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We use Navier–Stokes-based linear models for wall-bounded turbulent flows to estimate
large-scale fluctuations at different wall-normal locations from their measurements at
a single wall-normal location. In these models, we replace the nonlinear term by a
combination of a stochastic forcing term and an eddy dissipation term. The stochastic
forcing term plays a role in energy production by the large scales, and the eddy
dissipation term plays a role in energy dissipation by the small scales. Based on the
results in channel flow, we find that the models can estimate large-scale fluctuations with
reasonable accuracy only when the stochastic forcing and eddy dissipation terms vary
with wall distance and with the length scale of the fluctuations to be estimated. The
dependence on the wall distance ensures that energy production and energy dissipation
are not concentrated close to the wall but are evenly distributed across the near-wall and
logarithmic regions. The dependence on the length scale of the fluctuations ensures that
lower wavelength fluctuations are not excessively damped by the eddy dissipation term
and hence that the dominant scales shift towards lower wavelengths towards the wall. This
highlights that, on the one hand, energy extraction in wall turbulence is predominantly
linear and thus physics-based linear models give reasonably accurate results. On the other
hand, the absence of linearly unstable modes in wall turbulence means that the nonlinear
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term still plays an essential role in energy extraction and thus the modelled terms should
include the observed wall distance and length scale dependencies of the nonlinear term.

Key words: turbulent boundary layers, turbulence modelling

1. Introduction

When a flow passes over a solid wall it slows down to satisfy the no-slip boundary
condition. This creates shear above the wall that, in most cases of practical interest,
injects sufficient energy into velocity fluctuations for the flow to become turbulent. These
fluctuations further increase the shear above the wall, thus increasing the mean shear stress
at the wall (Adrian 2007). This has several important consequences, such as considerable
increases in (i) the friction in transporting liquids through pipelines, (ii) the skin friction
drag over aircraft and ships, and (iii) the dispersion of pollutants and the distribution of
heat in the atmospheric boundary layer. The estimation of these fluctuations for either
modelling or controlling their effects is therefore of great significance (Smits & Marusic
2013). In particular, there is an increasing interest in estimating large-scale fluctuations
because they (i) are easier to influence (Encinar & Jiménez 2019) and (ii) are dominant
for engineering and environmental flows (Tomkins & Adrian 2005; Guala, Hommema &
Adrian 2006; Smits, McKeon & Marusic 2011).

Transfer function-based methods have more recently been used for the estimation of
large-scale fluctuations in wall-bounded turbulent flows (Marusic, Mathis & Hutchins
2010; Mathis, Hutchins & Marusic 2011; Baars, Hutchins & Marusic 2016; Suzuki &
Hasegawa 2017; Illingworth, Monty & Marusic 2018; Madhusudanan, Illingworth &
Marusic 2019; Encinar & Jiménez 2019; Sasaki et al. 2019; Amaral et al. 2020; Martini
et al. 2020; Towne, Lozano-Durán & Yang 2020). These methods are loosely based on
the concept that large energy-containing eddies are ‘attached’ to the wall (Townsend 1976)
and therefore that their measurements at one wall-normal location can be used to estimate
these ‘attached’ eddies at other wall-normal locations. (The term ‘attached’ means that
these eddies extend to the wall such that they can feel the presence of the wall but are not
necessarily physically connected to the wall Marusic & Monty (2019).) The underlying
transfer functions are usually generated (i) either from two-point correlations of previously
collected data at the measurement and estimation locations (e.g. Mathis et al. 2011), or (ii)
from resovent-based method where time-resolved data at only the measurement location
is used in combination with a Navier–Stokes (NS)-based linear model (e.g. Towne et al.
2020). In the present study, we follow the work of Madhusudanan et al. (2019), where
NS-based linear models are used to obtain the transfer functions such that no previously
collected data, other than the mean velocity profile, is required. This method provides
instantaneous estimates at multiple locations from instantaneous measurements (i.e. a
single snapshot) at one wall-normal location. Our focus is on improving the performance
of such NS-based linear models.

1.1. Structure of wall turbulence and inner–outer interactions
In wall-bounded turbulent flows, the wall segregates the flow into different regions: (i) an
inner region close to the wall where viscous effects are important and the relevant length
scale is ν/uτ (ν is the kinematic viscosity, uτ = √

τ/ρ is the friction velocity, τ is the mean
shear stress at the wall and ρ is the flow density); (ii) an outer region away from the wall
where inertial effects are important and the relevant length scale is h, which can be the
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Figure 1. (a) Cess (1958) approximation of the eddy viscosity and (b) the corresponding mean velocity profile
(the z-axes are square root scaled). (c) Instantaneous streamwise velocity fields in the horizontal planes at
z+ = 300, 100 and 10.

channel half-width or boundary-layer thickness; and (iii) the overlap region (logarithmic
region) where the inner to outer region transition occurs and the relevant length scale is
the distance from the wall (von Kármán 1931; Jiménez 2013). The ratio of the outer to
inner length scales is the friction Reynolds number (Reτ = uτ h/ν), which quantifies the
range of length scales involved and hence the complexity of the flow.

Turbulent energy in wall-bounded flows is generated by shear above the wall and is
therefore maximum close to the wall, just above the viscous sublayer (Townsend 1976).
This region is referred to as the near-wall region and it lies between the wall and the
logarithmic region (see figure 1). This near-wall region is very thin in engineering and
environmental flows for which Reτ = 103–107. It makes numerical calculations (Jiménez
2003; Smits & Marusic 2013) or experimental measurements (McKeon et al. 2004;
Hutchins et al. 2009; Hultmark et al. 2012) of fluctuations in this region prohibitively
expensive in most situations. Instead, there is an interest in exploiting the coupling between
the inner- and outer-region events to estimate fluctuations in the near-wall region from
measurements in the logarithmic region.

Marusic et al. (2010) and Mathis et al. (2011) developed such a predictive model
which exploits two kinds of inner–outer interactions. First, large-scale fluctuations in
the outer region are observed to impose their ‘footprint’ in the near-wall region (Abe,
Kawamura & Choi 2004; Hutchins & Marusic 2007a; Baars, Hutchins & Marusic 2017).
(The term ‘footprint’ means that large-scale fluctuations that are generated in the outer
region extend their influence to the near-wall region Mathis et al. (2011).) This ‘footprint’
component therefore describes large-scale fluctuations close to the wall. Second, in
addition to imposing their ‘footprint’, the large-scale fluctuations in the outer region are
also observed to modulate the near-wall cycle, which generates near-wall streaks and
vortices (Rao, Narasimha & Narayanan 1971; Brown & Thomas 1977; Bandyopadhyay
& Hussain 1984; Hutchins & Marusic 2007b; Mathis, Hutchins & Marusic 2009). This
modulation component, therefore, describes small-scale fluctuations, i.e. the near-wall
streaks and vortices, close to the wall.
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At high Reynolds numbers, large-scale fluctuations (i) account for most of the turbulence
production (Hultmark et al. 2012) and (ii) increasingly modulate the near-wall cycle
(Mathis et al. 2009). (The near-wall cycle still remains self-sustained (Jiménez &
Pinelli 1999; Schoppa & Hussain 2002). However, in high-Reτ flows, the amplitude of
the resulting near-wall streaks and vortices is strongly correlated to the amplitude of
large-scale fluctuations in the logarithmic region.) For these two reasons, it is expected
that the importance of large-scale fluctuations increases with Reτ and these fluctuations
therefore form the primary focus of this study.

1.2. Spectral linear stochastic estimation of large-scale fluctuations
Baars et al. (2016) noted that the predictive model of Marusic et al. (2010) and Mathis
et al. (2011) could be improved by applying spectral linear stochastic estimation (SLSE) for
the estimation of large-scale fluctuations. Mathis et al. (2011) designed their model from
the cross-correlation of large-scale streamwise velocity fluctuations at the measurement
location (zm) and estimation location (zp); zm and zp are separated in the wall-normal
direction only. This is essentially stochastic estimation in which conditional averages
between two variables are obtained from unconditional statistics. Adrian (1979) proposed
that the estimation of a fluctuating velocity component ui(zp) from measurements of the
state-vector u(zm) can be approximated using a Taylor-series expansion as

uip(zp, t) = Aij(zm, zp)ujm(zm, t) + Bijk(zm, zp)ujm(zm, t)ukm(zm, t) + . . . , (1.1)

where Aij, Bijk are second- and third-order two-point correlation tensors, respectively,
subscripts i, j, k indicate components of the state-vector u and subscripts m and p indicate
the measured and estimated quantities, respectively. We now limit ourselves to the first
term only, i.e. to linear stochastic estimation (LSE), which has been shown to be a
good approximation in wall-bounded turbulent flows (Guezennec 1989; Baars et al.
2016; Encinar & Jiménez 2019; Sasaki et al. 2019). In LSE, the coefficient Aij(zm, zp),
obtained by minimizing the mean square error, is given by the two-point correlation tensor
〈uj(zm, t)ui(zp, t)〉/〈|uj(zm, t)|2〉, where 〈〉 denotes ensemble averaging.

The LSE can be improved when performed in the spectral domain (Tinney et al. 2006),
because SLSE preserves spectral structure and eliminates any contamination caused by
correlations between orthogonal spectral modes. Following Mathis et al. (2011), we
assume that both measurements and estimation are performed for the streamwise velocity
fluctuations, and drop the subscripts (i, j, k). The flow is homogeneous in the streamwise
and spanwise directions so we decompose the velocity fluctuations into their Fourier
coefficients characterized by the streamwise and spanwise wavenumbers (kx, ky). This
transforms the linear contribution of (1.1) into

ûp(zp, t; kx, ky) = HL(zp, zm; kx, ky)ûm(zm, t; kx, ky), (1.2a)

HL(zp, zm; kx, ky) = 〈û(zp, t; kx, ky)û†(zm, t; kx, ky)〉
〈û(zm, t; kx, ky)û†(zm, t; kx, ky)〉 , (1.2b)

where ˆ denotes the Fourier coefficient and superscript † denotes the complex conjugate.
We do not perform a Fourier transform in time because we aim to obtain instantaneous
estimations from instantaneous measurements as discussed in § 3. In order to gain better
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insight, following Baars et al. (2016), we further break the transfer function HL into

|HL(zp, zm; kx, ky)| =
√

γ 2(zp, zm; kx, ky)
〈|û(zp, t; kx, ky)|2〉
〈|û(zm, t; kx, ky)|2〉 , (1.3a)

γ 2(zp, zm; kx, ky) = |〈û(zp, t; kx, ky)û†(zm, t; kx, ky)〉|2
〈|û(zp, t; kx, ky)|2〉〈|û(zm, t; kx, ky)|2〉 , (1.3b)

where γ 2 is the two-dimensional linear coherence spectrum (2-D LCS) between the
measurement and estimation locations. For fluctuations of the wavenumber pair (kx, ky),
γ 2 = 1 implies that all fluctuations of that wavenumber pair at zm are linearly correlated
with those at zp (i.e. perfect coherence). In contrast, γ 2 = 0 implies that all fluctuations of
that wavenumber pair at zm are linearly uncorrelated with those at zp (i.e. no coherence).

1.3. NS-based linear models for SLSE
Linear stochastic estimation, in general, requires simultaneous measurements (or
numerical data) at two wall-normal locations (zm and zp) to obtain the transfer function
HL. In an alternative approach, Madhusudanan et al. (2019) obtain HL using NS-based
linear models. This removes the need for measurements at the estimation location zp
entirely. As a consequence, fluctuations at several wall-normal locations, including very
close to the wall, can be predicted from measurements at just one wall-normal location.
These linearized models are created by first forming the nonlinear equations governing
the evolution of velocity fluctuations by applying the Reynolds decomposition to the NS
equations,

∂ui

∂t
= −Uk

∂ui

∂xk
− uk

∂Ui

∂xk
− ∂

∂xk
(ukui − 〈ukui〉) − 1

ρ

∂p
∂xi

+ ν
∂2ui

∂xk∂xk
, (1.4)

where Ui is the mean velocity and ui and p are the velocity and pressure fluctuations,
respectively. We could directly obtain the evolution equations for the covariance matrices
required for LSE in (1.1) and SLSE in (1.2b) from this equation. This is difficult because
the third term on the right-hand side of (1.4) is nonlinear and can only be solved with
computationally expensive simulations, which we aim to avoid. An estimation method for
wall turbulence based on the full NS equations has been recently implemented by Wang
& Zaki (2020) for a channel flow at Reτ = 180.

The easiest approximation would be to ignore the nonlinear term altogether. This may be
justified because the nonlinear term in the NS equations is energy conserving. The energy
extracted from the mean flow, which leads to energetic large-scale fluctuations, is therefore
attributable to the linear terms alone (Joseph 1976). The linear terms alone, however,
cannot sustain wall turbulence (Mckeon 2017). The nonlinear term plays an essential
role in energy extraction (Jiménez 2018) and thus cannot be ignored entirely. McKeon
& Sharma (2010) treat the nonlinear term as an unknown forcing, thus avoiding the need
to either ignore or model it. Resolvent analyses, which are linear, based on this approach
reproduce many qualitative features of wall turbulence (McKeon & Sharma 2010; Moarref
et al. 2013; Sharma & Mckeon 2013), thus showing the importance of the linear terms in
nonlinear turbulent flows. Another alternative is to model the nonlinear term as stochastic
excitation, thus transforming the system into a linear stochastic model. Farrell & Ioannou
(1998) showed that stochastically excited turbulent boundary layers exhibit energy spectra
distinctly similar to those in boundary-layer turbulence. Later, Hwang & Cossu (2010)
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included an eddy dissipation term along with the stochastic excitation term to obtain an
alternative NS-based linear model,

∂ui

∂t
= −Uk

∂ui

∂xk
− uk

∂Ui

∂xk
+ ∂

∂xk

(
νt

(
∂ui

∂xk
+ ∂uk

∂xi

))
+ σd(x, t) − 1

ρ

∂p
∂xi

+ ν
∂2ui

∂xk∂xk
,

(1.5)
where νt is the eddy viscosity and d(x, t) is a spatially uniform white-in-time body forcing
of intensity σ . The inclusion of the eddy dissipation term is mainly motivated by the
studies of Reynolds & Hussain (1972) and del Álamo & Jiménez (2006), who showed
it to be useful in modelling the dissipative effect of background turbulence. Illingworth
et al. (2018) also found that the inclusion of the eddy dissipation term is important for
the evolution and hence the estimation of large-scale fluctuations in wall turbulence.
Madhusudanan et al. (2019) showed that (1.5) can be effectively used to obtain the transfer
function HL in (1.2b) without requiring any previously collected data other than the
mean velocity profile (see § 4). They thus obtained estimations of the large-scale velocity
fluctuations at several wall-normal locations from instantaneous measurements at one
wall-normal location.

We note that, as well as LSE/SLSE, there are other methods where NS-based linear
models, such as (1.5), have been used for estimating the large-scale velocity fluctuations
in wall turbulence. These include Kalman filter-based optimal estimators (Hœpffner et al.
2005; Chevalier et al. 2006; Colburn, Cessna & Bewley 2011; Illingworth et al. 2018)
and resolvent-based estimators (Amaral et al. 2020; Martini et al. 2020; Towne et al.
2020). On the one hand, as opposed to the method of Madhusudanan et al. (2019),
these methods need time-resolved measurement data. On the other hand, these methods
can consider coloured-in-time forcing. Although the colour of the forcing statistics is
important (Nogueira et al. 2021; Zare, Jovanović & Georgiou 2017), the inclusion of the
eddy viscosity term in (1.5) partly compensates for the lack of colour in the white-in-time
forcing as noted by Zare et al. (2017) and Morra et al. (2019, 2021).

1.4. Contributions of the present study
Madhusudanan et al. (2019) showed that when the NS-based linear model (1.5) is used
for stochastic estimation, the results are significantly improved when compared with
those from a model without the eddy dissipation term. There are, however, still serious
limitations associated with the eddy dissipation and forcing terms used in (1.5). This limits
the applications of (1.5) to cases where both the measurement and estimation locations are
in the logarithmic region. It is not suitable when one of these two locations is close to the
wall, such as in the near-wall region, which is a requirement in many practical situations
(Encinar & Jiménez 2019; Marusic et al. 2010). This limitation is explained by the fact
that (1.5) captures the coherence of large-scale fluctuations only within the logarithmic
region but not across the logarithmic and near-wall regions. Qualitatively similar results
are also reported by Illingworth et al. (2018) who use the same model but with a Kalman
filter-based optimal estimator. In this paper, we therefore aim to improve the design of
NS-based linear models to obtain better estimation within the logarithmic region as well
as across the logarithmic and near-wall regions.

In this paper, we choose a turbulent channel flow at Reτ = 2000 as a representative
wall-bounded turbulent flow (§ 2). Based on a physics-based approach, we modify the
eddy dissipation and stochastic forcing terms in (1.5) such that they better represent the
nonlinear interactions (§ 3) and formulate the models using an input–output framework
(§ 4). We then use these linear models for estimation of large-scale fluctuations (§ 5) and
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gain new insights based on their ability to capture the linear production term (§ 6). Finally,
we discuss the scope and limitations of the present study (§ 7).

2. Incompressible fully developed turbulent channel flow

We consider a fully developed incompressible turbulent flow in a channel of half-width h
at Reτ = 2000 (the same as that studied by Madhusudanan et al. (2019)). The evolution of
velocity fluctuations in this flow is governed by (1.4), where subscripts take values (1, 2, 3)

and refer to coordinates (x, y, z) denoting the streamwise, spanwise and wall-normal
directions, respectively. The mean and fluctuating velocity fields are represented as
(U, 0, 0) and (u, v, w), respectively. To complete the model described by (1.5), we require
the mean velocity profile, which is fixed for a given flow, and the eddy viscosity profile,
which depends on our definition. Following Reynolds & Hussain (1972) and many others,
we use the Cess (1958) approximation of νt given as

νt = ν

2

(
1 + κ2Re2

τ

9
(2z − z2)2(3 − 4z + 2z2)2

[
1 − exp

(
−z

Reτ

A

)]2
)1/2

− ν

2
, (2.1)

where z is the wall distance non-dimensionalized by h and (κ, A) = (0.426, 25.4) have
been calibrated at Reτ = 2000 by del Álamo & Jiménez (2006). This eddy viscosity is
defined such that the mean velocity U can be obtained by integrating Reτ (1 − z)/(νt + ν)

in the wall-normal direction. Figure 1 shows ν+
t and U+ profiles (superscript + denotes

non-dimensionalization in inner units). This figure also shows the outer (from z+ = 30
to z = 1), inner (from the wall to z = 0.15), logarithmic (overlap region) and near-wall
(between the wall and logarithmic region) regions. (Note that the viscous sublayer
(z+ < 5) is the lower part of the near-wall region where the flow remains mostly laminar.)
This division is only nominal (Marusic et al. 2010). The logarithmic region is otherwise
clearly observed only at much higher Reτ (Hultmark et al. 2012).

We fix the measurement plane at z+
m ≈ 300 throughout this study and vary the estimation

planes from z+
p ≈ 200 to 10. We choose the measurement plane to be as far away from the

wall as possible while still being within the nominal logarithmic region. The wall-normal
location zm = 0.15 (i.e. z+

m = 300) is close to the upper limit of the nominal logarithmic
region, which is also observed to be the case for channel flow at Reτ ≈ 5200 by Lee &
Moser (2015). However, we note that this is still a relatively low Reτ flow in which the
true logarithmic region, characterized by constant z dU/dz, does not exist (Lee & Moser
2015). Therefore, the results presented in this study cannot be extended to higher Reτ flows
with complete certainty, as discussed in § 7.3. We also note that the wall-normal location
z+

p = 10 is certainly in the viscous-dominated near-wall region where νt < ν and the mean
shear is high.

The direct numerical simulation (DNS) data for streamwise velocity fluctuations
is provided by the Polytechnic University of Madrid. The simulation was carried
out in a computational domain of size 8πh × 3πh × 2h in the streamwise, spanwise
and wall-normal directions. The domain was periodic in the horizontal directions
and discretized using 2048 Fourier components in each direction, the wall-normal
direction was discretized using a seven-point compact finite difference scheme with 512
points. Temporal integration was performed using a semi-implicit third-order low-storage
Runge–Kutta scheme (see Vela-Martín et al. (2019) for further details). We use only
a subset of the simulated wavenumbers, which satisfy 0.25 � |kx| � 8.0 and 0.66 �
|ky| � 21.0 (non-dimensionalized by h). The corresponding non-dimensional wavelengths
are 0.8 � |λx| � 25.0 and 0.3 � |λy| � 9.5, where λx = 2π/kx and λy = 2π/ky.
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Model Eddy viscosity Forcing intensity Remarks
(fν in (3.2)) (fσ in (3.2))

DNS N/A N/A Benchmark results
B-model νt(z) σ Wall-distance-dependent

dissipation and uniform
forcing terms (baseline model)

W-model νt(z) σνt(z) Wall-distance-dependent
dissipation and forcing terms

λ-model s(λ; z)νt(z) σ s(λ; z)νt(z) Wall distance and scale-dependent
dissipation and forcing terms

Table 1. Summary of the NS-based linear models used in the present study.

Instantaneous streamwise velocity fields in three horizontal planes at z+ = 300, 100 and
10 are shown in figure 1(c). They share many common features, thus indicating important
correlations between the different wall-normal locations.

3. Design of NS-based linear models

We write (1.4) in the spectral domain by applying the Fourier transformation in the
horizontal directions as

∂ ûi

∂t
= −Uk

∂ ûi

∂xk
− ûk

∂Ui

∂xk
− ∂

∂xk
(ûkui) − 1

ρ

∂ p̂
∂xi

+ ν
∂2ûi

∂xk∂xk
, (3.1)

where, as in § 1.2, ˆ denotes a Fourier coefficient and the operators ∂/∂x1, ∂/∂x2, ∂2/∂x2
1

and ∂2/∂x2
2 are equivalent to multiplication by ikx, iky, −k2

x and −k2
y , respectively. All the

models in the present study are designed by replacing the nonlinear term (third term on the
right-hand side) by a combination of an eddy dissipation term and a white-in-time spatially
distributed body-forcing term. The resulting NS-based linear models are then represented
as

∂ ûi

∂t
= −Uk

∂ ûi

∂xk
− ûk

∂Ui

∂xk
+ ∂

∂xk

(
fν

(
∂ ûi

∂xk
+ ∂ ûk

∂xi

))
+ fσ d̂ − 1

ρ

∂ p̂
∂xi

+ ν
∂2ûi

∂xk∂xk
, (3.2)

where fν and fσ are, in general, functions of the wall-normal distance z and the
wavenumbers kx and ky (see table 1).

In the derivation of the linear models in the present study, we do not perform a Fourier
transform in time. This is because the Fourier transform is inherently non-local (Farge
1992), which means that if we perform a Fourier transform in time then local time
information will be lost. The estimation at one time instant will then need time-resolved
data from t = −∞ to ∞. In cases where the relationship between the estimated and
measured quantities is mostly causal, the estimation could be approximated using the past
measurements alone (i.e. t = −∞ to 0) as shown by Sasaki et al. (2019). It is also worth
noting that because we do not perform a Fourier transform in time, the calculation of
the transfer function (HL in (1.2b)) also only requires snapshots of velocity fluctuations
at zm and zp and not time-resolved data. This simplification has a direct parallel with
the calculation of proper orthogonal decomposition (known as POD) modes rather than
spectral proper orthogonal decomposition modes (Towne, Schmidt & Colonius 2018). One
could imagine that, by not using time-resolved data, we are losing possibly important

925 A18-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

67
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.671


Linear-model-based estimation in wall turbulence

temporal correlation information. This can be understood from the fact that the stochastic
forcing term in (3.2) is restricted to be white-in-time. Although the colour of the forcing
statistics is shown to be crucial in many recent studies (Zare et al. 2017; Nogueira et al.
2021), we still keep the simplification of white-in-time forcing in the present study. This is
because the inclusion of the eddy viscosity term in the linear models approximately plays
the same role as the colour in the forcing statistics (Zare et al. 2017; Morra et al. 2019,
2021).

3.1. Baseline model (the B-model)
Turbulent fluctuations interact across wavenumbers via the nonlinear term in (3.1), which
is modelled as a combination of an eddy dissipation term and a stochastic body-forcing
term in (3.2). This approach is phenomenological, i.e. (3.2) is not derived from first
principles. The eddy dissipation term is supposed to model the dissipative effect of the
background turbulence, i.e. small-scale fluctuations, and is often modelled by setting
fν = νt in the literature. This follows the work of Reynolds & Hussain (1972), who used
this eddy dissipation term to heuristically model the dissipation of turbulent fluctuations in
the presence of externally imposed harmonic fluctuations. In contrast, the stochastic body
forcing term is supposed to model the excitation by turbulent fluctuations and is often
modelled by setting fσ = σ (a constant). This follows the work of Jovanović & Bamieh
(2005), who used this term to heuristically model turbulence excitation in laminar channel
flows. As noted by Jimenez (2009), such NS-based linear models are crude, and therefore
any results generated with them need to be relatively insensitive to the details of fν
and fσ .

We refer to the model from the literature in which fν = νt and fσ = σ as the baseline
model or the B-model (table 1). This model is used by Madhusudanan et al. (2019) and
others; it has a wall-distance-dependent eddy dissipation term and a spatially uniform
stochastic forcing term. We need not fix the value of σ , which quantifies the magnitude of
stochastic forcing, because the transfer function HL (see (1.2b)) is calculated from the ratio
of turbulent fluctuations at zm and zp. Therefore, HL depends only on the spatial structure
of fσ and not on its magnitude. Information concerning the magnitude of fluctuations is
estimated at zp from the magnitude of fluctuations measured at zm (see (1.2a)).

3.2. Wall-distance-dependent nonlinear interactions (the W-model)
The eddy dissipation and stochastic forcing terms model the nonlinear interactions of
turbulent fluctuations. Since turbulent fluctuations are wall-distance-dependent, these
two terms are also expected to be wall-distance-dependent. As the simplest possible
modification of the B-model, we set fσ = σνt and keep fν = νt. We call this model
the W-model (table 1); it has eddy dissipation and stochastic-forcing terms that are
each wall-distance-dependent. To justify our approximation intuitively we first assume
that the eddy dissipation term predominantly models the energy transfer to other scales
while the stochastic-forcing term predominantly models the energy transfer from other
scales. It is known that these two energy-transfer mechanisms balance each other at most
wall-normal locations (Mizuno 2016; Lee & Moser 2019; Hwang & Lee 2020), so we
expect the two terms (fν and fσ ) to vary in proportion to each other. We will see from
the results concerning turbulence statistics in § 6 that this approximation indeed works
well.
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2.00102

(b)(a)

Figure 2. (a) The multiplicative factor s = λ/(λ+ λm) (thick black line) is approximately zero at small scales
and approaches one for λ > λm. The thin blue lines show variants of s: (λ/(λ+ λm))0.5 (above) and (λ/(λ+
λm))1.5 (below). The thin red line shows λm/(λ+ λm), which has the opposite trend to that of s. (b) Here
λm = a + b tanh(cz) (thick black line) approximates a lower bound for the length scale of energy-containing
eddies as a function of the wall distance. The thin blue lines show 0.5λm (above) and 2.0λm (below). The thin
red line shows (a + b) − b tanh(cz), which has the opposite trend to that of λm.

3.3. Scale-dependent nonlinear interactions (the λ-model)
The nonlinear interactions through which turbulent fluctuations interact are scale
dependent (Cho, Hwang & Choi 2018). We therefore expect fν and fσ also to be scale
dependent. This has also been previously suggested for the fν term by Jimenez (2009) and
Illingworth et al. (2018), who noted that the eddy viscosity νt could over-damp fluctuations
and that fν should be smaller at smaller scales. The challenge is to incorporate this scale
dependence without restricting the model’s applicability to a specific case. We therefore
base the design of our scale-dependent model, which we call the λ-model (table 1), on two
observations that are common to all wall-bounded turbulent flows.

The first observation we use is that energy transfer occurs mainly from the large,
energy-containing eddies to smaller eddies (a notable exception is small but significant
energy transfer from the near-wall streaks to larger scales in the near-wall region). This
means that fν should be approximately zero for fluctuations of length scales much smaller
than those of the energy-containing eddies and should approach its maximum value (which
we assume to be νt) for fluctuations of length scales of the order of the length scale of the
energy-containing eddies. In order to incorporate such scale dependence, we define the
length scale of a Fourier component as λ ≡ 2π/(k2

x + k2
y)

0.5, the same as those used by
Lee & Moser (2019). We then set fν = sνt where s(λ; z) = λ/(λ+ λm) is a multiplicative
factor that is zero at λ = 0, increases rapidly at λ ≈ λm, and approaches one as λ→ ∞
(see figure 2a). The parameter λm (whose value is given below) roughly quantifies a lower
bound for the length scale of the energy-containing eddies.

The second observation we use is that, in wall turbulence, the length scale of the
energy-containing eddies depends on their distance from the wall (Jiménez 2012). We
therefore set λm to be a hyperbolic function λm(z) = a + b tanh(cz), where a = 50/Reτ

is of the order of the energy-containing eddies in the near-wall region, a + b = 2 is of
the order of the energy-containing eddies at the channel centre and c = 6 is such that the
length scale of the energy-containing eddies plateaus at the end of the logarithmic region.
Figure 2(b) shows that λm scales linearly with z in the logarithmic region and then plateaus
in the outer region, similar to the scaling of the energy-containing eddies in wall turbulence
(Jiménez 2012). Finally, following our arguments in § 3.2 on the energy-transfer balance,
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we set the stochastic forcing intensity to be proportional to the eddy dissipation term, i.e.
fσ = σ sνt.

It should be noted that we do not optimize either the parameters a, b and c or the forms
of the functions s and λm to match the model with observations. In fact, the model results
should remain qualitatively unchanged provided that s and λm follow the trends described
above. This is demonstrated in the Appendix where the influence of variations in s and λm
(thin lines in figure 2) is analysed.

4. Input–output formulation

We now write the NS-based linear models (3.2) in the Orr–Sommerfeld–Squire form (see
Jovanović & Bamieh 2005), which is more convenient for input–output analysis, as

∂ q̂
dt

= Aq̂ + Bd̂, (4.1a)

û = Cq̂, (4.1b)

where q̂ = (ŵ, η̂) comprises the wall-normal velocity and vorticity fluctuations. The linear
operators A and C are similar to those in Hwang & Cossu (2010) and the operator B is
similar to that in Ran et al. (2019). They are given by

A =
[
Δ−1LOS 0
−iky∂zU LSQ

]
, (4.2a)

B =
[
−ikxΔ

−1 ( fσD + ∂zfσ ) −ikyΔ
−1 ( fσD + ∂zfσ ) −k2Δ−1

−ikyfσ −ikxfσ 0

]
, (4.2b)

C = 1
k2

⎡⎢⎣ikxD −iky

ikyD ikx

k2 0

⎤⎥⎦ , (4.2c)

where Δ = D2 − k2, k2 = k2
x + k2

y and D and ∂z represent differentiation in the
wall-normal direction. The operators LOS and LSQ are

LOS = −ikxUΔ + ikx∂
2
z U + ( fν + ν) Δ2 + 2∂zfνDΔ + ∂2

z fν
(
D2 + k2

)
, (4.3a)

LSQ = ikxU + ( fν + ν) Δ + ∂zfνΔ. (4.3b)

Because the system is linearly stable, i.e. all the eigenvalues of A are stable, and the
stochastic forcing is white-in-time, the system’s response can be calculated in terms of
the covariance tensor X = 〈q̂q̂†〉 by solving the algebraic Lyapunov equation (Hwang &
Cossu 2010),

AX + XA† + BB† = 0. (4.4)

We calculate the covariance tensor 〈ûû†〉 required for calculation of HL in (1.2b) as CXC†.
To discretize the operators A, B and C in the wall-normal direction (from z = 0 to 1),
we use a Chebyshev-collocation method and impose the boundary conditions ŵ(0) =
η̂(0) = ∂ŵ(0)/∂z = 0. We divide the fluctuations into their symmetric and antisymmetric
components about the centreline (z = 1) and calculate their contributions separately
using the MATLAB function ‘lyap’ to numerically solve (4.4). We find the results are
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well-converged when 128 discretization points are used (we tested them against the results
when 196 discretization points are used). MATLAB codes for these calculations are
provided in the supplementary material available at https://doi.org/10.1017/jfm.2021.671.

5. Application of the NS-based linear models

In the present study, we focus on applicability of the NS-based linear models to
calculate the transfer function HL, thus eliminating the need for measured or numerically
calculated data at the estimation locations for performing SLSE. We therefore compare the
estimations calculated using the NS-based linear models with the estimations calculated
using the DNS datasets as done by Madhusudanan et al. (2019).

5.1. Calculation of the transfer functions
We recall from (1.3) that the transfer function HL is composed of two parts: (i) the 2-D
LCS (γ 2), which is a measure of coherence between fluctuations at zm and zp (γ 2 = 1
for perfect coherence and γ 2 = 0 for no coherence), and (ii) the relative magnitude

(
√

〈|û(zp)|2〉/〈|û(zm)|2〉), which is the ratio of the fluctuations’ magnitude at zp and zm.

The top rows in figures 3 and 4 show the DNS results for γ 2 and
√

〈|û(zp)|2〉/〈|û(zm)|2〉,
respectively, of large-scale fluctuations. In figure 3, we note from the DNS results that
for streamwise elongated fluctuations (i.e. λx > λy) of λy ≈ 1–3, the value of γ 2 ≈ 1
at all wall-normal estimation locations zp. This means that these fluctuations, whose
size matches that of the large-scale motions (Falco 1977), remain coherent from the
logarithmic region to the near-wall region. In figure 4, we see that their magnitude
generally reduces as zp approaches the wall, which agrees with the expectation that their
magnitude should gradually approach zero at the wall. (The magnitude of fluctuations
for which λy ≈ 0.3 first increases from z+

p = 200 to 100 and 50 and then decreases from
z+

p = 50 to 10.)
Panels (e–h) in figures 3 and 4 show the corresponding results from the B-model. In

figure 3, the results from the B-model match well with the DNS results up to z+
p = 100.

As z+
p approaches the wall, γ 2 from the B-model starts to reduce even though it remains

almost unchanged in the DNS results (panels (a–d)). Finally, in the near-wall region (at
z+

p = 10), γ 2 from the B-model is much lower than that in the DNS results. This means
the B-model captures the coherence of large-scale fluctuations only within the logarithmic
region but not across the logarithmic and near-wall regions. In figure 4, the relative
magnitude of the fluctuations from the B-model increases significantly as zp approaches
the wall (particularly at wavelengths with lower γ 2 values). This is against the DNS results
as well as against the expectation that the magnitude of all velocity fluctuations should
gradually approach zero at the wall. The B-model has spatially uniform stochastic forcing,
i.e. the stochastic excitation very close to the wall is same as the stochastic excitation
farther away from the wall. This prevents the magnitude of the fluctuations from gradually
approaching zero towards the wall even though the boundary condition is set to no-slip at
the wall. These shortcomings in the B-model, also shown in Madhusudanan et al. (2019),
highlight the need for improved models.

Panels (i–l) and (m–p) in figures 3 and 4 show the corresponding results from the W-
and λ-models, respectively. In figure 3, both models are able to capture the coherence of
large-scale fluctuations within the logarithmic region as well as across the logarithmic and
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Figure 3. The 2-D LCS (γ 2) calculated using (a–d) DNS data, (e–h) B-model, (i–l) W-model and (m-p)
λ-model with z+

m = 300 (fixed) and z+
p = 200, 100, 50 and 10. The dashed slanted lines in all the plots

correspond to the λx = λy fluctuations.

near-wall regions. In figure 4, the relative magnitude of the fluctuations generally reduces
as zp approaches the wall, which is in agreement with the DNS results in the top row.
These results show that as compared with the results from the B-model, the results from
the new models match significantly better with the DNS results.

5.2. Estimation of large-scale streamwise velocity fluctuations
Figures 5 and 6 present the estimation results at z+

p = 100 and z+
p = 10, respectively, from

measurements at z+
m = 300. Panels (a, d, g, j) show the estimated instantaneous streamwise

velocity fluctuations in the estimation plane. Panels (b, e, h, k) and (c, f , i, l) show the
corresponding estimated 2-D normalized spectral densities (ΦuuN) and energy spectral
densities (Φuu), respectively. The estimated 2-D energy spectral density at zp is obtained
from the measured energy spectral density (Φuum) at zm as

Φuu(zp, zm; kx, ky) = |HL(zp, zm; kx, ky)|2Φuum(zm; kx, ky), (5.1a)

Φuum(zm; kx, ky) = kxkyûm(zm)û†
m(zm)/u2

τ . (5.1b)
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Figure 4. The relative magnitude of fluctuations (
√

〈|û(zp)|2〉/〈|û(zm)|2〉) calculated using (a–d) DNS data,

(e–h) B-model, (i–l) W-model and (m–p) λ-model with z+
m = 300 (fixed) and z+

p = 200, 100, 50 and 10. The
dashed slanted lines in all the plots correspond to the λx = λy fluctuations.

The normalized spectral density is simply the energy spectral density normalized by
its maximum value. The reason we calculate the normalized spectral density is that it
represents the model’s ability to estimate the shape of the energy spectrum, i.e. which
wavenumbers are dominantly present in the flow. It thus helps in isolating the estimation
errors between the shape and magnitude of the fluctuations’ field.

The estimation results in figures 5 and 6 are expected from the 2-D LCS (γ 2) and relative

magnitude (
√

〈|û(zp)|2〉/〈|û(zm)|2〉) results shown in figures 3 and 4. In figure 5, when the
measurement and estimation planes are both in the logarithmic region, panels (b, e, h,
k) show that all three models approximately estimate the shape of the energy spectrum.
Panels (c, f , i, l), however, show that the B-model highly over-estimates the magnitude of
fluctuations and that the W- and λ-models significantly improve the results. In figure 6,
when the measurement plane is in the logarithmic region and the estimation plane is in
the near-wall region, panels (b, e, h, k) show that the B-model fails even to estimate the
shape of the energy spectrum. The results are again significantly improved when the W-
and λ-models are used.
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Figure 5. Estimated instantaneous streamwise velocity fluctuations (a,d,g,j) and the corresponding normalized
(b,e,h,k) and energy spectral densities (c, f,i,l) calculated using (a–c) DNS data, (d–f ) B-model, (g–i) W-model
and (j–l) λ-model. The estimation plane is at z+

p = 100 and the measurement plane is at z+
m = 300. The dashed

slanted lines in panels (b,e,h,k) and (c, f ,i,l) correspond to the λx = λy fluctuations.

5.3. Accuracy of the estimation from the NS-based models
For a better comparison between the models, we calculate the errors in the spectral density
estimation from the models with respect to the DNS results as

�φuuN = φM
uuN − φD

uuN, �φuu = φM
uu − φD

uu, (5.2a,b)

where superscripts M and D denote the results from the models and DNS, respectively.
The normalized spectral density (φuuN) shows the shape of the estimated energy spectrum
(see figures 5 and 6). This leads to the conclusion that if a model under- or over-predicts
the magnitude of the fluctuations by a constant factor in the whole field, then the
estimated normalized spectral density will be identical to the DNS results. The error in
the normalized spectral density (φuuN) will then be equal to zero at all wavenumbers,
while the error in the energy spectral density (φuu) will be a non-zero constant everywhere.
In other words, �ΦuuN defines the estimation error in the shape of the fluctuations’
field, while �Φuu is the combined estimation error in the shape and magnitude of the
fluctuations’ field.

Figure 7 shows the errors �φuuN and �φuu corresponding to the estimation results
presented in figures 5 and 6 in which the measurement plane is fixed at z+

m = 300 (in
the logarithmic region). Panels (a,c) show that the B-model under-estimates the relative
contribution from the larger scales and over-estimates the relative contribution from the
smaller-scales. The error is generally smaller in panel (a), where the estimation plane
is also in the logarithmic region (z+

p = 100), than in panel (c), where the estimation
plane is in the near-wall region (z+

p = 10). Panels (b,d) show that the B-model highly
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Figure 6. Same as figure 5, but with the estimation plane at z+
p = 10.

over-estimates the magnitude of fluctuations at both estimation locations. Panels (e–h)
show that the W-model significantly improves the estimation of the shape of the energy
spectrum as well as the magnitude of fluctuations at both estimation locations. However,
the main problem with the W-model is that it does not capture the fluctuations for which
λy ≈ 0.3, as is seen by their under-estimation in panels (e–h). Panels (i,k) show that the
λ-model further improves the estimation of the shape of the spectrum. For the estimation
of the magnitude of fluctuations, the λ-model performs better than the W-model when
the estimation plane is at z+

p = 100 (panel ( j)) but it under-estimates the magnitude of
fluctuations when the estimation plane is at z+

p = 10 (panel (l)).
To assess the performance of the models quantitatively, we calculate the symmetric

mean absolute percentage error, originally defined by Armstrong (1985), as

�ΦuuN = 100
Σ
∣∣ΦM

uuN − ΦD
uuN

∣∣
Σ(ΦM

uuN + ΦD
uuN)

, �Φuu = 100
Σ
∣∣ΦM

uu − ΦD
uu
∣∣

Σ(ΦM
uu + ΦD

uu)
, (5.3a,b)

where the operators ‘|.|’ and ‘Σ’ denote the absolute value and summation over (kx, ky),
respectively. There are two important points to note about this definition of the error.
First, unlike the mean absolute percentage error where the denominator includes only the
benchmark results, i.e. φD

uuN or φD
uu, here the denominator also includes the model results,

i.e. φM
uuN or φM

uu. This ensures that (i) the models are equally penalized for over-estimation
and under-estimation and (ii) the error is bounded between 0 % (perfect model) and 100 %
(worst model). Second, the summations are performed separately for the numerator and
the denominator instead of the summation of errors at individual (kx, ky). This ensures
that the mean error does not become excessively large due to the data points for which
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Figure 7. Errors in the estimations of the 2-D normalized (panels (a,e,i) and (c,g,k)) and energy spectral
densities (panels (b, f ,j) and (d,h,l)) calculated from the (a–d) B-, (e–h) W- and (i–l) λ-models. The contours
are ΦD

uuN = 0.5 and 0.2 (dashed), they show the scales present in the flow. Plots (a,b,e, f,i,j) and (c,d,g,h,k,l)
correspond to the estimations in figures 5 and 6, respectively.
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Figure 8. The symmetric mean absolute percentage errors (a) �ΦuuN and (b) �Φuu as functions of the
estimation location when the measurement plane is fixed at z+

m = 300.

ΦuuN and Φuu are approximately zero. We note that all reasonable definitions of mean
error, such as mean and weighted mean absolute percentage errors, give the same trends
as those observed in figure 8. A good definition, however, is crucial for further model
refinement, particularly if data-driven algorithms are to be used for the refinement.

Figure 8 shows how the mean errors from the three models vary with the estimation
plane location when the measurement plane is fixed at z+

m = 300. Figure 8(a) shows
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�φuuN , which denotes the mean error in the estimation of the shape of the energy spectral
density. From this figure we note that the errors in the estimation increase as z+

p moves
away from z+

m . The error in estimation from the B-model increases from approximately
5 % to 25 % as z+

p varies from 200 to 10. The error in estimation from the W-model
remains approximately 10 % in most of the domain and increases to approximately 13 %
close to the wall. The λ-model performs significantly better than both the other models;
the error in estimation from the λ-model remains under 5 % in most of the domain and
increases to approximately 9 % close to the wall. Figure 8(b) shows �φuu, which denotes
the mean error (shape and magnitude combined) in the estimation of the energy spectral
density. From this figure we note that the errors in the magnitude of the estimation also
generally increase as z+

p moves away from z+
m . These errors, however, start to decrease for

z+
p � 50 because the magnitude of fluctuations and hence the errors are set to zero at the

wall. The error in estimation from the B-model remains between 25 % to 50 % in most of
the domain while the errors in estimation from the W and λ-models are under 25 % and
10 %, respectively. The error from the λ-model increases sharply in the near-wall region
and surpasses even that of the W-model. This is because of the under-estimation of the
magnitude of fluctuations in the near-wall region by the λ-model (also seen in figure 7h,l).
A possible reason for this could be that the main modelling assumption used to develop
the λ-model, that energy transfers from larger to smaller scales, is not strictly valid in the
near-wall region, as also noted in § 3.3.

In summary, when the measurement and estimation planes are both in the logarithmic
region, the estimations from the λ-model have a mean error �Φuu of only 5 %–10 %.
When the measurement and estimation planes are across the logarithmic and near-wall
regions, the λ-model still gives reasonably accurate results, particularly for the shape of the
energy spectrum. The mean error results show that the W- and λ-models are significantly
better than the B-model and that the λ-model generally performs best.

6. Insights from the budget equation

The budget equation for the turbulence kinetic energy indicates which scales are energy
containing, energy donating and energy receiving at different wall-normal heights, and
thus provide insights into the physical mechanisms through which fluctuations arise,
interact and dissipate across scales and wall-normal locations (Mizuno 2016; Cho et al.
2018; Lee & Moser 2019). We can therefore gain insights about the linear models based on
their ability to capture the terms in the budget equation. Following the preceding sections,
we limit our study to the streamwise velocity component for which the budget equation is
derived from (3.1) as

∂〈ûû†〉
∂t

=−2
dU
dz

〈ûŵ†〉 + 2ikx

ρ
〈p̂†û〉−2ν

[(
k2

x +k2
y

)
〈ûû†〉 +

〈∣∣∣∣∂ û
∂z

∣∣∣∣2
〉]

+ d
dz

(
ν

d
dz

〈ûû†〉
)

+2
[

ikx〈ûûu†〉 + iky〈ûûv†〉 +
〈
∂ û
∂z

ûw†
〉
− d

dz
〈ûûw†〉

]
, (6.1a)

0 = P11 + Π s
11 + ε11 + D11 + T11. (6.1b)

We note that this equation includes addition of complex conjugate terms (Mizuno 2016),
and thus implicitly assume that only the real parts of all the terms are considered. Because
the flow is statistically stationary, the rate of change of the energy is zero. This means that
the terms on the right-hand side balance each other, where P11 is the linear production
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term through which turbulent fluctuations extract energy from the mean shear, Π s
11 is

the pressure-strain term through which energy from u fluctuations is transferred to v and
w fluctuations, ε11 is the viscous dissipation term through which energy is dissipated,
D11 is the viscous diffusion term through which energy is transported in the wall-normal
direction (it is small) and T11 is the nonlinear turbulent transport terms through which
energy is transferred across the scales and is transported in the wall-normal direction. The
nonlinear term in the NS equations is energy conserving (Joseph 1976), i.e. its contribution
is zero when integrated for all kx, ky and z such that

∫ ∫ ∫
T11 dkx dky dz = 0.

In the linear models, the nonlinear term is replaced by an eddy dissipation term and a
stochastic forcing term. The modified budget equation is derived from (3.2) as

∂〈ûû†〉
∂t

=−2
dU
dz

〈ûŵ†〉 + 2ikx

ρ
〈p̂†û〉−2ν

[(
k2

x +k2
y

)
〈ûû†〉 +

〈∣∣∣∣∂ û
∂z

∣∣∣∣2
〉]

+ d
dz

(
ν

d
dz

〈ûû†〉
)

+ 2

[
−fν

((
k2

x + k2
y

)
〈ûû†〉 +

〈∣∣∣∣∂ û
∂z

∣∣∣∣2
〉)

+ 1
2

d
dz

(
fν

d
dz

〈ûû†〉
)

− ikx
dfν
dz

〈ŵ†û〉

+ fσ 〈d̂û†〉
]

, (6.2a)

0 = P∗
11 + Π s∗

11 + ε∗
11 + D∗

11 + MT11. (6.2b)

Because the linearized models of wall turbulence are also statistically stationary systems,
the rate of change of the energy is equal to zero and the terms on the right-hand side
balance each other. This means that the linear terms in the model adjust themselves
according to the modelled nonlinear term MT11, which may no longer satisfy energy
conservation (i.e.

∫ ∫ ∫
MT11 dkx dky dz /= 0). The linear models may still capture the

dominant flow fluctuations as long as P∗
11 matches P11. This is because the linear

production P11 is the main mechanism through which the turbulence kinetic energy in
wall-bounded flows is generated. The question may arise as to why we need to model the
nonlinear term rather than simply ignore it, as discussed in § 1.3. It is worth mentioning
again that, although the main energy-producing mechanism is linear, the lack of linearly
unstable modes in wall turbulence means that the nonlinear term is required for the
energy-extraction process (Mckeon 2017; Jiménez 2018). The aim is therefore to model
the nonlinear term such that the dominant linear mechanism can be reproduced in close
approximation with the DNS, i.e. P∗

11 ≈ P11. We note that all the terms including P∗
11 in

(6.2b) will be zero if fσ = 0, which highlights the essential role of the stochastic forcing
term for energy production. The eddy dissipation term primarily plays a role in energy
dissipation (such as by the small scales) as well as a smaller role in wall-normal energy
transport (through the d( fν d〈ûû†〉/dz)/dz term in (6.2a)).

In figures 9 and 10, we show the spectral densities of the linear production and
streamwise energy terms at the measurement (z+

m = 300) and estimation locations (z+
p =

200, 100, 50 and 10) used in § 5. In the discussion below, we first analyse the DNS
results (the data is from Hoyas & Jiménez (2006)) to show that P11 leads to most of
the fluctuations observed in the flow. We then analyse the model estimations, particularly
focusing on the influence of the modelled nonlinear terms on P11 and hence on the
estimation of fluctuations observed in figure 10 and § 5. The model estimations for P11

and 〈ûû†〉 are calculated from the diagonal terms of the 〈ûŵ†〉 and 〈ûû†〉 components of the
covariance tensor 〈ûû†〉 obtained in § 4. The magnitudes of P11 and 〈ûû†〉 are normalized
using the corresponding measurements at z+

m = 300.
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Figure 9. Normalized spectral densities of the streamwise linear production at z+
m and z+

p locations of § 5. The
top right-hand region, separated by the black dashed lines, contain the large scales estimated in § 5. The three
contour levels correspond to 0.1, 0.3 and 0.5 of the normalized spectral energy density (kxky〈ûû†〉) at z+

m = 300
(see figure 10). The dashed slanted lines in all the plots correspond to the λx = λy fluctuations.

We note from figure 9(a–e) that at all locations linear production is higher for streamwise
elongated fluctuations (λx > λy) than for any other fluctuations. The region with high
linear production shifts towards lower wavelengths as z+ approaches the wall. (We ignore
the weak negative linear production regions because their role is not clear in the literature
Lee & Moser (2019).) The energy spectral density in figure 10(a–e) follows a trend
similar to P11, thus demonstrating that linear production is indeed the main mechanism
by which most fluctuations are generated in wall turbulence. Here, we must also mention
that there are two notable kinds of fluctuations for which linear production is not the
main mechanism. The first are the slightly oblique structures between the upper parts
of the second and third contours in figures 9 and 10(a–e). These fluctuations receive
energy from the streamwise elongated fluctuations through the turbulent interscale energy
transfer mechanism (Lee & Moser 2019). The second are large-scale fluctuations close
to the wall (at z+

p = 50 and 10). At these z+
p locations there are two peak regions in the

streamwise energy spectrum: (i) a primary peak at smaller wavelengths that coincides
with the peak region in P11 and (ii) a secondary peak at larger wavelengths (λx ≈ 10,
λy ≈ 1) that corresponds to the peak energy regions at z+

m = 300 and z+
p = 200 and 100.
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Figure 10. Normalized spectral densities of the streamwise energy at z+
m and z+

p locations of § 5. The top
right-hand region, separated by the black dashed lines, contain the large scales estimated in § 5. The three
contour levels correspond to 0.1, 0.3 and 0.5 of the normalized spectral energy density (kxky〈ûû†〉) at z+

m = 300.
The dashed slanted lines in all the plots correspond to the λx = λy fluctuations.

These large-wavelength fluctuations in the near-wall region receive energy from the
logarithmic region through the turbulent wall-normal energy transport mechanism (Lee
& Moser 2019).

From figure 9( f –j), we note that the B-model highly over-estimates P11 at locations close
to the wall. This is because the stochastic forcing intensity in the B-model is uniform across
the wall-normal direction. The linear production term therefore is relatively concentrated
in the near-wall region where the mean shear (dU/dz) is high. This over-estimation in
P11 leads to the over-estimation of the magnitude of fluctuations observed in the energy
spectrum in figure 10( f –j) and in the instantaneous fluctuations in § 5.

In the W-model, the stochastic forcing intensity is wall-distance-dependent such that
it is proportional to νt, which is small in the near-wall region and increases to large
values in the logarithmic region. Consequently, P11 from the W-model (figure 9k–o) is
no longer concentrated in the near-wall region. It is distributed across the logarithmic
and near-wall regions similar to the DNS results. The improvements in P11 then lead to
improved estimations in figure 10(k–o) and in § 5. Figure 10(k–o), however, shows that the
energy spectrum from the W-model does not shift to lower wavelengths as z+

p approaches
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the wall despite the linear production in figure 9 shifting to lower wavelengths as z+
p

approaches the wall. This is also observed in § 5, where the W-model under-estimates
fluctuations for which λy ≈ 0.3. This selective under-estimation is only possible due to the
over-damping of smaller scales by the eddy dissipation term.

In the λ-model, we modify the eddy dissipation term to be proportional to the length
scale of fluctuations to be estimated (see § 3.3) such that the eddy dissipation term in the
λ-model is smaller for smaller wavelength fluctuations. Consequently, the estimations from
the λ-model (figure 10p–t) show that the dominant wavelengths shift to lower wavelengths
as z+

p approaches the wall. These results show the importance of wall distance and length
scale dependencies in the linear models and thus justify our model designs in § 3 as well
as explain why λ-model performs best among the three models in § 5.

7. Discussion

7.1. Physics-based versus data-driven linear model development
In the present study, we follow a physics-based approach in which we use physical
understanding of wall turbulence to develop the linear models. As an alternative, Zare
et al. (2017) follow a data-driven approach in which they use one-point correlation
data to develop the linear models. We model the nonlinear term as a combination of
eddy dissipation (for energy dissipation) and white-in-time stochastic forcing (for energy
production) terms. Zare et al. (2017) model the nonlinear term as a coloured noise
forcing term which can account for energy dissipation as well as can contribute to energy
production. Our approach prioritizes physical interpretation in which the nonlinear terms
are kept as simple functions, which can be related to physical variables such as eddy
viscosity and length scales of the fluctuations to be estimated. The approach of Zare et al.
(2017) prioritizes achieving the quantitative accuracy, in which the modelled nonlinear
term is kept as a ‘black box’ in the model. Despite these significant differences, both
approaches produce NS-based linear models that include a stochastic forcing term. The
two studies therefore complement each other and could ultimately be developed jointly.

7.2. Applicability to other measurement-estimation configurations
In this study, we estimate large-scale velocity fluctuations in horizontal planes at
different wall-normal locations (including in the near-wall region) from the corresponding
planar measurements in the logarithmic region. In the literature, there are alternative
approaches, in which different measurement/estimation locations and data are used. For
example, Encinar & Jiménez (2019) use wall measurements of the velocity fluctuations
to estimate the velocity fluctuations in the logarithmic region, while Sasaki et al. (2019)
use the wall-shear stress measurements to estimate the velocity fluctuations in the
near-wall and logarithmic regions. These alternative approaches are motivated by practical
considerations of flow control. In this paper, we choose instead to focus on improving
linear models. We therefore use a simple setting in which the measurements and estimation
are both of the streamwise velocity fluctuations. The only sources of error are therefore the
models themselves, which makes it easier to assess and improve their performance.

An advantage of using linear models is that they can be conveniently used in an
input–output framework, as shown in § 4. We therefore expect that, as long as LSE gives
reasonable estimation between two locations and quantities, the present study could be
adapted to reverse the measurement and estimation locations, as well as to alter the
quantities to be measured or estimated, thereby complementing the alternative approaches
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Figure 11. Normalized spectral densities of the spanwise energy at z+
m and z+

p locations of § 5. The top
right-hand region, separated by the black dashed lines, contain the large scales estimated in § 5. The three
contour levels correspond to 0.1, 0.3 and 0.5 of the normalized spectral energy density (kxky〈v̂v̂†〉) at z+

m = 300.
The dashed slanted lines in all the plots correspond to the λx = λy fluctuations.

described above. Additionally, we expect that the improved models developed here could
be useful for other analyses in which linear models are employed to study wall turbulence.
For example, Illingworth et al. (2018) and Towne et al. (2020) found that the inclusion of
an eddy viscosity term in the NS-based linear models improves the accuracy of Kalman
filter-based and resolvent-based estimations, respectively.

7.3. Further improvements
Three factors that make wall turbulence difficult to study are: (i) the absence of linearly
unstable modes; (ii) wall-distance-dependent scaling; and (iii) anisotropy. The present
study is focused on incorporating the first two factors to obtain the linear models.
Like most of the literature, however, it is limited to measurement/estimation of the
streamwise velocity fluctuations alone. In the models developed here, we do not consider
the flow anisotropy. We use the same stochastic forcing intensity and eddy viscosity
for all three velocity component equations. This cannot be physically justified because
wall-bounded turbulent flows are known to be highly anisotropic. For example, the
energy in the wall-normal and spanwise velocity fluctuations is mostly concentrated in
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Figure 12. Normalized spectral densities of the wall-normal energy at z+
m and z+

p locations of § 5. The top
right-hand region, separated by the black dashed lines, contain the large scales estimated in § 5. The three
contour levels correspond to 0.1, 0.3 and 0.5 of the normalized spectral energy density (kxky〈ŵŵ†〉) at z+

m = 300.
The dashed slanted lines in all the plots correspond to the λx = λy fluctuations.

smaller scales as compared with that in the streamwise velocity fluctuations (see panels
(a–e) of figures 10–12). The present models are therefore less accurate when estimating
the spanwise (figure 11) and wall-normal (figure 12) components. These results are
qualitatively similar to the streamwise velocity estimation results shown in figure 10.
The B-model highly over-estimates the magnitude of fluctuations closer to the wall. The
W-model alleviates this over-estimation problem but it over-dissipates the smaller scales.
The λ-model, in general, performs better than the B- and W-models at most wall-normal
locations but it under-estimates the magnitude of fluctuations in the near-wall region. As
compared with that for the streamwise velocity component, the estimation errors are higher
in these two components, particularly in the wall-normal component as also observed
by Towne et al. (2020). Gupta (2015) showed that an anisotropic eddy viscosity model
can be adapted in a linear amplification analysis to give results in qualitative agreement
with the conventionally used isotropic eddy viscosity model. In future work, it will be
worth exploring whether inclusion of such an anisotropic eddy viscosity model could
enable extension of the NS-based linear models for quantitatively accurate simultaneous
estimation of all three velocity components.
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Finally, we raise the question of applicability of our improved models for estimation in
higher Reτ flows. The results presented here are for a fully developed turbulent channel
flow at Reτ = 2000. Although this Reτ is higher or comparable to other model-based
estimation studies mentioned in § 1, it is still a relatively low Reτ flow as explained in
§ 2. We still expect the applicability of our improved models in higher Reτ flows for two
reasons. First, experimental studies, such as by Marusic et al. (2010) and Baars et al.
(2016), show the application of linear stochastic estimation to higher Reτ and rough-wall
turbulent boundary layer flows. Thus showing that, in principle, LSE is applicable to
higher Reτ and more complex flows. Second, the assumptions used to develop the
improved models in § 3 are not limited to low Reτ flows. However, a conclusive proof
on the applicability of our improved models to higher Reτ flows can only be achieved by
actually applying these models to higher Reτ flows.

8. Conclusion

We conclude that NS-based linear models can estimate instantaneous large-scale
fluctuations at several wall-normal locations, including in the near-wall region, from
their corresponding measurements at a single wall-normal location in the logarithmic
region. These models only require the mean flow velocity profile to be known a priori
and use simple physics-based functions to model the nonlinear terms. In other words,
the model development does not rely on expensive measurements or computations to
collect turbulence data. In this paper, we limit the estimation to the streamwise velocity
fluctuations and report the errors in terms of mean symmetric absolute percentage error
in which 0 % error means the perfect model and 100 % error means the worst model
(see figure 8b). When the measurement and estimation planes are both in the logarithmic
region, the model-based estimation results differ from the DNS-based estimation results by
only 5 %–10 %. When the measurement and estimation planes are across the logarithmic
and near-wall regions, the model-based estimation results differ from the DNS-based
estimation results by around 10 %–25 %. These results, therefore, motivate the further
development of such linear models for analysing wall turbulence.

In these physics-based models, the nonlinear term in the NS equations is replaced
by a combination of a stochastic forcing term and an eddy dissipation term. The
stochastic forcing term plays a role in energy extraction by the large scales and the
eddy dissipation term primarily plays a role in energy dissipation by the small scales.
Based on the two-point correlation-based transfer function and the estimation results
in § 5 we find that, for the models to give accurate results, the stochastic forcing and
eddy dissipation terms should vary with wall distance and with the length scales of
the fluctuations to be estimated. In § 6 we analyse the turbulence kinetic energy budget
equation to understand the reasons for which the model with wall distance and length
scale dependencies (λ-model) performs better than the models without these dependencies
(B- and W-models). Panels ( f –j) of figure 9 show that when the stochastic forcing is
uniform in the wall-normal direction (B-model), linear production becomes concentrated
in the near-wall region, where the mean shear is high. The wall-distance dependence of
the stochastic forcing term, implemented using a simple eddy viscosity model, ensures
that the energy production and dissipation are evenly distributed across the near-wall and
logarithmic regions (panels (k–o) of figure 9). This, therefore, alleviates the problem of
over-estimation of the magnitude of the fluctuations closer to the wall (see figure 10
and results in § 5). Panels (k–o) of figure 9 show that when the eddy viscosity is
constant for fluctuations of all length scales, the smallest length scale fluctuations become
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Figure 13. The relative strength (
√

〈|û(zp)|2〉/〈|û(zm)|2〉) of the fluctuations calculated from variants of the
λ-model with trends preserved (i.e. corresponding to the blue lines in figure 2). The dashed slanted lines in all
the plots correspond to the λx = λy fluctuations.

over-dissipated. The length scale dependence, implemented using simple functions,
ensures that the dissipation caused by the eddy viscosity term is lower for the smallest
length scale fluctuations and thus the dominant scales shift towards lower wavelengths
towards the wall (see figure 10p–t).

The development of these linear models, therefore, highlights the delicate balance
between linear and nonlinear mechanisms in wall turbulence. On the one hand, energy
extraction in wall turbulence is predominantly linear and thus physics-based linear models
are able to give reasonably accurate results. On the other hand, the absence of linearly
unstable modes in wall turbulence means that the nonlinear term still plays an essential
role in energy extraction and thus the nonlinear term should be carefully modelled to
include the observed wall distance and length scale dependencies.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.671.
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√

〈|û(zp)|2〉/〈|û(zm)|2〉) of the fluctuations calculated from variants of the
λ-model with trends reversed (i.e. corresponding to the red lines in figure 2). The dashed slanted lines in all the
plots correspond to the λx = λy fluctuations.
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Figure 15. The 2-D LCS (γ 2) calculated from variants of the λ-model with trends preserved (i.e.
corresponding to the blue lines in figure 2). The dashed slanted lines in all the plots correspond to the λx = λy
fluctuations.
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Figure 16. The 2-D LCS (γ 2) calculated from variants of the λ-model with trends reversed (i.e. corresponding
to the red lines in figure 2). The dashed slanted lines in all the plots correspond to the λx = λy
fluctuations.
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Appendix. Variations of the λ-model

The purpose of this section is to show that the improvements in the estimations obtained
from the λ-model compared with the estimations from the B- and W-models (in §§ 5
and 6) are primarily due to incorporation of the physical observations. Apart from small
quantitative changes, those improvements do not depend either on the functional forms of s
and λm or values of parameters a, b and c. We show this by analysing the estimations from
six variants of s and λm (the thin blue and red lines in figure 2). The thin blue lines follow
the same trend as the original functions. We label the resulting models as s0.5-model,
s1.5-model, λm/2-model and 2λm-model. The thin red lines follow the opposite trend from
the original functions. We label the resulting models as the s−1-model and the λ−1

m -model.
Figures 13 and 15 show that the variants that are in agreement with the physical

observations all give results similar to the results from the λ-model, apart from small
quantitative changes. They all show improvements over the results from the B- and
W-models, thus showing that the results from the λ-model do not depend on the details
of s and λm. To strengthen this argument further, we also show the effect of the variants
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that are not in agreement with the physical observations. Figures 14 and 16 show that the
variants that are not in agreement with the original functions give results that are worse
than the results from the W-model.

These results, therefore, show that as long as the length scale dependence is
implemented in agreement with physical observations, the estimation results generally
improve over the estimation results from models without the length scale dependence (i.e.
the B- and W-models).
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