HOLOMORPHIC CURVES IN THE ORTHOGONAL TWISTOR SPACE

Andy Talmadge and Kichoon Yang

A complete description of holomorphic curves in the Hermitian symmetric space $S O(6) / U(3)$ is given in terms of orthogonal differential invariants.

0. Introduction

The Hermitian symmetric space $S O(2 n) / U(n)$ is naturally identified with the twistor space $\mathcal{T}\left(\mathbb{R}^{2 n}\right)$, the space of orthogonal complex structures on $\mathbb{R}^{2 n}$. Thus a curve in $S O(2 n) / U(n)$ can be thought of as a 1 -parameter family of complex structures on $\mathbb{R}^{2 n}$, and the study of holomorphic curves in $S O(2 n) / U(n)$ pertains to the deformation problem of complex structures.

The case of $S O(6) / U(3)$ is particularly appealing as this space is symmetric space isomorphic to $\mathbb{C} P^{3}$, albeit via a complicated isomorphism. (The space $S O(4) / U(2)$ is symmetric space isomorphic to $\mathbb{C} P^{1}$, and the geometry of curves in $S O(4) / U(2)$ is trivial.) The study of holomorphic curves in $S O(6) / U(3)$ yields a new perspective on the study of holomorphic curves, and more generally minimal surfaces, in $\mathbb{C} P^{3}$ (see [2]).

In the present paper we give a complete description of holomorphic curves in $S O(6) / U(3)$ in terms of orthogonal differential invariants. Given a Riemann surface M we derive a system of partial differential equations with 3 unknown functions, (τ_{i}), on M. These partial differential equations (Section 4 ($\mathrm{I} 1-3$)) are the integrability conditions in the following sense: given a solution (τ_{i}) one can manufacture a holomorphic curve by integrating a Frobenius system. To put it another way, a solution to the integrability conditions determines a holomorphic curve constructively up to integration involving ordinary differential equations only. Moreover, every holomorphic curve in $S O(6) / U(3)$ arises in this manner.

1. The space of orthogonal complex structures on $\mathbb{R}^{\mathbf{2 n}}$

Let $\mathcal{T}\left(\mathbb{R}^{2 n}\right)$ denote the space of orientation preserving orthogonal complex structures on $\mathbb{R}^{\mathbf{2 n}}$. More precisely,

$$
\mathcal{T}\left(\mathbb{R}^{2 n}\right)=\left\{J \in \mathrm{Aut}^{+}\left(\mathbb{R}^{2 n}\right): J^{2}=-i d,\langle J v, J w\rangle=\langle v, w\rangle, v, w \in \mathbb{R}^{2 n}\right\}
$$

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/91 \$A2.00+0.00.
where $A u t^{+}\left(\mathbb{R}^{2 n}\right)$ denotes the set of orientation preserving automorphisms of $\mathbb{R}^{2 n}$. The space $\mathcal{T}\left(\mathbb{R}^{2 n}\right)$ can be identified with the Hermitian symmetric space $S O(2 n) / U(n)$ as we shall see below.

Let $i: U(n) \rightarrow S O(2 n)$ be the Lie group monomorphism induced by the identification

$$
\mathbb{R}^{2 n}=\mathbb{C}^{n},\left(x^{\alpha}\right) \leftrightarrow\left(x^{1}+i x^{2}, \cdots, x^{2 n-1}+i x^{2 n}\right)
$$

More explicitly, if one writes
then

$$
\begin{gathered}
Z=X+i Y \in U(n), X, Y \text { real matrices } \\
\qquad i(Z)=S\left[\begin{array}{rr}
X & -Y \\
Y & X
\end{array}\right]^{t} S
\end{gathered}
$$

where ${ }^{t} S=\left(\varepsilon_{1}, \varepsilon_{n+1}, \varepsilon_{2}, \varepsilon_{n+2}, \cdots, \varepsilon_{n}, \varepsilon_{2 n}\right)$ and ε_{i} denotes the column vector with 1 at the i th entry and zeros elsewhere.

We put $H=i(U(n)) \subset S O(2 n)$; we shall occasionally confuse H with $U(n)$. Let $A=\left(A_{\alpha}\right)=\left(A_{1}, \ldots, A_{2_{n}}\right) \in S O(2 n)$, and consider the assignment

$$
A \mapsto J_{A} \in \mathcal{T}\left(\mathbb{R}^{2 n}\right)
$$

given by the prescription

$$
J_{A}\left(A_{2 i-1}\right)=A_{2 i}, J_{A}\left(A_{2 i}\right)=-A_{2 i-1}, 1 \leqslant i \leqslant n
$$

that is, the matrix of J_{A} with respect to the basis $\left(A_{\alpha}\right)$ is

$$
j_{n}=\left[\begin{array}{rrrrrr}
0 & -1 & & & & \\
1 & 0 & & & & \\
& & . & & & \\
& & & . & & \\
& & & & & \\
& & & & 0 & -1 \\
& & & & 1 & 0
\end{array}\right]
$$

This assignment induces a bijection

$$
S O(2 n) / H \rightarrow \mathcal{T}\left(\mathbb{R}^{2 n}\right)
$$

as it is easily seen that $J_{A}=J_{B}$ if and only if the cosets $A H$ and $B H$ coincide.
In what follows we recall the root space decomposition of the Lie algebra $o(2 n)$. First define $\varepsilon_{\beta}^{\alpha}$ to be the $2 n \times 2 n$ with 1 at the (α, β)-entry and zeros elsewhere. We
then define the following matrices in $o(2 n)(o(2 n)$ is thought of as the set of all $2 n \times 2 n$ real skew-symmetric matrices):

$$
\begin{aligned}
F_{i} & =\varepsilon_{2 i-1}^{2 i}-\varepsilon_{2 i}^{2 i-1} \\
E_{i j} & =\varepsilon_{2 j-1}^{2 i-1}+\varepsilon_{2 j}^{2 i}-\varepsilon_{2 i-1}^{2 j-1}-\varepsilon_{2 i}^{2 j}, \\
F_{i j} & =\varepsilon_{2 j-1}^{2 i}+\varepsilon_{2 j-1}^{2 j}-\varepsilon_{2 i}^{2 j-1}-\varepsilon_{2 j}^{2 i-1}, \\
E_{i j}^{\prime} & =\varepsilon_{2 j-1}^{2 i-1}+\varepsilon_{2 i}^{2 j}-\varepsilon_{2 i-1}^{2 j-1}-\varepsilon_{2 j}^{2 i}, \\
F_{i j}^{\prime} & =\varepsilon_{2 j}^{2 i-1}+\varepsilon_{2 j-1}^{2 i}-\varepsilon_{2 i-1}^{2 j}-\varepsilon_{2 i}^{2 j-1},
\end{aligned}
$$

where $1 \leqslant i<j \leqslant n$. Now put

$$
V_{i}=\mathbb{R}-\operatorname{span}\left\{F_{i}\right\}, \quad V_{i j}=\mathbb{R}-\operatorname{span}\left\{E_{i j}, F_{i j}\right\}, \quad V_{i j}^{\prime}=\mathbb{R}-\operatorname{span}\left\{E_{i j}^{\prime}, F_{i j}^{\prime}\right\}
$$

The root spaces of $\sigma(2 n)$ relative to the standard maximal torus

$$
T=S O(2)^{n} \subset S O(2 n)
$$

$\left(S O(2)^{n}\right.$ is diagonally included in $S O(2 n)$) are precisely

$$
\oplus \sum V_{i}=t, V_{i j}, V_{i j}^{\prime}
$$

where t is the Lie algebra of T, the trivial root space.
The Lie algebra of $H \subset S O(2 n)$ is given by
so that

$$
\mathfrak{h}=\left\{X \in \mathfrak{o}(2 n):{ }^{t} X j_{n}+j_{n} X=0\right\}
$$

Consequently

$$
m=\oplus \sum V_{i j}^{\prime}
$$

is the orthogonal complement to \mathfrak{h} relative to the Killing form. Via $\pi_{* e}$, where π is the projection $S O(2 n) \rightarrow S O(2 n) / H, m$ gets identified with the tangent space at the identity coset of $S O(2 n) / H$:

$$
\mathfrak{m}=T_{0}(S O(2 n) / H), \quad 0=H
$$

Let $\Omega=\left(\Omega_{\beta}^{\alpha}\right)$ denote the $o(2 n)$-valued Maurer-Cartan form of $S O(2 n)$. We then have the decomposition

$$
\Omega=\Omega_{\mathfrak{h}}+\Omega_{\mathrm{m}}, \quad \Omega_{\mathrm{m}}=\sum \Omega_{V_{i j}^{\prime}}
$$

where

$$
\Omega_{V_{i j}^{\prime}}=\frac{1}{2}\left[\left(\Omega_{2 j-1}^{2 i-1}-\Omega_{2 j}^{2 i}\right) \otimes E_{i j}^{\prime}+\left(\Omega_{2 j-1}^{2 i}+\Omega_{2 j}^{2 i-1}\right) \otimes F_{i j}^{\prime}\right](\text { no sum })
$$

We also put

$$
\Theta^{\prime i j}=\frac{1}{2}\left[\left(\Omega_{2 j-1}^{2 i-1}-\Omega_{2 j}^{2 i}\right)+\sqrt{-1}\left(\Omega_{2 j-1}^{2 i}+\Omega_{2 j}^{2 i-1}\right)\right], \quad 1 \leqslant i<j \leqslant n
$$

Recall that the space $S O(2 n) / U(n)$ has, up to conjugacy, exactly one integrable almost complex structure; this complex structure is characterised by letting the pullbacks of $\left(\Theta^{\prime i j}\right)$ (by a local section of $\left.S O(2 n) \rightarrow S O(2 n) / H\right)$ span the space of type $(1,0)$ forms on $S O(2 n) / H$.

Any invariant metric on $S O(2 n) / H$ is given by the pullback of the symmetric product

$$
c \cdot \sum \Theta^{\prime i j} \cdot \bar{\Theta}^{\prime i j}, c>0
$$

We shall use the metric coming from $c=1$.

2. The linear isotropy representation

In this section we explicitly compute the linear isotropy representation

$$
\rho: U(n) \rightarrow G L(\mathrm{~m})=G L\left(T_{0}(S O(2 n) / H)\right)
$$

For $Z \in U(n)$ one has the inner automorphism

$$
\operatorname{Inn}_{z}: S O(2 n) \rightarrow S O(2 n), g \mapsto z y z^{-1}
$$

where $z=i(Z) \in H$. The map Inn_{z} fixes the origin $0=H \in S O(2 n) / H$ and we obtain the automorphism

$$
\operatorname{Inn}_{z * 0}: \mathfrak{m} \rightarrow m, m=T_{0}(S O(2 n) / H)
$$

The assignment

$$
\left.Z \in U(n) \mapsto \operatorname{Ad}(Z)\right|_{\mathfrak{m}}=\operatorname{Inn}_{z * 0} \in G L(\mathrm{~m})
$$

is nothing but the adjoint representation of $U(n)$ restricted to the invariant subspace $\mathrm{m} \subset \mathrm{o}(2 n)(\operatorname{Ad}(H) \mathrm{m} \subset \mathfrak{m})$. Then $\rho=\left.\operatorname{Ad}\right|_{m}$.

In what follows we take $n=3$. Recall that a basis of m is given by

$$
E_{12}^{\prime}, E_{13}^{\prime}, E_{23}^{\prime}, F_{12}^{\prime}, F_{13}^{\prime}, F_{23}^{\prime} \in o(6) .
$$

$\mathrm{Ad}_{Z}\left(E_{i j}^{\prime}\right)$ is computed from the matrix multiplication

$$
i(Z) \cdot E_{i j}^{\prime} \cdot i(Z)^{-1}
$$

Written out more fully,

$$
\operatorname{Ad}_{Z}\left(E_{i j}^{\prime}\right)=\left(S \cdot\left[\begin{array}{cc}
X & -Y \\
Y & X
\end{array}\right] \cdot{ }^{t} S\right) E_{i j}^{\prime}\left(S \cdot\left[\begin{array}{cc}
{ }^{t} X & { }^{t} Y \\
-{ }^{t} Y & { }^{t} X
\end{array}\right] \cdot{ }^{t} S\right)
$$

Similarly one computes $\operatorname{Ad}_{Z}\left(F_{i j}^{\prime}\right)$. We want to write $\operatorname{Ad}_{Z}\left(E_{i j}^{\prime}\right)$ and $\operatorname{Ad}_{Z}\left(F_{i j}^{\prime}\right)$ as linear combinations in $\left(E_{i j}^{\prime}, F_{i j}^{\prime}\right)$. For this we define 3×3 matrices $J_{i j}$ by the formula:

$$
J_{i j}=\varepsilon_{j}^{i}-\varepsilon_{i}^{j} \in o(3), \quad 1 \leqslant i<j \leqslant 3 .
$$

Note that

$$
{ }^{t} S \cdot E_{i j}^{\prime} \cdot S=\left[\begin{array}{cc}
J_{i j} & 0 \\
0 & -J_{i j}
\end{array}\right], \quad{ }^{t} S \cdot F_{i j}^{\prime} \cdot S=\left[\begin{array}{cc}
0 & J_{i j} \\
J_{i j} & 0
\end{array}\right] .
$$

Computations reveal that

$$
\begin{gathered}
\operatorname{Ad}(Z): E_{i j}^{\prime} \mapsto\left\{X J_{i j}^{t} X-Y J_{i j}^{t} Y\right\}_{1}+\left\{X J_{i j}^{t} Y+Y J_{i j}^{t} X\right\}_{2}, \\
F_{i j}^{\prime} \mapsto\left\{-X J_{i j}^{t} Y-Y J_{i j}^{t} X\right\}_{1}+\left\{X J_{i j}^{t} X-Y J_{i j}^{t} Y\right\}_{2}
\end{gathered}
$$

where $\{\cdot\}_{1}$ means identify $J_{k \ell}$ with $E_{k \ell}^{\prime}$, and $\{\cdot\}_{2}$ means identify $J_{k \ell}$ with $F_{k \ell}^{\prime}$.
It is more convenient to rewrite the above using complex notation. So we write

$$
Z=\left(x_{j}^{i}+\sqrt{-1} y_{j}^{i}\right)=\left(z_{j}^{\mathbf{i}}\right) \in U(3)
$$

and compute $\rho(Z)$ with respect to the complex basis

$$
E_{12}^{\prime}+i F_{12}^{\prime}, E_{13}^{\prime}+i F_{13}^{\prime}, E_{23}^{\prime}+i F_{23}^{\prime}
$$

so that $\rho(Z) \in G L(3, \mathbb{C})$. (In other words, we have chosen an identification of m with \mathbb{C}^{3}.) We find that

$$
\rho(Z)=\left[\begin{array}{lll}
Z_{33} & Z_{32} & Z_{31} \\
Z_{23} & Z_{22} & Z_{21} \\
Z_{13} & Z_{12} & Z_{11}
\end{array}\right] \in G L(3, \mathbb{C}),
$$

where $Z_{i j}$ denotes the (i, j)-minor of Z. We see that $\rho(Z)$ is related to the adjoint matrix of Z in a simple way. (The adjoint matrix of Z is the transpose of the cofactor matrix of Z so that Z times its adjoint matrix is the determinant of Z.) More precisely, we let

$$
\delta=\left[\begin{array}{lll}
& & 1 \\
& -1 & \\
1 & &
\end{array}\right]
$$

Then

$$
\begin{equation*}
\rho(Z)=\operatorname{det}(Z) \delta \cdot \bar{Z} \cdot \delta \in G L(3, \mathbb{C}) . \tag{*}
\end{equation*}
$$

Remark. More generally, consider the linear isotropy representation

$$
\rho: U(n) \rightarrow G L(N, \mathbb{C})
$$

where \mathfrak{m} is identified with $\mathbb{C}^{N}, N=n(n-1) / 2$, via the lexicographical ordering of the root basis as in the $S O(6) / U(3)$ case. Identify \mathbb{C}^{N} with $\Lambda^{2}\left(\mathbb{C}^{n}\right)$, the space of 2-vectors in $\mathbb{C}^{\boldsymbol{n}}$. Calculations then show that

$$
\rho(Z)\left(\varepsilon_{i} \wedge \varepsilon_{j}\right)=Z_{i} \wedge Z_{j}
$$

where $Z=\left(Z_{i}\right) \in U(n)$, and $\left(\varepsilon_{i}\right)$ are the canonical basis vectors of \mathbb{C}^{n}. Extending linearly over the basis $\left\{\varepsilon_{i} \wedge \varepsilon_{j}: 1 \leqslant i<j \leqslant n\right\}$ of \mathbb{C}^{N} one obtains the matrix representation ρ. However, the orbit structure of this action is very complicated for large n.

3. The Frenet frame along a holomorphic curve

Let M be a Riemann surface and consider a holomorphic map

$$
f: M \rightarrow S O(6) / H
$$

We let $e: U \subset M \rightarrow S O(6)$ denote a smooth local section of the $U(3)$-principal bundle

$$
f^{-1} S O(6) \rightarrow M
$$

The holomorphy of f is reflected by the fact that the forms

$$
e^{*} \Theta^{\prime i j}, \quad 1 \leqslant i<j \leqslant 3,
$$

are all of type $(1,0)$ on M.
Index convention. (12) $=1,(13)=2,(23)=3 ; 1 \leqslant i, j \leqslant 3,1 \leqslant \alpha, \beta \leqslant 6$.
Fix a Riemannian metric on M from its conformal class, say $d s_{M}^{2}$. This means that we can locally write

$$
d s_{M}^{2}=\varphi \cdot \bar{\varphi}
$$

for some type $(1,0)$ nonvanishing form φ. The 1 -form φ is called a unitary coframe.
We define complex valued local functions (Z^{i}) on M by

$$
e^{*} \Theta^{\prime i}=Z^{i} \varphi
$$

where φ is a fixed unitary coframe.
Put $\tau_{1}=\sum\left|Z^{i}\right|^{2}$. It is routinely verified that τ_{1} is a globally defined smooth function on M. Let \sum_{1} denote the zero set of τ_{1}; we shall mostly work away from the set \sum_{1}.

Since f is nonconstant, the function τ_{1} is not identically zero: since the pullback of the standard metric on $S O(6) / U(3)$ is given by

$$
d s_{1}^{2}=\tau_{1} \varphi \cdot \bar{\varphi},
$$

we see that $\tau_{1}(x)=0$ if and only if $x \in M$ is a non-immersion point. In fact, we can say a lot more. But first we need to recall the notion of an analytic type function.

Definition: Let U be a domain in the Riemann surface M. A \mathbb{C}^{n}-valued smooth function $h=\left(h^{i}\right)$ on U is said to be of analytic type if for each point $x \in U$, if z is a local holomorphic coordinate centred at x, then

$$
h=z^{b} \widetilde{h}
$$

where b is a positive integer and \widetilde{h} is a smooth \mathbb{C}^{n}-valued function with $\widetilde{h}(x) \neq 0$.
So if h is a function of analytic type on U, then h is either identically zero or its zeros are isolated and of finite multiplicity (the integer b in the above definition).

It is known [1] that the functions of analytic type are exactly solutions of exterior equation

$$
d h=\Phi h(\bmod \varphi)
$$

where Φ is an $n \times n$ matrix of complex valued 1 -forms on U and φ is a nowhere zero type (1,0) form on U.

Proposition. The function $\tau_{1}: M \rightarrow \mathbb{R}$ is an analytic type function on M.
Proof: We will show that the local function

$$
\left(Z^{i}\right): U \subset M \rightarrow \mathbb{C}^{3}
$$

is of analytic type. Since $\tau_{1}=\sum\left|Z^{i}\right|^{2}$, the rest follows. Exterior differentiation of both sides of the equations
leads to

$$
\begin{gathered}
e^{*} \Theta^{i}=Z^{i} \varphi \\
d Z^{i} \equiv \Psi_{j}^{i} Z^{j}(\bmod \varphi):
\end{gathered}
$$

one uses the Maurer-Cartan structure equations of $S O(6)$ and the equation

$$
d \varphi=-\theta_{C} \wedge \varphi
$$

where θ_{C} is the complex connection form. For example,

$$
d Z^{1} \equiv\left(\theta_{C}+i \omega_{2}^{1}+i \omega_{4}^{3}\right) Z^{1}+\left(i \omega_{6}^{3}-\omega_{6}^{4}\right) Z^{2}+\left(\omega_{6}^{2}-i \omega_{6}^{1}\right) Z^{3}(\bmod \varphi)
$$

where $\omega=e^{*} \Omega$.
Note that $r_{1}=\sqrt{r_{1}}$ is a continuous function on M smooth away from its zeros.
Suppose $\widetilde{\boldsymbol{e}}: \widetilde{U} \rightarrow S O(6)$ is another lifting of f. This means that

$$
\bar{e}=e \cdot k
$$

for some smooth function $k: U \cap \tilde{U} \rightarrow U(3)$. Define $\left(\tilde{Z}^{i}\right)$ by setting

$$
\vec{e}^{*} \Theta^{\prime i}=\tilde{Z}^{i} \varphi
$$

We then obtain the following
Transformation rule. $\left(\widetilde{Z}^{i}\right)=\rho\left(k^{-1}\right)\left(Z^{i}\right)$.
The above rule follows from the fact that

$$
(e \cdot k)^{*} \Omega_{\mathfrak{m}}=\operatorname{Ad}\left(k^{-1}\right) e^{*} \Omega_{\mathfrak{m}}
$$

Consulting (${ }^{*}$) in the preceding section it is clear that near a point in $M \backslash \sum_{1}$ we can make

$$
Z^{1}=r_{1}, \quad Z^{2}=Z^{3}=0
$$

where $r_{1}=\sqrt{\tau_{1}}$. Any lifting e achieving this will be called a first order frame.
Let e be any first order frame along f, and write $\omega=e^{*} \Omega$. We then have

$$
\begin{gather*}
\frac{1}{2}\left[\left(\omega_{3}^{1}-\omega_{4}^{2}\right)+i\left(\omega_{3}^{2}+\omega_{4}^{1}\right)\right]=r_{1} \varphi \tag{E1}\\
\omega_{5}^{1}=\omega_{6}^{2}, \omega_{5}^{2}=-\omega_{6}^{1} \tag{E2}\\
\omega_{5}^{3}=\omega_{6}^{4}, \omega_{5}^{4}=\omega_{6}^{3} \tag{E3}
\end{gather*}
$$

Define a subgroup of $U(3)$ by

$$
G_{1}=\left\{k \in U(3): \rho(k)^{t}(1,0,0)={ }^{t}(1,0,0)\right\}
$$

We find that

$$
G_{1}=\left\{\left[\begin{array}{cc}
Z & 0 \\
0 & \exp (i \theta)
\end{array}\right]: Z \in S U(2)\right\} \cong S U(2) \times U(1)
$$

Let e be a first order frame along f. Then any other first order frame along f is given by $e \cdot k$, where k is a G_{1}-valued local function on M.

The first order frames are constructed near a point $x \in M \backslash \sum_{1}$. Near a point in \sum_{1} we can find a generalised first order frame e such that

$$
e^{*} \Theta^{\prime 2}=e^{*} \Theta^{\prime 3}=0, \quad e^{*} \Theta^{\prime 1}=Z_{1} \varphi, Z_{1} \text { complex valued, }
$$

where $\left|Z_{1}\right|^{2}=\tau_{1}$. To see this observe that $\left(Z^{i}\right)$ can be written as

$$
z^{b}\left(\widehat{Z}^{i}\right)
$$

where z is a local holomorphic coordinate centred at x and $\left(\widehat{Z}^{i}(x)\right) \neq 0$. Thus we can use the \boldsymbol{H}-action to bring about

$$
\widehat{Z}^{1}=\widehat{r}_{1}>0, \widehat{Z}^{2}=\widehat{Z}^{3}=0
$$

Then $Z_{1}=z^{b} \hat{\boldsymbol{r}}^{1}$ does the trick.
By way of notation we put

$$
\psi^{1}=\frac{1}{2}\left(\omega_{3}^{1}-\omega_{4}^{2}\right), \psi^{2}=\frac{1}{2}\left(\omega_{3}^{2}+\omega_{4}^{1}\right), \psi=\psi^{1}+i \psi^{2} .
$$

Note that ψ is of type $(1,0)$, and that

$$
\psi=Z_{1} \varphi
$$

and near a point in $M \backslash \Sigma_{1}$

$$
\psi=r_{1} \varphi
$$

We now exterior differentiate the relations (E1-3) and construct the second order frames. We will use the Maurer-Cartan structure equations of $S O(6)$. We will also need the structure equations for $(M, \varphi \cdot \bar{\varphi})$:

$$
d \varphi=-\theta_{C} \wedge \varphi
$$

The purely imaginary 1 -form θ_{C} is the complex connection form with respect to φ, and is nothing but $-i$ times the Levi-Civita connection form of $\left(M,\left(\varphi^{i}\right)\right)$. Differentiating this equation one more time we obtain

$$
d \theta_{C}=\frac{K}{2} \varphi \wedge \bar{\varphi}, \quad K=\text { the Gaussian curvature }
$$

We now exterior differentiate the left hand side of (E1):

$$
d\left(\psi^{1}+i \psi^{2}\right)=i\left(\omega_{2}^{1}+\omega_{4}^{3}\right) \wedge\left(\psi^{1}+i \psi^{2}\right)=i\left(\omega_{2}^{1}+\omega_{4}^{3}\right) \wedge r_{1} \varphi
$$

On the other hand,

$$
d\left(r_{1} \varphi\right)=d r_{1} \wedge \varphi-r_{1} \theta_{C} \wedge \varphi=\left(d r_{1}-r_{1} \theta_{C}\right) \wedge \varphi
$$

It follows that

$$
\left[d \log r_{1}-i\left(\omega_{2}^{1}+\omega_{4}^{3}\right)-\theta_{C}\right] \wedge \varphi=0
$$

Since $d \log r_{1}$ is real and $i\left(\omega_{2}^{1}+\omega_{4}^{3}\right)+\theta_{C}$ is purely imaginary, we then must have

$$
\begin{equation*}
* d \log r_{1}=i\left[\theta_{C}+i\left(\omega_{2}^{1}+\omega_{4}^{3}\right)\right] \tag{F1}
\end{equation*}
$$

where * is the Hodge operator of $\left(M, d s^{2}\right)$.
Exterior differentiation of the first equation in (E2) leads to

$$
\omega_{5}^{3} \wedge \varphi^{1}+\omega_{5}^{4} \wedge \varphi^{2}=0
$$

the second equation yields

$$
\omega_{5}^{4} \wedge \varphi^{1}-\omega_{5}^{3} \wedge \varphi^{2}=0
$$

It follows from (\dagger, \ddagger) that

$$
\omega_{5}^{4}=-* \omega_{5}^{3}, \quad \omega_{5}^{2}=-* \omega_{5}^{1}
$$

and we may set

$$
\omega_{5}^{1}-i \omega_{5}^{2}=Z^{1} \varphi, \quad \omega_{5}^{9}-i \omega_{5}^{4}=Z^{2} \varphi
$$

for some local complex valued functions $\left(Z^{i}\right)$ on M.
Put $\tau_{2}=\sum\left|Z^{i}\right|^{2}$. It is easily verified that τ_{2} is a well-defined smooth function on M. A consideration similar to that given for τ_{1} shows that τ_{2} is an analytic type function on M. Let \sum_{2} denote the zero set of τ_{2}.

Define tilded quantities $\widetilde{Z}^{1}, \widetilde{Z}^{2}$ by

$$
\tilde{\omega}_{5}^{1}-i \widetilde{\omega}_{5}^{2}=\widetilde{Z}^{1} \varphi, \quad \widetilde{\omega}_{5}^{3}-i \widetilde{\omega}_{5}^{4}=\tilde{Z}^{2} \varphi, \quad \tilde{\omega}=\tilde{\mathrm{e}}^{*} \Omega
$$

where $\widetilde{e}=e \cdot k, k \in G_{1}$-valued, is another first order frame. Write

$$
k=\left(Z, e^{i \theta}\right)
$$

where Z is $S U(2)$-valued. We can write Z as

$$
Z=\left[\begin{array}{cc}
z_{1}^{1} & z_{2}^{1} \\
-\bar{Z}_{2}^{1} & \bar{z}_{1}^{1}
\end{array}\right], \quad z_{j}^{i}=x_{j}^{i}+i y_{j}^{i} .
$$

From the formula $\tilde{\omega}=i\left(k^{-1}\right) \cdot \omega \cdot i(k)$ we compute that

$$
{ }^{t}\left(\tilde{Z}^{i}\right)=e^{-i \theta \cdot t}{ }^{t} \cdot{ }^{t}\left(Z^{i}\right) .
$$

We see from this that we can make $Z^{1}=r_{2}>0$, and $Z^{2}=0$.
Summarising the preceding computation, we have
Proposition. Let $f: M \rightarrow S O(6) / U(3)$ be a nonconstant holomorphic map. Near any point $x \in M \backslash\left\{\sum_{1} \cup \sum_{2}\right\}$ there exists a local lifting e into $S O(6)$ such that in addition to (E1-3) we have

$$
\begin{equation*}
\omega_{5}^{1}-i \omega_{5}^{2}=r_{2} \varphi, \quad \omega_{5}^{3}=\omega_{5}^{4}=0 \tag{E4}
\end{equation*}
$$

where, as usual, $\omega=e^{*} \Omega$.
The totality of such frames, called the second order frames, is determined up to the structure group

$$
\begin{aligned}
G_{2} & =\left\{\left(Z, e^{i \theta}\right) \in S U(2) \times U(1): e^{-i \theta} \cdot{ }^{t} Z \cdot{ }^{t}(1,0)={ }^{t}(1,0)\right\} \\
& =\left\{\left(e^{i \theta}, e^{-i \theta}, e^{i \theta}\right) \in U(3)\right\} \cong U(1)
\end{aligned}
$$

Theorem. Suppose $\tau_{2}(f) \equiv 0$. Then $f(M)$ is congruent to an open submanifold of $S O(4) / U(2) \cong \mathbb{C} P^{1}$.

Proof: $\tau_{2}(f) \equiv 0$ means that the bundle of first order frames along f, denoted by L_{1}, is an integral manifold of the exterior system

$$
\Omega_{B}^{A}=0, \quad 1 \leqslant A \leqslant 4, \quad 5 \leqslant B \leqslant 6,
$$

on $S O(6)$. (So a first order frame along f is a local section of $L_{1} \rightarrow M$.) It follows that L_{1} is a translate of $S O(4) \times S O(2) \subset S O(6)$. Then $f(M)$ is congruent to a submanifold of

$$
S O(4) \times S O(2) /(U(3) \cap S O(4) \times S O(2)) \cong S O(4) / U(2) \cong \mathbb{C} P^{1}
$$

Hereafter we assume that τ_{2} is not identically zero.
We now exterior differentiate both sides of the equations in (E4), and construct the third order frames.

We obtain from the first equation of (E4)

$$
\begin{gathered}
d\left(\omega_{5}^{1}-i \omega_{5}^{2}\right)=i\left(\omega_{6}^{5}-\omega_{2}^{1}\right) \wedge r_{2} \varphi \\
d\left(r_{2} \varphi\right)=d r_{2} \wedge \varphi-r_{2} \theta_{C} \wedge \varphi
\end{gathered}
$$

Consequently,

$$
\left\{d \log r_{2}-\theta_{C}-i\left(\omega_{8}^{5}-\omega_{2}^{1}\right)\right\} \wedge \varphi=0
$$

Therefore

$$
\begin{equation*}
* d \log r_{2}=i\left(\theta_{C}+i\left(\omega_{6}^{5}-\omega_{2}^{1}\right)\right) \tag{F2}
\end{equation*}
$$

The remaining two equations in (E4), upon exterior differentiation, yield

$$
\omega_{3}^{1} \wedge \varphi^{1}-\omega_{3}^{2} \wedge \varphi^{2}=0, \quad \omega_{4}^{1} \wedge \varphi^{1}-\omega_{4}^{2} \wedge \varphi^{2}=0
$$

Consequently, we can write

$$
\begin{array}{cl}
\omega_{3}^{1}=a \varphi^{1}+b \varphi^{2}, & \omega_{4}^{1}=b \varphi^{1}+c \varphi^{2} \\
\omega_{3}^{2}=* \omega_{3}^{1}, & \omega_{4}^{2}=* \omega_{4}^{1} \tag{2}
\end{array}
$$

where a, b, c are some local functions on M with $a+c=2 r_{1}$.
Define tilded quantities $\tilde{a}, \tilde{b}, \tilde{c}$ using another second order frame $\tilde{e}=e \cdot k$, where

$$
k=\left(e^{i \theta}, e^{-i \theta}, e^{i \theta}\right), \quad \theta \text { a local function on } M
$$

We want to know how $(\tilde{a}, \tilde{b}, \tilde{c})$ are related to (a, b, c).
Again using the formula

$$
\widetilde{\omega}=i\left(k^{-1}\right) \cdot \omega \cdot i(k), \omega=e^{*} \Omega, \widetilde{\omega}=\vec{e}^{*} \Omega
$$

we compute that

$$
\begin{aligned}
& \tilde{a}=a \cdot \cos ^{2} \theta+c \cdot \sin ^{2} \theta-2 b \cdot \cos \theta \sin \theta \\
& \tilde{b}=b \cdot \cos 2 \theta+(a-c) \cdot \cos \theta \sin \theta \\
& \tilde{c}=a \cdot \sin ^{2} \theta+c \cdot \cos ^{2} \theta+b \cdot \sin 2 \theta
\end{aligned}
$$

If b does not vanish, then we can smoothly choose θ so that

$$
\operatorname{cotan} 2 \theta=(c-a) / 2 b
$$

making $\tilde{b}=0$. All this leads to the third, and final, normal form

$$
\begin{equation*}
\omega_{3}^{1}+i \omega_{3}^{2}=a \varphi, \quad \omega_{4}^{1}+i \omega_{4}^{2}=-i c \varphi \tag{E5}
\end{equation*}
$$

where $a+c=2 r_{1}$. Put $r_{s}=(a-c) / 2$.
The function $\tau_{3}=r_{3}^{2}$ is an analytic type function on M; we let \sum_{3} denote the zero set of τ_{3}.

The isotropy group G_{3} is given by

$$
G_{3}=\left\{\left(e^{i \theta}, e^{-i \theta}, e^{i \theta}\right) \in G_{2}: \theta=n \pi / 2, n \in \mathbb{Z}\right\} \cong \mathbb{Z}_{4}
$$

It follows that near a point $x \in M \backslash\left\{\sum_{1} \cup \sum_{2} \cup \sum_{3}\right\}$ there is a more or less unique lifting

$$
e_{f}: U \subset M \rightarrow S O(6)
$$

achieving the normal forms (E1) through (E5). Such a lifting will be called a Frenet frame along f.

Exterior differentiation of both sides of the equations in (E5) leads to

$$
\begin{align*}
& * d \log r_{1}=i\left(\theta_{C}+i\left(\omega_{2}^{1}+\omega_{4}^{3}\right)\right), \tag{F1}\\
& * d \log r_{3}=i\left(\theta_{C}+i\left(\omega_{2}^{1}-\omega_{4}^{3}\right)\right) \tag{F3}
\end{align*}
$$

Remark. Suppose $\tau_{3}(f)$ is identically zero. Then one can show that $f(M)$ lies in the image of a $\mathbb{C} P^{2} \subset \mathbb{C} P^{3}$ under the symmetric space isomorphism

$$
\mathbb{C} P^{3} \cong S O(6) / U(3)
$$

THEOREM. Let $f: M \rightarrow S O(6) / U(3)$ be a nonconstant holomorphic map. Fix a conformal metric $d s^{2}=\varphi \cdot \bar{\varphi}, \varphi \in$ type (1,0), and define the differential invariants $\left(r_{i}\right)$ as in the above. We then have

$$
\begin{align*}
& \Delta \log r_{1}=K-4 \tau_{1}+2 \tau_{2} \tag{I1}\\
& \Delta \log r_{2}=K+2\left(\tau_{1}+\tau_{3}\right)-4 \tau_{2} \tag{I2}\\
& \Delta \log r_{3}=K+2 \tau_{2}-4 \tau_{3}
\end{align*}
$$

away from the singular locus $\sum_{1} \cup \sum_{2} \cup \sum_{3} \subset M$.
Proof: Exterior differentiate both sides of the equations in (F1-3) using

$$
\begin{aligned}
d * d \log r_{i} & =\frac{i}{2} \Delta \log r_{i} \varphi \wedge \bar{\varphi}, \\
d \omega_{2}^{1} & =\frac{i}{2}\left(a^{2}+c^{2}-2 r_{2}^{2}\right) \varphi \wedge \bar{\varphi}, \\
d \omega_{4}^{3} & =i a c \varphi \wedge \bar{\varphi}, \\
d \omega_{8}^{5} & =i r_{2}^{2} \varphi \wedge \bar{\varphi} .
\end{aligned}
$$

We give an application.

Corollary. Suppose $f: M \rightarrow S O(6) / U(3)$ is a holomorphic isometric immersion from a compact M. Further suppose that $K \geqslant 4 / 3$, where K is the Gaussian curvature of ($M, d s^{2}$). Then we must have $K=4 / 3$.

Proof: $K \geqslant 4 / 3$ implies that

$$
\Delta \log \left(r_{2}^{2} r_{3}\right) \geqslant 0
$$

Thus $\log \left(r_{2}^{2} r_{3}\right)$ is a subharmonic function with singularties at the zeros of r_{2} and r_{3} where it goes to $-\infty$. In particular, this function attains a maximum on M. Now the maximum principle for subharmonic functions says that it must be a constant.

4. The integrability conditions and the Associated PDE system

In this section we summarise the frame construction by setting up a bijective correspondence between the holomorphic curves in $S O(6) / U(3)$ and the solutions to the PDE system coming from (I1-3).

DEFINITION: We shall say that $f: M \rightarrow S O(6) / U(3)$ is a nondegenerate curve if none of the τ_{i} 's are identically zero. The map f will be called a regular curve if $\tau_{1} \cdot \tau_{2} \cdot \tau_{3}$ is never zero.

Observe that the regularity assumption is a global assumption.
Consider the following exterior differential system, denoted by \mathcal{S}, defined on $M \times$ $S O(6)$ with independence condition $\varphi \wedge \bar{\varphi} \neq 0$:

$$
\begin{aligned}
\Omega_{3}^{1}+i \Omega_{3}^{2}= & \left(r_{1}+r_{3}\right) \varphi,-\Omega_{4}^{2}+i \Omega_{4}^{1}=\left(r_{1}-r_{3}\right) \varphi \\
& \Omega_{5}^{1}-i \Omega_{5}^{2}=\Omega_{6}^{2}-i \Omega_{6}^{1}=r_{2} \varphi \\
& \Omega_{5}^{3}=\Omega_{5}^{4}=\Omega_{6}^{4}=\Omega_{6}^{3}=0 \\
& \Omega_{2}^{1}+\Omega_{4}^{3}=i \theta_{C}-* d \log r_{1} \\
& \Omega_{6}^{5}-\Omega_{2}^{1}=i \theta_{C}-* d \log r_{2} \\
& \Omega_{2}^{1}-\Omega_{4}^{3}=i \theta_{C}-* d \log r_{3}
\end{aligned}
$$

where θ_{C} is the complex connection form of $(M, \varphi \cdot \bar{\varphi})$, and the r_{i} 's are any positive functions on M solving the PDE system

$$
\begin{align*}
& \Delta \log r_{1}=K-4 r_{1}^{2}+2 r_{2}^{2} \tag{I1}\\
& \Delta \log r_{2}=K+2\left(r_{1}^{2}+r_{3}^{2}\right)-4 r_{2}^{2} \tag{I2}\\
& \Delta \log r_{3}=K+2 r_{2}^{2}-2 r_{3}^{2} \tag{I3}
\end{align*}
$$

THEOREM. The set of regular holomorphic curves $M \rightarrow S O(6) / U(3)$ is in bijective correspondence with the set of all solutions (r_{1}, r_{2}, r_{3}) to the integrability conditions (I1-3).

Proof: Any regular curve certainly gives rise to such a solution: this is the content of the frame construction given in the preceding section. Conversely suppose we are given such a solution (r_{i}). Counting the number of independent equations in \mathcal{S} we see that \mathcal{S} defines a two-dimensional distribution on $M \times S O(6)$. Moreover, this distribution is completely integrable and, hence, defines a foliation on $M \times S O(6)$. The independence condition $\varphi \wedge \bar{\varphi} \neq 0$ implies that a leaf of this foliation can be written locally as

$$
U \rightarrow U \times S O(6), \quad z \mapsto(z, e(z))
$$

It is straightforward to verify that $e(z)$ is a Frenet frame along $f=\pi \circ e$, where π denotes the projection $S O(6) \rightarrow S O(6) / U(3)$.

5. Compact curves

In this section we give the integrated version of the integrability conditions (I1 3) assuming that M is compact.

Definition: Let M be a Riemann surface. A singular Hermitian metric on M is given locally as

$$
d s^{2}=\psi \cdot \bar{\psi}
$$

where ψ is a type $(1,0)$ smooth form of analytic type, that is, ψ can be written as the product of an analytic type function and a nowhere vanishing type (1,0) form. We can rewrite $d s^{2}$ as

$$
d s^{2}=h(z) d z \cdot d \bar{z}
$$

where $h(z) \geqslant 0$ and z is a holomorphic coordinate. Moreover, we have

$$
h(z)=|z|^{2 n} \widetilde{h}(z)
$$

where $\widetilde{h}(z)$ is never zero and n is a nonnegative integer. The integer n is the order of ψ at $z=0$ and we write $\operatorname{ord}_{0} \psi=n$. The singular divisor of $d s^{2}$, denoted by D_{ψ}, is defined to be the zero divisor of ψ. So

$$
D_{\psi}=\sum \operatorname{ord}_{p}(\varphi) p, p \in M .
$$

It is easy to see that D_{ψ} depends only on the singular metric, not on the particular choice of ψ. The degree of D_{ψ} is locally finite, and is the total number of zeros of ψ counted with multiplicity.

Given a singular metric $d s^{2}$ on M we have the usual Hermitian structure equations away from the support of the singular divisor:

$$
d \psi=-\theta_{C} \wedge \psi, d \theta_{C}=\frac{K}{2} \psi \wedge \bar{\psi}=(-i K) \cdot \text { the Kähler form. }
$$

There is the

Generalised Gauss-Bonnet-Chern Theorem. Let M be a compact Riemann surface of genus g equipped with a singular metric $\psi \bar{\psi}$. Then

$$
\frac{i}{2 \pi} \int_{M} d \theta_{C}=2-2 g+\operatorname{deg} D_{\psi}
$$

Proof: This follows from the usual Gauss-Bonnet-Chern theorem combined with the argument principle: one notes that $d \theta_{C}$ is a multiple of $\Delta \log h(d z \wedge d \bar{z})$.

Given a nondegenerate holomorphic curve $f: M \rightarrow S O(6) / U(3)$ we define the i th osculating metric to be

$$
d s_{i}^{2}=\tau_{i} \varphi \cdot \bar{\varphi}
$$

These metrics are singular metrics. (Note that $d s_{1}^{2}$ is just the induced metric.) We put

$$
\begin{gathered}
\varphi_{i}=r_{i} \varphi, \\
\Lambda_{i}=\frac{i}{2} \varphi_{i} \wedge \bar{\varphi}_{i}=\text { the Kähler form of }\left(M, d s_{i}^{2}\right) \\
\theta_{i, C}=\text { the complex connection form of }\left(M, d s_{i}^{2}\right), \\
K_{i}=\text { the Gaussian curvature of }\left(M, d s_{i}^{2}\right) \\
d \varphi_{i}=-\theta_{i, C} \wedge \varphi_{i}, d \theta_{i}, C=-i K_{i} \Lambda_{i}
\end{gathered}
$$

so that
Let e_{f} be a Frenet frame along f, and put $\omega=e^{*} \Omega$. Consulting the normal forms (E1-5) in Section 3 we compute that

$$
\begin{aligned}
& \theta_{1, c}=i\left(\omega_{1}^{2}+\omega_{3}^{4}\right), \\
& \theta_{2, C}=i\left(\omega_{5}^{0}-\omega_{1}^{2}\right) \\
& \theta_{3, C}=i\left(\omega_{1}^{2}-\omega_{3}^{4}\right)
\end{aligned}
$$

(For example, the first and third relations follow upon exterior differentiating the first two equations in (E5).) Exterior differentiation of these equations leads to

$$
\begin{aligned}
& d \theta_{1, c}=2 i\left(-2 \Lambda_{1}+\Lambda_{2}\right) \\
& d \theta_{2, c}=2 i\left(\Lambda_{1}-2 \Lambda_{2}+\Lambda_{3}\right) \\
& d \theta_{3}, C=2 i\left(\Lambda_{2}-2 \Lambda_{3}\right)
\end{aligned}
$$

Theorem. Let $M=M_{g}$ denote a compact Riemann surface of genus g, and consider a nondegenerate curve $f: M \rightarrow S O(6) / U(3)$. Then

$$
\begin{equation*}
2 g-2-\#_{i}=d_{i-1}-2 d_{i}+d_{i+1} \tag{P}
\end{equation*}
$$

where

$$
\begin{gathered}
\#_{i}=\operatorname{deg} D_{\varphi i}=\text { the total number of zeros of } r_{i} \\
\qquad d_{i}=\frac{1}{\pi} \cdot\left(\text { the area of }\left(M, d s_{i}^{2}\right)\right) \\
d_{-1}=d_{4}=0
\end{gathered}
$$

Proof: We have

$$
\frac{i}{2 \pi} \int_{M} d \theta_{i, C}=2-2 g+\#_{i}
$$

from the generalised Gauss-Bonnet-Chern theorem. From the Wirtinger theorem

$$
\int_{M} \Lambda_{i}=\text { the area of }\left(M, d s_{i}^{2}\right)
$$

and the result follows.
Remark. The relations in (P) correspond to the Plucker relations for algebraic curves in $\mathbb{C} P^{3}$ [2] p.86-95).

References

[1] S. Chern, 'On the minimal immersions of the two-sphere in a space of constant curvature', in Problems in analysis, pp. 27-40 (Princeton Univ. Press, 1970).
[2] K. Yang, Complete and compact minimal surfaces (Kluwer Academic Publishers, Boston, 1989).

Department of Mathematics
Arkansas State University
State University, Arkansas 72467
United States of America

[^0]: Received 13 December 1990
 This research was supported in part by an ASU faculty research grant.

