On the Foundations of Dynamics.

By Dr Peddie.

Note on a Theorem in connection with the Hessian of a Binary Quantic.

By Charles Tweedie, M.A., B.Sc.

Extension of the "Medial Section" problem (Euclid II :11, VI : 30, etc.) and derivation of a Hyperbolic Graph.

By R. E. Anderson, M.A.
To divide the straight line AB (containing a units) at C so that

$$
\mathrm{AB} \cdot \mathrm{BC}=p . \mathrm{AC}^{2}
$$

§ I.

By algebra, taking the positive root,

$$
\begin{equation*}
\mathbf{A C}=\frac{\mathbf{A B}}{2 p}(\sqrt{4 p+1}-1) \tag{1.}
\end{equation*}
$$

The number p may therefore have any positive value, integral or fractional, and when negative cannot exceed $\frac{1}{4}$. Secondly, AC and AB are incommensurable except when $4 p+1$ is a square :e.g., if $4 p=(q-1)(q+1)$ or if $p=q(q+1), q$ being any positive integer or fraction.

To find the surd-line $\sqrt{4 p+1}$ geometrically is the heart of the problem. Euclid solves it (II :11) when $p=1$ by I: 47, which is also used in Ex. i., ii., iii. following ; but II : 14 will sometimes be easier. Since equation (1.) becomes $\mathbf{A C}=\sqrt{4 p+1}-1$, if $\mathrm{AB}=2 p$, i.e., if the unit line is $\frac{A B}{2 p}$ or $\frac{A M^{*}}{p}$, we construct thus :-

