(100). Prediction modelling is sus-
pect to algorithmic bias, black box issues, confounders
and the fundamental problem of causal inference(98).

In addition, pertinent ethical issues involve who can
access new technologies, and how commercial companies
are storing, using and/or re-mining consumer data.
Substantial questions about efficacy in terms of long-
term behavioural change and health outcomes remain.
Related concerns are those of overdiagnosis in healthy
individuals(101), cost-benefit and impacts on health
inequalities. Dietary and lifestyle choices are influenced
by a broad range of socioeconomic factors including
income, education, social networks and the built environ-
ment(102). Tackling diet-related disease requires close
scrutiny of the social determinants of food environments
and population-wide, public health policies aimed at
reducing health inequalities(103). Ultimately, financial
investment in the future of precision medicine and digital
health must be balanced with limited resources available
for public health initiatives.
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