ABELIAN STEINER TRIPLE SYSTEMS

PETER TANNENBAUM

1. Introduction. A *neofield* of order v, $N_v(+, \cdot)$, is an algebraic system of v elements including 0 and 1, $0 \neq 1$, with two binary operations + and \cdot such that $(N_v, +)$ is a loop with identity element 0; (N_v^*, \cdot) is a group with identity element 1 (where $N_v^* = N_v \setminus \{0\}$) and every element of N_v is both right and left distributive (i.e., (y + z)x = yx + zx and x(y + z) = xy + xz for all $y, z \in N_n$). From this we can derive: $0 \cdot x = x \cdot 0 = 0$ for all $x \in N_n$. A neofield N_v has the inverse property (*IP*) and is called an *IP neofield* if for all $y \in N_v$ there is an element $z \in N_v$ such that (x + y) + z = x and z + (y + x) = xfor all $x \in N_v$. It readily follows that z is the unique two-sided negative of y, -y. Moreover, we note that -y = (-1)y for all $y \in N_v$, where -1 is the unique two-sided negative of 1. In particular, $(-1)^2 = 1$. A neofield N_v is said to be *commutative* when $(N_{v}, +)$ is a commutative loop, and it is said to be abelian when (N_n^*, \cdot) is an abelian group. An abelian neofield with the inverse property is called an AIP neofield. It is easy to show [2] that an AIP neofield is always commutative, from which it readily follows that an AIP neofield contains at most one element of multiplicative order 2, namely -1.

In the first part of this paper we give a characterization of an AIP neofield N_v in terms of a certain partition of the elements of the abelian group $A = (N_v^*, \cdot)$ and show that the existence of an AIP neofield having $(N_v^*, \cdot) = A$ is equivalent to the existence of such a partition of A.

In Section 3 we use the above mentioned characterization to show by direct constructions that an abelian group A of order n, n odd, is admissible as the multiplicative group of nonzero elements of an IP neofield if and only if $n \equiv 1$ or 3 (mod 6) and $A \neq C_9$.

In the last section we use the constructions of Section 3 to obtain existence results for abelian Steiner triple systems of all orders $n \equiv 1$ or 3 (mod 6). (A *Steiner triple system* (STS) of order $n, \mathcal{T}_n = [S, \mathcal{S}]$ is an arrangement of the elements of an *n*-set *S* into a set \mathcal{S} of triples such that every pair of elements in *S* occur together in exactly one triple of \mathcal{S} . A necessary and sufficient condition for the existence of an STS of order *n* is that $n \equiv 1$ or 3 (mod 6). An STS is called *abelian* if it has a sharply transitive automorphism group which is abelian.) Finally, we show that the number of nonisomorphic abelian STS's of order *n* ($n \equiv 1$ or 3 (mod 6)) goes to infinity with *n*, even as a certain decomposition of the automorphism groups retains a fixed size.

Received December 17, 1975.

2. AIP neofields and admissible partitions. Suppose that N_v is an AIP neofield with multiplicative group $(N_v^*, \cdot) = A$. Then N_v is completely characterized by its addition table and since y + z = w if and only if $1 + zy^{-1} = wy^{-1}$ it follows that N_v is completely characterized by the map $p: N_v \to N_v$ given by p(x) = 1 + x. We call the map p a presentation map for N_v . Clearly p(0) = 1 and p(-1) = 0. Now suppose that for $x \in N_v \setminus \{0, -1\}$

 $(1) \quad p(x) = -y.$

Then clearly $y \in N_v \setminus \{0, -1\}$ and moreover, using the inverse property and the commutativity of addition it follows that

$$(2) \quad p(y) = -x.$$

It also follows immediately that (1) implies

(3)
$$p(yx^{-1}) = -x^{-1}$$

and therefore

(4)
$$p(x^{-1}) = -yx^{-1}$$

as well as

(5)
$$p(y^{-1}) = -xy^{-1}$$

and therefore

(6)
$$p(xy^{-1}) = -y^{-1}$$

Thus, the action of p on the set $\theta(x) = \{x, y, yx^{-1}, x^{-1}, y^{-1}, xy^{-1}\}, y = -p(x)$, is determined by the action of p on x (or on any other element of $\theta(x)$).

Note that if we let $A_1 = \{x, y\}, A_2 = \{yx^{-1}, x^{-1}\}$ and $A_3 = \{y^{-1}, xy^{-1}\}$ then each $\theta(x) = \{x, y, yx^{-1}, x^{-1}, y^{-1}, xy^{-1}\}$ satisfies:

(*)
$$A_i \cap A_j = \emptyset$$
 or $A_i = A_j$ for $i, j = 1, 2, 3$.

Moreover, if $w \in \theta(x)$ then $\theta(w) = \theta(x)$ and we have therefore that the sets $\theta(x)$ ($x \neq 0, -1$) partition $N_v \setminus \{0, -1\}$. This leads to the following definition.

Definition 2.1. Let A be a finite abelian group with identity 1 and having at most one element of order two, an let l denote such an element if it exists, l = 1 otherwise. A subset of $A \setminus \{l\}$ of the form $\theta = \{x, y, yx^{-1}, x^{-1}, y^{-1}, xy^{-1}\}$ which satisfies condition (*) is called an *admissible class* in A. A partition of A consisting of $\{l\}$ and admissible classes is called an *admissible partition* of A.

We now prove the main result of this section:

THEOREM 2.2. Let A be a finite abelian group of order n having at most one element of order two. There exists a neofield N_v or order v = n + 1 having $(N_v^*, \cdot) = A$ if and only if there exists an admissible partition of A.

Proof. If N_v is an AIP neofield having $(N_v^*, \cdot) = A$, letting l = -1 and

y = -(1 + x) we have seen that the sets $\theta = \{x, y, yx^{-1}, x^{-1}, y^{-1}, xy^{-1}\}$ form an admissible partition of A.

Conversely, suppose that there exists an admissible partition π of A. Let $N = \{0\} \cup A$. We extend the multiplication of A to N by defining $x \cdot 0 = 0$ for all $x \in N$. We now define addition in N as follows:

- (A.1) x + 0 = 0 + x = x for all $x \in N$.
- (A.2) 1 + l = 0 where *l* is the unique element of order 2 in *A* if such an element exists; l = 1 otherwise.

(A.3) $x + y = (1 + yx^{-1})x$ for all $x, y \in A$.

- It only remains to define the additions 1 + x for all $x \in A \setminus \{l\}$:
- (A.4) For each admissible class $\theta = \{x, y, yx^{-1}, x^{-1}, y^{-1}, xy^{-1}\}$ in the admissible partition π of A we define:
 - (i) 1 + x = ly;
 - (ii) 1 + y = lx;
 - (iii) $1 + yx^{-1} = lx^{-1}$;
 - (iv) $1 + x^{-1} = lyx^{-1}$;
 - (v) $1 + y^{-1} = lxy^{-1}$ and
 - (vi) $1 + xy^{-1} = ly^{-1}$.

It is clear that the operations \cdot and + are well defined. We claim that $(N, +, \cdot)$ is an AIP neofield with -1 = l. First, we note that addition is commutative. From (A.4) we have that for all $z \in A \setminus \{l\}$, 1 + z = lw if and only if $1 + z^{-1} = lwz^{-1}$ and by (A.3) we obtain z + 1 = lw. Also since $l^{-1} = l$, l + 1 = l(1 + l) = 0. Thus, $z + w = (1 + wz^{-1})z = (wz^{-1} + 1)z = w + z$ for all $z, w \in A$. Since z + 0 = 0 + z for all $z \in N$ we have that (N, +) is commutative.

We next show (N, +) is a loop with identity 0. Let $z, w \in N$ be given. We must show that there exists a unique $x \in N$ such that

$$(L) z + x = w$$

holds. If z = 0 choose x = w and if w = 0 choose x = lz (then $z + lz = (1 + l)z = 0 \cdot z = 0$). Suppose now $z, w \in A$ and $z \neq w$ (if z = w choose x = 0). Then $lwz^{-1} \neq l$ and by (A.4) there exists a unique $x^* \in A \setminus \{l\}$ such that $1 + x^* = l \cdot lwz^{-1} = wz^{-1}$. Letting $x = zx^*$ we have z + x = w. From (A.2) it immediately follows now that l = -1.

The distributive laws follow immediately from (A.3) and commutativity of multiplication. It only remains to show that the inverse property

$$(IP) (z + w) + (-w) = z$$

holds for all $z, w \in N$. First note that for all $x \in A \setminus \{l\}$ we have by (A.4) that 1 + x = -y if and only if 1 + y = -x and thus (x + 1) + (-1) = (-y) + (-1) = x. Then, $(z + w) + (-w) = [(zw^{-1} + 1) + (-1)]w = (zw^{-1})w = z$ for all $z, w \in A, zw^{-1} \neq l = -1$. If z = 0, w = 0 or z = -w, (*IP*) holds trivially. This completes the proof of Theorem 1.2.

We now examine the structure of the admissible partition of an abelian group A of order n in more detail. If n is odd then l = 1 and for every admissible class $\theta = \{x, y, yx^{-1}, x^{-1}, y^{-1}, xy^{-1}\}, \theta \subset A \setminus \{1\}$ and therefore $x \neq y$. If $y \neq x^2$ then $yx^{-1} \neq x$ and by (*), $x \neq y^{-1}$ and it can be readily verified that $|\theta| = 6$. If $y = x^2$ then $yx^{-1} = x$ and by (*) $x^{-1} = y$, whence $x^3 = 1$ and $\theta = \{x, x^2\}$. Note that this can only occur when 3|n, i.e., $n \equiv 3 \pmod{6}$. From this it immediately follows that when $n \equiv 5 \pmod{6}$ every admissible class is of size six and thus no admissible partition of A can exist.

If *n* is even and *A* has only one element *l* of order two then $\theta \subset A \setminus \{l\}$ for each admissible class $\theta = \{x, y, yx^{-1}, x^{-1}, y^{-1}, xy^{-1}\}$. The unique class θ_l containing the identity is of the form $\theta_l = \{1\}$ or $\theta_l = \{1, x, x^{-1}\}, x \neq 1, l$. Every remaining admissible class is again of size six if $y \neq x^2$ or of the form $\theta = \{x, x^2\}$ if $y = x^2$, in which case $x^3 = 1$ and $n \equiv 0 \pmod{6}$. (Henceforth we will refer to an admissible class of size six as an *admissible sextuple* and an admissible class of the form $\theta = \{x, x^2\}$ with $x^3 = 1$ as an *admissible pair*.)

By means of a simple counting argument we can now summarize our conclusions in the following lemma:

LEMMA 2.3. Let N_v be an AIP neofield of order v with $(N_v^*, \cdot) = A$, and let π be the admissible partition of A induced by N_v .

- (1) When $v \equiv 0 \pmod{6} N_v$ does not exist.
- (2) When $v \equiv 2 \pmod{6}$, π consists of $\{1\}$ and $\frac{1}{6}(v-2)$ admissible sextuples.
- (3) When $v \equiv 4 \pmod{6}$, then π consists of $\{1\}$, h admissible pairs where $h \equiv 1 \pmod{3}$ and $\frac{1}{6}(v 2 2h)$ admissible sextuples.
- (4) When $v \equiv 3 \pmod{6}$ then π consists of $\{-1\}$, $\theta_1 = \{1\}$ and $\frac{1}{6}(v-3)$ admissible sextuples.
- (5) When $v \equiv 5 \pmod{6}$ then π consists of $\{-1\}$, $\theta_1 = \{1, x, x^{-1}\}$ $(x \neq 1)$ and $\frac{1}{6}(v-5)$ admissible sextuples.
- (6) When $v \equiv 1 \pmod{6}$ then π consists of $\{-1\}$, θ_l , h admissible pairs where $h \equiv 1 \pmod{3}$ if $|\theta_l| = 3$; $h \equiv 2 \pmod{3}$ if $|\theta_l| = 1$ and $\frac{1}{6}(v 2 2h |\theta_l|)$ admissible sextuples.

3. AIP neofields of even order. From Lemma 2.3(1) we know that when $v \equiv 0 \pmod{6}$ no *AIP* neofield of order v can exist. In addition, it can be easily verified that there is no neofield N of order 10 having $(N^*, \cdot) = C_9$ (see [1, p. 39]). In this section we show that there are no other exceptions to the existence of even ordered *AIP* neofields, i.e., there exists an even ordered *AIP* neofield N_v having $(N_v^*, \cdot) \cong A$ if and only if $v \equiv 2$ or 4 (mod 6) and $A \neq C_9$.

In the forthcoming constructions we make use of the following lemma:

LEMMA 3.1. Let A_1 , A_2 be abelian groups of odd order having admissible partitions π_1 , π_2 respectively. Then there exists an admissible partition of $A_1 \times A_2$.

Proof. For each admissible class (pair or sextuple) $\theta_1 = \{x_1, y_1, y_1x_1^{-1}, x_1^{-1}, x_1^{-1},$

 $y_1^{-1}, x_1y_1^{-1}$ of π_1 and $\theta_2 = \{x_2, y_2, y_2x_2^{-1}, x_2^{-1}, y_2^{-1}, x_2y_2^{-1}\}$ of π_2 we form the following classes in $A_1 \times A_2 \setminus \{(1, 1)\}$:

$$\begin{aligned} \tau_1 &= \{ (x_1, 1), (y_1, 1), (y_1x_1^{-1}, 1), (x_1^{-1}, 1), (y_1^{-1}, 1), (x_1y_1^{-1}, 1) \} \\ \tau_2 &= \{ (1, x_2), (1, y_2), (1, y_2x_2^{-1}), (1, x_2^{-1}), (1, y_2^{-1}), (1, x_2y_2^{-1}) \} \\ \tau_3 &= \{ (x_1, x_2), (y_1, y_2), (y_1x_1^{-1}, y_2x_2^{-1}), (x_1^{-1}, y_2^{-1}), (x_1y_1^{-1}, x_2y_2^{-1}) \} \\ \tau_4 &= \{ (x_1, y_2), (y_1, y_2x_2^{-1}), (y_1x_1^{-1}, x_2^{-1}), (y_1^{-1}, x_2y_2^{-1}), (x_1y_1^{-1}, x_2y_2^{-1}) \} \\ \tau_5 &= \{ (x_1, y_2x_2^{-1}) (y_1, x_2^{-1}), (y_1x_1^{-1}, y_2^{-1}), (x_1^{-1}, x_2), (x_1y_1^{-1}, x_2) \} \\ \tau_5 &= \{ (x_1, x_2^{-1}), (y_1, x_2^{-1}), (y_1x_1^{-1}, x_2y_2^{-1}), (y_1^{-1}, x_2), (x_1y_1^{-1}, y_2) \} \\ \tau_6 &= \{ (x_1, x_2^{-1}), (y_1, x_2y_2^{-1}), (y_1x_1^{-1}, x_2y_2^{-1}), (x_1y_1^{-1}, y_2x_2^{-1}) \} \\ \tau_7 &= \{ (x_1, y_2^{-1}), (y_1, x_2y_2^{-1}), (y_1x_1^{-1}, x_2), (x_1y_1^{-1}, y_2x_2^{-1}) \} \\ \tau_8 &= \{ (x_1, x_2y_2^{-1}), (y_1, x_2), (y_1x_1^{-1}, y_2), (x_1y_1^{-1}, x_2^{-1}) \} \\ \tau_8 &= \{ (x_1, x_2y_2^{-1}), (y_1, x_2), (y_1x_1^{-1}, y_2), (y_1^{-1}, x_2^{-1}), (x_1y_1^{-1}, y_2^{-1}) \} \end{aligned}$$

The classes thus obtained are clearly equal or disjoint and therefore yield an admissible partition of $A_1 \times A_2$. Note that the six classes τ_3 , τ_4 , ..., τ_8 partition to set $\theta_1 \times \theta_2$ into admissible classes. We call this the *direct product* of θ_1 and θ_2 .

If A is an abelian group of odd order then by the fundamental theorem of finite abelian groups we can write $A = C_{n_1} \times C_{n_2} \times \ldots \times C_{n_t}$ where $n_i | n_{t-1}$ $(i = 2, \ldots, t)$ and n_i odd. Letting a_i be a generator of C_{n_i} $(i = 1, 2, \ldots, t)$ we have $A = \{a_1^{k_1}a_2^{k_2} \ldots a_t^{k_t} | k_i \in Z_{n_i}\}$ and $A \cong Z_{n_1} \times Z_{n_2} \times \ldots \times Z_{n_t}$ under the canonical map $\varphi(a_1^{k_1}a_2^{k_2} \ldots a_t^{k_t}) = (k_1, k_2, \ldots, k_t)$. In particular $\varphi(1) = (0, 0, \ldots, 0)$ and corresponding to an admissible class

 $\theta = \{x, y, yx^{-1}, x^{-1}, y^{-1}, xy^{-1}\}$

in an admissible partition of A we have an admissible class

$$\theta' = \{k, j, j - k, -k, -j, k - j\}$$

(where $k = (k_1, k_2, ..., k_t)$, $j = (j_1, j_2, ..., j_t)$, $x = a_1^{k_1} a_2^{k_2} ... a_t^{k_t}$ and $y = a_1^{j_1} a_2^{j_2} ... a_t^{j_t}$) in an admissible partition of $Z_{n_1} \times Z_{n_2} \times ... \times Z_{n_t}$.

We now construct admissible partitions for $Z_{n_1} \times Z_{n_2} \times \ldots \times Z_{n_t}$ by induction on t. The case t = 1 corresponds to the cyclic constructions given in [1, pp. 39-51], where it is proved that Z_n has an admissible partition for all $n \equiv 1$ or 3 (mod 6), $n \neq 9$. To simplify the analysis we give cases t = 2 and t > 2 as separate theorems.

THEOREM 3.2. Let $A = C_{n_1} \times C_{n_2}$ where $n_2|n_1, n_2 > 1$, $n = n_1 \cdot n_2 \equiv 1$ or 3 (mod 6). Then A has an admissible partition.

Proof. Since $n_2|n_1$ and $n_1 \cdot n_2 \equiv 1$ or 3 (mod 6) we must have one of the following:

(1) $n_1 \equiv 1 \pmod{6}$ and $n_2 \equiv 1 \pmod{6}$ (2) $n_1 \equiv 3 \pmod{6}$ and $n_2 \equiv 1 \pmod{6}$ (3) $n_1 \equiv 3 \pmod{6}$ and $n_2 \equiv 1 \pmod{6}$ (4) $n_1 \equiv 3 \pmod{6}$ and $n_2 \equiv 3 \pmod{6}$ (5) $n_1 \equiv 5 \pmod{6}$ and $n_2 \equiv 5 \pmod{6}$ (6) $n_2 \equiv 5 \pmod{6}$

Cases (1), (2) and (3) (with $n_1, n_2 \neq 9$) follow from the cyclic case and Lemma 3.1. For the remaining cases we will use the following notation:

(a) For an arbitrary $r \in Z_{n_1} \setminus \{0, n_1/3, 2 n_1/3\}$ and $s \in Z_{n_2} \setminus \{0\}$ we let $A_{r,s}$ denote the following admissible sextuple in $Z_{n_1} \times Z_{n_2}$:

$$A_{r,s} = \alpha = \{ (r, s), (-r, s), (-2r, 0), (-r, -s), (r, -s), (2r, 0) \}$$

$$0 \quad s \quad -s$$

$$r \quad \alpha \quad \alpha$$

$$-r \quad \alpha \quad \alpha$$

$$2r \quad \alpha$$

$$-2r \quad \alpha$$

(b) For an arbitrary $r \in Z_{n_1} \setminus \{0\}$ and $s \in Z_{n_2} \setminus \{0, n_2/3, 2 n_2/3\}$ we let $B_{r,s}$ denote the following admissible sextuple in $Z_{n_1} \times Z_{n_2}$:

$$B_{r,s} = \beta = \{ (r, s), (r, -s), (0, -2s), (-r, -s), (-r, s), (0, 2s) \}.$$

$$s -s 2s - 2s$$

$$0$$

$$r \beta \beta$$

$$-r \beta \beta$$

(c) For an arbitrary $r \in Z_{n_1} \setminus \{0, n_1/3, 2 n_1/3\}$ and $s \in Z_{n_2} \setminus \{0, n_2/3, 2 n_2/3\}$ we let $C_{r,s}$ denote the union of the following two admissible sextuples in $Z_{n_1} \times Z_{n_2}$:

$$\gamma = \{ (r, s), (2r, -s), (r, -2s), (-r, -s), (-2r, s), (-r, 2s) \}$$

$$\gamma' = \{ (r, -s), (2r, s), (r, 2s), (-r, s), (-2r, -s), (-r, -2s) \}$$

$$s - s | 2s - 2s$$

$$r \left[\begin{array}{c} \gamma & \gamma' & \gamma' \\ \gamma' & \gamma & \gamma' \\ -r & \gamma' & \gamma & \gamma' \\ -2r & \gamma' & \gamma' \end{array} \right]$$

(d) For an arbitrary admissible sextuple $\theta = \{m, n, n - m, -m, -n, m - n\}$ in Z_{n_1} an arbitrary $s \in Z_{n_2} \setminus \{0, n_2/3, 2 n_2/3\}$ we let $D_{\theta,s}$ denote the union of the following two admissible sextuples in $Z_{n_1} \times Z_{n_2}$:

$$\delta = \{ (m, s), (n, 2s), (n - m, s), (-m, -s), (-n, -2s), (m - n, s) \}$$

$$\delta' = \{ (m, -s), (n, -2s), (n - m, -s), (-m, s), (-n, 2s), (m - n, s) \}$$

(e) For an arbitrary $r \in Z_{n_1} \setminus \{0, n_1/3, 2 n_1/3\}$ and an arbitrary admissible sextuple $\theta' = \{p, q, q - p, -p, -q, p - q\}$ in Z_{n_2} we let $E_{r,\theta'}$ denote the union of the following two admissible sextuples in $Z_{n_1} \times Z_{n_2}$:

We now construct admissible partitions for the remaining subcases of

Case (3): $n_1 \equiv 3 \pmod{6}$, $n_2 \equiv 3 \pmod{6}$. If $n_1 = 9$ we must have $n_2 = 3$ or $n_2 = 9$. If $n_2 = 3$ then the admissible sextuples $A_{1,1}$, $A_{2,1}$ and $A_{4,1}$ together with the admissible pairs $\{(0, 1), (0, 2)\}$; $\{(3, 0), (6, 0)\}$; $\{(3, 1), (6, 2)\}$ and $\{(3, 2), (6, 1)\}$ give an admissible partition of $Z_9 \times Z_3$. If $n_2 = 9$ then the admissible sextuples $A_{1,3}$, $A_{2,3}$, $A_{4,3}$; $B_{3,1}$, $B_{3,2}$, $B_{3,4}$; $C_{1,1}$, $C_{2,2}$, $C_{4,4}$ together with the admissible pairs $\{(0, 3), (0, 6)\}$, $\{(3, 0), (6, 0)\}$, $\{(3, 3), (6, 6)\}$ and $\{(3, 6), (6, 3)\}$ give an admissible partition of $Z_9 \times Z_9$.

If $n_2 = 9$, $n_1 > 9$, then there exists an admissible partition π of Z_{n_1} consisting of $\{0\}$, $\{n_1/3, 2, n_1/3\}$ and admissible sextuples of the form

 $\theta = \{m, n, n - m, -m, -n, m - n\},\$

[1]. For each such θ we construct the following admissible sextuples in $Z_{n_1} \times Z_{\theta}$:

$$\tau_0 = \{ (m, 0), (n, 0), (n - m, 0), (-m, 0), (-n, 0), (m - n, 0) \}$$

$$\tau_1 = \{ (m, 3), (n, 6), (n - m, 3), (-m, 6), (-n, 3), (m - n, 6) \}$$

$$\tau_2 = \{ (m, 6), (n, 3), (n - m, 6), (-m, 3), (-n, 6), (m - n, 3) \}$$

as well as $D_{\theta,1}$, $D_{\theta,2}$, $D_{\theta,4}$. Note that this accounts for all the elements of $\theta \times Z_{\theta}$ (see Figure 1). In addition, we construct the admissible sextuples

 $B_{n_1/3,1}, B_{n_1/3,2}, B_{n_1/3,4}$

which together with the admissible pairs

$$P^{0} = \{ (0, 3), (0, 6) \}, P_{0} = \{ (n_{1}/3, 0), (2 n_{1}/3, 0) \}$$
$$P_{1} = \{ (n_{1}/3, 3), (2 n_{1}/3, 6) \}, P_{2} = \{ (n_{1}/3, 6), (2 n_{1}/3, 3) \}$$

account for all the elements of $\{0, n_1/3, 2 n_1/3\} \times Z_9 \setminus \{(0, 0)\}.$

$$\theta \begin{pmatrix} 0 & 3 & 6 & 1 & 8 & 2 & 7 & 4 & 5 \\ \hline 0 & - & P^0 & P^0 & B_{n_1/3,4} & B_{n_1/3,1} & B_{n_1/3,2} \\ \hline n_{1/3} & P_0 & P_1 & P_2 & & \\ \hline n_{1/3} & P_0 & P_2 & P_1 & B_{n_1/3,1} & B_{n_1/3,2} & B_{n_1/3,4} \\ \hline \\ \hline n & \tau_0 & \tau_1 & \tau_2 & & \\ \hline -m & \tau_0 & \tau_2 & \tau_1 & & & \\ \hline n & \tau_0 & \tau_1 & \tau_2 & & \\ \hline -n & \tau_0 & \tau_2 & \tau_1 & & & \\ \hline n & -n & \tau_0 & \tau_2 & \tau_1 & & & \\ \hline n & -n & \tau_0 & \tau_2 & \tau_1 & & & \\ \hline n & -n & \tau_0 & \tau_2 & \tau_1 & & & \\ \hline n & -n & \tau_0 & \tau_2 & \tau_1 & & & \\ \hline n & -n & \tau_0 & \tau_2 & \tau_1 & & & \\ \hline n & -n & & & \\ \hline n & FIGURE 1 & & \\ \hline \end{pmatrix}$$

Case (4): $n_1 \equiv 3 \pmod{6}$, $n_2 \equiv 5 \pmod{6}$. Here $n_2 \geq 5$ whence $n_1 \geq 15$ and there is an admissible partition of Z_{n_1} consisting of $\{0\}$, $\{n_1/3, 2 n_1/3\}$ and admissible sextuples $\theta = \{m, n, n - m, -m, -n, m - n\}$, [1]. We also partition $Z_{n_2} \setminus \{0\}$ into sets of the form $\sigma_s = \{\pm s, \pm 2s, \pm 2^2s, \ldots, \pm 2^ts\}$ where $2^{t+1}s = s$ or -s. Note that for all $s \neq 0$, $|\sigma_s| \geq 4$ since $s \neq -s$ $(n_2 \text{ odd})$, $2s \neq s$ and $2s \neq -s$ $(3 \notin n_2)$.

For each θ in Z_{n_1} and σ_s in Z_{n_2} defined as above we construct the following

admissible sextuples in $Z_{n_1} \times Z_{n_2}$:

 $\tau_0 = \{ (m, 0), (n, 0), (n - m, 0), (-m, 0), (-n, 0), (m - n, 0) \}$

$$D_{\theta,s}, D_{\theta,2s}, \ldots, D_{\theta,2}t_s.$$

In addition, we construct the admissible sextuples

 $B_{n_1/3,s}, B_{n_1/3,2s}, \ldots, B_{n_1/3,2t_s}$

Those, together with the admissible pair $P = \{(n_1/3, 0), (2 n_1/3, 0)\}$ yield an admissible partition of $Z_{n_1} \times Z_{n_2}$ (see Figure 2).

Figure 2

Case (5): $n_1 \equiv 5 \pmod{6}$, $n_2 \equiv 5 \pmod{6}$. The construction in this case is based on the following lemma, the proof of which is given in the Appendix.

LEMMA 3.3. For all $n \equiv 5 \pmod{6}$ except n = 11 there exists a partition of $Z_n \setminus \{0, w, -w, 2w, -2w\}$ (where w = (n + 1)/6) into (n - 5)/6 admissible sextuples.

If $n_1 \neq 11$, $n_2 \neq 11$ we partition $Z_{n_1} \setminus \{0, w_1, -w_1, 2w_1, -2w_1\}$ $(w_1 = (n_1 + 1)/6)$ into admissible sextuples θ_i and $Z_{n_2} \setminus \{0, w_2, -w_2, 2w_2, -2w_2\}$ $(w_2 = (n_2 + 1)/6)$ into admissible sextuples θ'_j . For each θ_i, θ'_j thus obtained we construct the six admissible sextuples given by the direct product of θ_i and θ'_j (see Lemma 3.1), as well as the admissible sextuples given by D_{θ_i, w_2} and E_{w_1, θ_j} (see Figure 3).

Note now that for each pair $\{r, -r\}$ in Z_{n_1} where $r \neq 0, \pm w_1, \pm 2w_1$ there is exactly one pair $\{x_r, -x_r\}$ in $Z_{n_2} \setminus \{0\}$ such that the elements of $\{r, -r\} \times \{x_r, -x_r\}$ have not been accounted for. We construct the sextuples A_{r,x_r} for each pair $\{r, -r\}, r \neq 0, \pm w_1, \pm 2w_1$, and in addition we construct $A_{w_1,w_2}, A_{2w_1,2w_2}$.

We now have that for each pair $\{s, -s\}, s \in Z_{n_2} \setminus \{0\}$ there is exactly one pair of elements $\{y_s, -y_s\} \ y_s \in Z_{n_1} \setminus \{0\}$ such that the elements of the set $\{y_s, -y_s\} \times \{s, -s\}$ have not been accounted for. We construct the sextuples $B_{y_s,s}$ for all pairs $\{s, -s\}, s \in Z_{n_2} \setminus \{0\}$. This accounts for all the remaining elements of $Z_{n_1} \times Z_{n_2} \setminus \{(0, 0)\}$.

In the case $n_1 = 11$ we must have $n_2 = 11$ as well. Here an admissible partition of $Z_{11} \times Z_{11}$ is given by the admissible sextuples:

 $A_{1,4}, A_{2,8}, A_{4,5}, A_{8,1}, A_{5,2};$ $B_{4,1}, B_{8,2}, B_{5,4}, B_{1,8}, B_{2,5};$ $C_{1,1}, C_{2,2}, C_{4,4}, C_{8,8} \text{ and } C_{5,5}.$

If $n_1 > 11$, $n_2 = 11$ we use Lemma 3.3 to obtain a partition of $Z_{n_1} \setminus \{0, w_1, -w_1, 2w_1, -2w_1\}, w_1 = (n_1 + 1)/6$, into admissible sextuples θ_i . For each θ_i thus obtained we construct $D_{\theta_{i,1}}, D_{\theta_{i,2}}, D_{\theta_{i,4}}, D_{\theta_{i,8}}$. Corresponding to the admissible sextuple $\varphi = \{2, 3, 1, 9, 8, 10\}$ in Z_{11} we construct $E_{w_1,\varphi}$.

In addition we construct the admissible sextuples $B_{2w_1,1}$, $B_{2w_1,2}$, $B_{2w_1,4}$, $B_{w_1,8}$, $B_{w_1,5}$.

FIGURE 4

We now note that for each pair $\{r, -r\}$ in $Z_{n_1} \setminus \{0\}$ there is exactly one pair $\{x_{r_1}, -x_r\}$ in $Z_{11} \setminus \{0\}$ such that the elements of the set $\{r, -r\} \times \{x_{r_1}, -x_r\}$ have not been accounted for. We then construct the admissible sextuples A_{r,x_r} for each pair $\{r, -r\}$ in $Z_{n_1} \setminus \{0\}$, thus completing an admissible partition of $Z_{n_1} \times Z_{11}$. This concludes the proof of Theorem 3.2.

THEOREM 3.4. Let $A = C_{n_1} \times C_{n_2} \times \ldots \times C_{n_t}$ where $n_i | n_{i-1}, i = 2, \ldots, t$, $n_t > 1, t \ge 3$ and $n = n_1 \cdot n_2 \ldots n_t \equiv 1$ or 3 (mod 6). Then A has an admissible partition.

Proof. We consider three cases according to the residue class of $n_1 \pmod{6}$. *Case* (1): $n_1 \equiv 1 \pmod{6}$. Here we must have $n_2 \ldots n_t \equiv 1 \pmod{6}$ since $n_2 \ldots n_t \equiv 3 \pmod{6}$ implies $n_j \equiv 3 \pmod{6}$ some $j = 2, \ldots, t$ and since $n_j | n_1, n_1 \equiv 3 \pmod{6}$, a contradiction. There exists an admissible partition of $C_{n_1} [\mathbf{1}]$ and an admissible partition of $C_{n_2} \times \ldots \times C_{n_t}$ (by induction). From Lemma 3.1 we obtain an admissible partition of A.

Case (2): $n_1 \equiv 5 \pmod{6}$. Here we must have $n_2 \ldots n_t \equiv 5 \pmod{6}$ and thus there exists n_k , $k = 2, \ldots, t$, such that $n_k \equiv 5 \pmod{6}$. By Theorem 3.2 there exists an admissible partition of $C_{n_1} \times C_{n_k}$ and by induction there exists an admissible partition of $C_{n_2} \times \ldots \times C_{n_{k-1}} \times C_{n_{k+1}} \times \ldots \times C_{n_t}$, since $n_2 \ldots n_{k-1} \cdot n_{k+1} \ldots n_t \equiv 1 \pmod{6}$. Again using Lemma 3.1 we obtain an

admissible partition of $(C_{n_1} \times C_{n_k}) \times (C_{n_2} \times \ldots \otimes C_{n_{k-1}} \times C_{n_{k+1}} \times \ldots \times C_{n_t}) \cong A.$

Case (3): $n_1 \equiv 3 \pmod{6}$. Here we can have $n_2 \dots n_t \equiv 1, 3 \text{ or } 5 \pmod{6}$. If $n_2 \dots n_t \equiv 1 \pmod{6}$ then $n_1 \neq 9$ and we repeat the argument of Case (1); if $n_2 \dots n_t \equiv 5 \pmod{6}$ then again $n_1 \neq 9$ and we proceed as in Case (2).

Suppose now that $n_2 \ldots n_t \equiv 3 \pmod{6}$. If $n_1 \neq 9$ then there exists an admissible partition of C_{n_1} by [1] and an admissible partition of $C_{n_2} \times \ldots \times C_{n_t}$ (by induction) and thus there exists an admissible partition of A by Lemma 3.1.

If $n_1 = 9$ and $n_t = 3$ then there exists an admissible partition of $C_{n_1} \times \ldots \times C_{n_{t-1}}$ and an admissible partition of C_3 and again by Lemma 3.1 there exists an admissible partition of A.

If $n_1 = 9$ and $n_t = 9$ then $n_i = 9, i = 1, 2, ..., t$ and we consider separately the cases $t \ge 4$ and t = 3. If $t \ge 4$ then there exists an admissible partition of $C_9 \times C_9$ and an admissible partition of $C_9 \times ... \times C_9$ (t - 2 times) which by Lemma 3.1 yield an admissible partition of A. For t = 3 an admissible partition of $(Z_9 \times Z_9) \times Z_9 \cong A$ is given in Figure 5.

FIGURE 5

Note 1: The elements of $Z_9 \times Z_9$ denoting the rows of Figure 5 appear partitioned into admissible sextuples θ as given in Theorem 3.2, and the additional admissible sextuple $\varphi = \{(0, 3), (3, 0), (3, 6), (0, 6), (6, 0), (6, 3)\}$ obtained by combining the admissible pairs $\{(0, 3), (0, 6)\}, \{(3, 0), (6, 0)\}$ and $\{(3, 6), (6, 3)\}$.

Note 2: The notation in Figure 5 is analogous to that of Theorem 3.2, where the elements in the first projection are elements in $Z_9 \times Z_9$.

4. AIP neofields and steiner triple systems. Let N_v be an AIP neofield of order $v \equiv 2$ or 4 (mod 6) with $(N_v^*, \cdot) = A$. From [3, Theorem 2.1] we have that N_v is equivalent to a Steiner triple system τ_n of order n = v - 1 having a regular (i.e., sharply transitive) automorphism group isomorphic to A. It immediately follows from the results of the previous section that every abelian group A of order $n \equiv 1$ or $3 \pmod{6}$, $A \neq C_9$, is a regular automorphism group for some Steiner triple system τ_n . In this section we discuss nonisomorphic Steiner triple systems having the same abelian regular automorphism group.

Let N_v and N_v' be two AIP neofields based on the same set of elements Nand having the same multiplicative group $A = C_{n_1} \times C_{n_2} \times \ldots \times C_{n_i}$ where $n_1 \cdot n_2 \ldots n_i = v - 1 \equiv 1 \text{ or } 3 \pmod{6}, n_i | n_{i-1} (i = 2, \ldots, t), n_i > 1$. If N_v and N_v' are isomorphic under an isomorphism φ , φ must induce an automorphism of A and for each generator a_i of C_{n_i} $(i = 1, 2, \ldots, t)$ the order of $\varphi(a_i)$ in A must equal the order of a_i in A – which is n_i . It follows that the number of distinct presentations of an AIP neofield N_v (based on the same set N) is at most the number w_t of t-tuples (x_1, x_2, \ldots, x_t) where x_i is of order n_i in A.

From Theorems 3.2, 3.4 and Lemma 1.3 we know that when $v \equiv 2 \pmod{6}$ an admissible partition of A always exists and it contains (v - 2)/6 admissible sextuples. For $v \equiv 4 \pmod{6}$ it can be easily verified that the constructions of Theorems 3.2, 3.4 can be slightly changed to give admissible partitions consisting of (v - 4)/6 admissible sextuples. Thus, for any $v \equiv 2$ or 4 (mod 6) a neofield N_v can be constructed having [v/6] admissible sextuples in the admissible partition of its multiplicative group ([x] denotes greatest integer smaller-equal than x).

In [3, Theorem 3.8] it is shown that given an admissible partition of an abelian group A consisting of σ admissible sextuples we can construct $2^{\sigma} AIP$ neofields having multiplicative group A. From the above remarks we get:

LEMMA 4.1. Let $A = C_{n_1} \times C_{n_2} \times \ldots \times C_{n_t}$, $n_i | n_{i-1}$ $(i = 2, \ldots, t)$, $n_1 \cdot n_2 \ldots n_t = v - 1 \equiv 1$ or 3 (mod 6), $A \neq C_9$. Then there are at least

(1)
$$\frac{2^{[v/6]}}{w_i}$$

nonisomorphic AIP neofields having multiplicative group A.

We now observe that nonisomorphic AIP neofields having the same multiplicative group A may also have isomorphic additive loops. We wish to determine therefore a lower bound for the number of nonisomorphic AIP neofields having a given multiplicative group A and nonisomorphic additive loops, for these correspond to nonisomorphic Steiner triple systems having the same regular automorphism group A [3].

Let $\tau_n = [S, \mathscr{S}]$ be a Steiner triple system of order *n* having an abelian regular automorphism group $A = C_{n_1} \times C_{n_2} \times \ldots \times C_{n_l}, n_i | n_{i-1} (i = 2, \ldots, t).$ The action of A on the elements of S is determined by the action of the automorphisms a_1, a_2, \ldots, a_t (a_i is a generator of C_{n_i}) on S, and this itself is completely determined by the action of a_1, a_2, \ldots, a_t on a maximal generating set Ω of τ_n . Let $\Omega = \{s_1, s_2, \ldots, s_n\} \subset S$. From [3, Lemma 5.1] we know that $\alpha \leq \log_2(n+1)$. Now each a_i maps the generating set $\{s_1, s_2, \ldots, s_{\alpha}\}$ into another generating set $\{s_1', s_2', \ldots, s_{\alpha'}\}$. This yields at most $n(n-1) \ldots$ $(n - \alpha + 1)$ choices for the action of a_i and there are therefore at most $(n(n-1)...(n-\alpha+1))^t$ choices for a tuple $(a_1, a_2, ..., a_t)$ where a_i is a generator of C_{n_i} . Thus, there are at most $\varphi_t = (n(n-1) \dots (n-\alpha+1))^t / w_t$ ways in which A can act as a regular automorphism group on τ_n and therefore from the arguments given in [3, p. 13] there are at most φ_t nonisomorphic AIP neofields having multiplicative group A and isomorphic additive loops. This, together with Lemma 4.1 implies that the number of nonisomorphic AIP neofields having multiplicative group A and non-isomorphic additive loops is at least

(2)
$$\frac{2^{[v/6]}}{w_t \varphi_t} = \frac{2^{[v/6]}}{(n(n-1)\dots(n-\alpha+1))^t} = \frac{2^{[v/6]}}{((v-1)(v-2)\dots(v-\alpha))^t} \\ > \frac{2^{[v/6]}}{v^{\alpha t}} \ge \frac{2^{[v/6]}}{v^{(t,\log_2 v)}} = \frac{2^{[v/6]}}{2^{(\log_2 v)^2 \cdot t}} > \frac{2^{[v/6]}}{2^{(\log_2 v)^3}}$$

Since $2^{[v/6]}/2^{(\log_2 v)^3} \to \infty$ as $v \to \infty$ we have:

THEOREM 4.2. Let t be a fixed positive integer. If we consider abelian groups of the form $A = C_{n_1} \times C_{n_2} \times \ldots \times C_{n_t}$ where n_i are integers bigger than one, $n_i|n_{i-1}$ $(i = 2, \ldots, t)$ and $n = n_1 \cdot n_2 \ldots n_t \equiv 1$ or 3 (mod 6), the number of nonisomorphic Steiner triple systems having the abelian group A for a regular automorphism group goes to infinity with n.

Appendix.

LEMMA 3.3. For all $u \equiv 5 \pmod{6}$ except u = 11 there exists a partition of $Z_u \setminus \{0, w, -w, 2w, -2w\}$ (where w = (u + 1)/6) into (u - 5)/6 admissible sextuples of the form (m, n, n - m, -m, -n, m - n).

Proof. We consider four cases according to the residue class of $u \pmod{24}$.

 $S(m, n) = S_{n-m} = (m, n, n - m, -m, -n, m - n).)$

Case (1) u = 24 k + 5 (w = 4k + 1). For k = 0 the lemma holds vacuously. For k = 1, we have u = 29, w = 5 and the desired admissible sextuples are: $S_1 = S(6, 7); S_2 = S(12, 14); S_3 = S(8, 11)$ and $S_4 = S(9, 13)$.

For $k \ge 2$ we obtain the desired sextuples by partitioning $\{1, 2, \ldots, 4k\} \cup \{4k + 2, \ldots, 8k + 1\} \cup \{8k + 3, 8k + 4, \ldots, 12k + 2\}$ into triples of the form (m, n, n - m) as follows:

т	п	n - m
8k + 4	12k + 2	4k - 2
8k + 5	12k + 1	4k - 4
•		•
•		
		•
10k + 1	10k + 5	4
10k + 2	10k + 4	2
4k + 2	8k + 1	4k - 1
4k + 3	8k	4k - 3
•		•
•		•
•		•
5k - 1	7k + 4	2k + 5
5k	7k + 3	2k + 3
5k + 3	7k + 2	2k - 1
5k + 4	7k + 1	2k - 3
÷	•	•
•	•	•
•	•	•
6k	6k + 5	5
6k + 1	6k + 4	3
6k + 2	8k + 3	2k + 1
6k + 3	10k + 3	4k
5k + 1	5k + 2	1

Case (2) u = 24k + 23 (w = 4k + 4). For k = 0, we have u = 23, w = 4

and the desired admissible sextuples are: $S_1 = S(5, 6)$; $S_2 = S(9, 11)$ and $S_3 = S(7, 10)$.

For k = 1, we have u = 47, w = 8 and the desired admissible sextuples are: $S_1 = S(10, 11); S_2 = S(19, 21); S_3 = S(12, 15); S_4 = S(18, 22); S_5 = S(9, 14);$ $S_6 = S(17, 23)$ and $S_7 = S(13, 20).$

For $k \ge 2$ we obtain the desired sextuples by partitioning $\{1, 2, \ldots, 4k + 3\}$ $\cup \{4k + 5, \ldots, 8k + 6, 8k + 7\} \cup \{8k + 9, \ldots, 12k + 11\}$ into triples (m, n, n - m) as follows:

т	n	n - m
8k + 9	12k + 11	4k + 2
8k + 10	12k + 10	4k
		•
•	•	•
•		•
10k + 8	10k + 12	4
10k + 9	10k + 11	2
4k + 5	8k + 6	4k + 1
4k + 6	8k + 5	4k + 1
	•	·
•		•
	•	•
5k + 3	7k + 8	2k + 5
5k + 4	7k + 7	2k + 3
5k + 7	7k + 6	2k - 1
5k + 8	7k + 5	2k - 3
	•	•
•	•	•
•		•
6k + 4	6k + 9	5
6k + 5	6k + 8	3
6k + 6	8k + 7	2k + 1
6k + 7	10k + 10	4k + 3
5k + 5	5k + 6	1

Case (3) u = 24k + 11 (w = 4k + 2). For k = 0, $Z_{11} \setminus \{0, 2, 9, 4, 7\} = \{1, 3, 5, 6, 8, 10\}$ can never be arranged into an admissible sextuple.

For k = 1 we have u = 35, w = 6 and the desired admissible sextuples are: $S_1 = S(7, 8); S_2 = S(9, 11); S_3 = S(13, 16); S_4 = S(14, 18)$ and $S_5 = S(10, 15)$. For k = 2 we have u = 59, w = 10 and the desired sextuples are: $S_1 = S_1(27, 28); S_2 = S(14, 16); S_3 = S(22, 25); S_4 = S(13, 17); S_5 = S(21, 26);$ $S_6 = S(12, 18); S_7 = S(23, 30); S_8 = S(11, 19)$ and $S_9 = S(15, 24)$.

For $k \ge 3$ we obtain the desired sextuples by partitioning the set

$$\{1, 2, \dots, 4k + 1\} \cup \{4k + 3, \dots, 8k + 3\}$$
$$\cup \{8k + 5, \dots, 12k + 4, -(12k + 5)\}$$

into the following triples (m, n, n - m): (Note that we have chosen -(12k + 5) = 12k + 6 instead of the more natural 12k + 5 as the last element listed.)

т	n	n - m
4k + 3	8k + 3	4k
4k + 4	8k + 2	4k - 2
•		•
٠		•
•	•	•
6k + 1	6k + 5	4
6k + 2	6k + 4	2
8k + 5	12k + 4	4k - 1
8k + 6	12k + 3	4k - 3
•		•
•	•	•
•	•	•
9k + 1	11k + 8	2k + 7
9k + 2	11k + 7	2k + 5
9k + 3	11k + 4	2k + 1
9k + 4	11k + 3	2k - 1
•	•	•
•	•	•
•	•	•
10k + 1	10k + 6	5
10k + 2	10k + 5	3
10k + 3	12k + 6	2k + 3
6k + 3	10k + 4	4k + 1
11k + 5	11k + 6	1

Case (4) u = 24k + 17 (w = 4k + 3). For k = 0 we have u = 17, w = 3 and the desired sextuples are $S_1 = S(4, 5)$ and $S_2 = S(7, 9)$.

For $k \ge 1$ we partition into triples (m, n, n - m) the set $\{1, 2, \dots, 4k + 2\}$

 $\bigcup \{4k+4,\ldots,8k+4,8k+5\}$

 \bigcup {8k + 7, ..., 11k + 7, -(11k + 8), 11k + 9, ..., 12k + 8}

as follows. (Note that in the place of 11k + 8 we have -(11k + 8) = 13k + 9.

т	n	n - m
4k + 4	8k + 4	4k
4k + 5	8k + 3	4k - 2
•		•
•	ø	•
	•	•
6k + 2	6k + 6	4
6k + 3	6k + 5	2
8k + 7	12k + 8	4k + 1
8k + 8	12k + 7	4k - 1
•		•
•		•
•	•	•
9k + 5	11k + 10	2k + 5
9k + 6	11k + 9	2k + 3
9k + 8	11k + 7	2k - 1
9k + 9	11k + 6	2k - 3
•		
•	•	•
•	•	•
10k + 6	10k + 9	3
10k + 7	10k + 8	1
6k + 4	8k + 5	2k + 1
9k + 7	13k + 9	4k + 2

References

1. J. R. Doner, *CIP neofields and combinatorial designs*, Ph.D. dissertation, University of Michigan, 1972.

2. E. C. Johnsen and T. F. Storer, Combinatorial structures in loops, II; Commutative inverse property cyclic neofields of prime-power order, Pacific J. Math. 52 (1974), 115-127.

3. ——— Combinatorial structures in loops, IV; Steiner triple systems in Neofields, Math. Z. 138 (1974), 1–14.

University of California, Santa Barbara, California