ABELIAN STEINER TRIPLE SYSTEMS

PETER TANNENBAUM

1. Introduction. A neofield of order $v, N_{v}(+, \cdot)$, is an algebraic system of v elements including 0 and $1,0 \neq 1$, with two binary operations + and \cdot such that $\left(N_{v},+\right)$ is a loop with identity element $0 ;\left(N_{v}{ }^{*}, \cdot\right)$ is a group with identity element 1 (where $N_{v}{ }^{*}=N_{v} \backslash\{0\}$) and every element of N_{v} is both right and left distributive (i.e., $(y+z) x=y x+z x$ and $x(y+z)=x y+x z$ for all $y, z \in N_{v}$). From this we can derive: $0 \cdot x=x \cdot 0=0$ for all $x \in N_{v}$. A neofield N_{0} has the inverse property (IP) and is called an IP neofield if for all $y \in N_{v}$ there is an element $z \in N_{v}$ such that $(x+y)+z=x$ and $z+(y+x)=x$ for all $x \in N_{v}$. It readily follows that z is the unique two-sided negative of y, $-y$. Moreover, we note that $-y=(-1) y$ for all $y \in N_{v}$, where -1 is the unique two-sided negative of 1 . In particular, $(-1)^{2}=1$. A neofield N_{v} is said to be commutative when $\left(N_{v},+\right)$ is a commutative loop, and it is said to be abelian when $\left(N_{v}{ }^{*}, \cdot\right)$ is an abelian group. An abelian neofield with the inverse property is called an AIP neofield. It is easy to show [2] that an AIP neofield is always commutative, from which it readily follows that an AIP neofield contains at most one element of multiplicative order 2 , namely -1 .

In the first part of this paper we give a characterization of an AIP neofield N_{v} in terms of a certain partition of the elements of the abelian group $A=$ $\left(N_{v}{ }^{*}, \cdot\right)$ and show that the existence of an AIP neofield having $\left(N_{v}{ }^{*}, \cdot\right)=A$ is equivalent to the existence of such a partition of A.

In Section 3 we use the above mentioned characterization to show by direct constructions that an abelian group A of order n, n odd, is admissible as the multiplicative group of nonzero elements of an IP neofield if and only if $n \equiv 1$ or $3(\bmod 6)$ and $A \neq C_{9}$.

In the last section we use the constructions of Section 3 to obtain existence results for abelian Steiner triple systems of all orders $n \equiv 1$ or $3(\bmod 6)$. (A Steiner triple system (STS) of order $n, \mathscr{T}_{n}=[S, \mathscr{S}]$ is an arrangement of the elements of an n-set S into a set \mathscr{S} of triples such that every pair of elements in S occur together in exactly one triple of \mathscr{S}. A necessary and sufficient condition for the existence of an STS of order n is that $n \equiv 1$ or $3(\bmod 6)$. An STS is called abelian if it has a sharply transitive automorphism group which is abelian.) Finally, we show that the number of nonisomorphic abelian STS's of order $n(n \equiv 1$ or $3(\bmod 6))$ goes to infinity with n, even as a certain decomposition of the automorphism groups retains a fixed size.

Received December 17, 1975.
2. AIP neofields and admissible partitions. Suppose that N_{v} is an AIP neofield with multiplicative group $\left(N_{v}{ }^{*}, \cdot\right)=A$. Then N_{v} is completely characterized by its addition table and since $y+z=w$ if and only if $1+z y^{-1}$ $=w y^{-1}$ it follows that N_{v} is completely characterized by the map $p: N_{v} \rightarrow N_{v}$ given by $p(x)=1+x$. We call the map p a presentation map for N_{v}. Clearly $p(0)=1$ and $p(-1)=0$. Now suppose that for $x \in N_{v} \backslash\{0,-1\}$
(1) $p(x)=-y$.

Then clearly $y \in N_{v} \backslash\{0,-1\}$ and moreover, using the inverse property and the commutativity of addition it follows that
(2) $p(y)=-x$.

It also follows immediately that (1) implies
(3) $p\left(y x^{-1}\right)=-x^{-1}$
and therefore
(4) $p\left(x^{-1}\right)=-y x^{-1}$
as well as
(5) $p\left(y^{-1}\right)=-x y^{-1}$
and therefore
(6) $p\left(x y^{-1}\right)=-y^{-1}$.

Thus, the action of p on the set $\theta(x)=\left\{x, y, y x^{-1}, x^{-1}, y^{-1}, x y^{-1}\right\}, y=-p(x)$, is determined by the action of p on x (or on any other element of $\theta(x)$).

Note that if we let $A_{1}=\{x, y\}, A_{2}=\left\{y x^{-1}, x^{-1}\right\}$ and $A_{3}=\left\{y^{-1}, x y^{-1}\right\}$ then each $\theta(x)=\left\{x, y, y x^{-1}, x^{-1}, y^{-1}, x y^{-1}\right\}$ satisfies:
(*) $\quad A_{i} \cap A_{j}=\emptyset \quad$ or $\quad A_{\imath}=A_{j}$ for $i, j=1,2,3$.
Moreover, if $w \in \theta(x)$ then $\theta(w)=\theta(x)$ and we have therefore that the sets $\theta(x)(x \neq 0,-1)$ partition $N_{r} \backslash\{0,-1\}$. This leads to the following definition.

Definition 2.1. Let A be a finite abelian group with identity 1 and having at most one element of order two, an let l denote such an element if it exists, $l=1$ otherwise. A subset of $A \backslash\{l\}$ of the form $\theta=\left\{x, y, y x^{-1}, x^{-1}, y^{-1}, x y^{-1}\right\}$ which satisfies condition (*) is called an admissible class in A. A partition of A consisting of $\{l\}$ and admissible classes is called an admissible partition of A.

We now prove the main result of this section:
Theorem 2.2. Let A be a finite abelian group of order n having at most one element of order two. There exists a neofield N_{v} or order $v=n+1$ having $\left(N_{v}{ }^{*}, \cdot\right)$ $=A$ if and only if there exists an admissible partition of A.

Proof. If N_{v} is an AIP neofield having $\left(N_{v}{ }^{*}, \cdot\right)=A$, letting $l=-1$ and
$y=-(1+x)$ we have seen that the sets $\theta=\left\{x, y, y x^{-1}, x^{-1}, y^{-1}, x y^{-1}\right\}$ form an admissible partition of A.

Conversely, suppose that there exists an admissible partition π of A. Let $N=\{0\} \cup A$. We extend the multiplication of A to N by defining $x \cdot 0=0$ for all $x \in N$. We now define addition in N as follows:
(A.1) $x+0=0+x=x$ for all $x \in N$.
(A.2) $1+l=0$ where l is the unique element of order 2 in A if such an element exists; $l=1$ otherwise.
(A.3) $x+y=\left(1+y x^{-1}\right) x$ for all $x, y \in A$.

It only remains to define the additions $1+x$ for all $x \in A \backslash\{l\}:$
(A.4) For each admissible class $\theta=\left\{x, y, y x^{-1}, x^{-1}, y^{-1}, x y^{-1}\right\}$ in the admissible partition π of A we define:
(i) $1+x=l y$;
(ii) $1+y=l x$;
(iii) $1+y x^{-1}=l x^{-1}$;
(iv) $1+x^{-1}=l y x^{-1}$;
(v) $1+y^{-1}=l x y^{-1}$ and
(vi) $1+x y^{-1}=l y^{-1}$.

It is clear that the operations \cdot and + are well defined. We claim that $(N,+, \cdot)$ is an AIP neofield with $-1=l$. First, we note that addition is commutative. From (A.4) we have that for all $z \in A \backslash\{l\}, 1+z=l w$ if and only if $1+z^{-1}=l w z^{-1}$ and by (A.3) we obtain $z+1=l w$. Also since $l^{-1}=l$, $l+1=l(1+l)=0$. Thus, $z+w=\left(1+w z^{-1}\right) z=\left(w z^{-1}+1\right) z=w+z$ for all $z, w \in A$. Since $z+0=0+z$ for all $z \in N$ we have that $(N,+)$ is commutative.

We next show $(N,+)$ is a loop with identity 0 . Let $z, w \in N$ be given. We must show that there exists a unique $x \in N$ such that

$$
(L) z+x=w
$$

holds. If $z=0$ choose $x=w$ and if $w=0$ choose $x=l z$ (then $z+l z=$ $(1+l) z=0 \cdot z=0$). Suppose now $z, w \in A$ and $z \neq w$ (if $z=w$ choose $x=0$). Then $l w z^{-1} \neq l$ and by (A.4) there exists a unique $x^{*} \in A \backslash\{l\}$ such that $1+x^{*}=l \cdot l w z^{-1}=w z^{-1}$. Letting $x=z x^{*}$ we have $z+x=w$. From (A.2) it immediately follows now that $l=-1$.

The distributive laws follow immediately from (A.3) and commutativity of multiplication. It only remains to show that the inverse property

$$
(I P)(z+w)+(-w)=z
$$

holds for all $z, w \in N$. First note that for all $x \in A \backslash\{l\}$ we have by (A.4) that $1+x=-y$ if and only if $1+y=-x$ and thus $(x+1)+(-1)=(-y)$ $+(-1)=x$. Then, $(z+w)+(-w)=\left[\left(z w^{-1}+1\right)+(-1)\right] w=\left(z w^{-1}\right) w=z$ for all $z, w \in A, z w^{-1} \neq l=-1$. If $z=0, w=0$ or $z=-w$, (IP) holds trivially. This completes the proof of Theorem 1.2.

We now examine the structure of the admissible partition of an abelian group A of order n in more detail. If n is odd then $l=1$ and for every admissible class $\theta=\left\{x, y, y x^{-1}, x^{-1}, y^{-1}, x y^{-1}\right\}, \theta \subset A \backslash\{1\}$ and therefore $x \neq y$. If $y \neq x^{2}$ then $y x^{-1} \neq x$ and by $(*), x \neq y^{-1}$ and it can be readily verified that $|\theta|=6$. If $y=x^{2}$ then $y x^{-1}=x$ and by $(*) x^{-1}=y$, whence $x^{3}=1$ and $\theta=$ $\left\{x, x^{2}\right\}$. Note that this can only occur when $3 \mid n$, i.e., $n \equiv 3(\bmod 6)$. From this it immediately follows that when $n \equiv 5(\bmod 6)$ every admissible class is of size six and thus no admissible partition of A can exist.

If n is even and A has only one element l of order two then $\theta \subset A \backslash\{l\}$ for each admissible class $\theta=\left\{x, y, y x^{-1}, x^{-1}, y^{-1}, x y^{-1}\right\}$. The unique class θ_{l} containing the identity is of the form $\theta_{l}=\{1\}$ or $\theta_{l}=\left\{1, x, x^{-1}\right\}, x \neq 1, l$. Every remaining admissible class is again of size six if $y \neq x^{2}$ or of the form $\theta=\left\{x, x^{2}\right\}$ if $y=x^{2}$, in which case $x^{3}=1$ and $n \equiv 0(\bmod 6)$. (Henceforth we will refer to an admissible class of size six as an admissible sextuple and an admissible class of the form $\theta=\left\{x, x^{2}\right\}$ with $x^{3}=1$ as an admissible pair.)

By means of a simple counting argument we can now summarize our conclusions in the following lemma:

Lemma 2.3. Let N_{v} be an AIP neofield of order v with $\left(N_{v}{ }^{*}, \cdot\right)=A$, and let π be the admissible partition of A induced by N_{v}.
(1) When $v \equiv 0(\bmod 6) N_{v}$ does not exist.
(2) When $v \equiv 2(\bmod 6), \pi$ consists of $\{1\}$ and $\frac{1}{6}(v-2)$ admissible sextuples.
(3) When $v \equiv 4(\bmod 6)$, then π consists of $\{1\}, h$ admissible pairs where $h \equiv 1(\bmod 3)$ and $\frac{1}{6}(v-2-2 h)$ admissible sextuples.
(4) When $v \equiv 3(\bmod 6)$ then π consists of $\{-1\}, \theta_{l}=\{1\}$ and $\frac{1}{6}(v-3)$ admissible sextuples.
(5) When $v \equiv 5(\bmod 6)$ then π consists of $\{-1\}, \theta_{l}=\left\{1, x, x^{-1}\right\}(x \neq 1)$ and $\frac{1}{6}(v-5)$ admissible sextuples.
(6) When $v \equiv 1(\bmod 6)$ then π consists of $\{-1\}, \theta_{l}, h$ admissible pairs where $h \equiv 1(\bmod 3)$ if $\left|\theta_{l}\right|=3 ; h \equiv 2(\bmod 3)$ if $\left|\theta_{l}\right|=1$ and $\frac{1}{6}(v-2-2 h$ $\left.-\left|\theta_{l}\right|\right)$ admissible sextuples.
3. AIP neofields of even order. From Lemma 2.3(1) we know that when $v \equiv 0(\bmod 6)$ no $A I P$ neofield of order v can exist. In addition, it can be easily verified that there is no neofield N of order 10 having ($\left.N^{*}, \cdot\right)=C_{9}$ (see [1, p. 39]). In this section we show that there are no other exceptions to the existence of even ordered $A I P$ neofields, i.e., there exists an even ordered AIP neofield N_{v} having $\left(N_{v}{ }^{*}, \cdot\right) \cong A$ if and only if $v \equiv 2$ or $4(\bmod 6)$ and $A \neq C_{9}$.

In the forthcoming constructions we make use of the following lemma:
Lemma 3.1. Let A_{1}, A_{2} be abelian groups of odd order having admissible partitions π_{1}, π_{2} respectively. Then there exists an admissible partition of $A_{1} \times A_{2}$.

Proof. For each admissible class (pair or sextuple) $\theta_{1}=\left\{x_{1}, y_{1}, y_{1} x_{1}^{-1}, x_{1}^{-1}\right.$,
$\left.y_{1}^{-1}, x_{1} y_{1}^{-1}\right\}$ of π_{1} and $\theta_{2}=\left\{x_{2}, y_{2}, y_{2} x_{2}^{-1}, x_{2}^{-1}, y_{2}^{-1}, x_{2} y_{2}^{-1}\right\}$ of π_{2} we form the following classes in $A_{1} \times A_{2} \backslash\{(1,1)\}$:

$$
\begin{aligned}
& \tau_{1}=\left\{\left(x_{1}, 1\right),\left(y_{1}, 1\right),\left(y_{1} x_{1}^{-1}, 1\right),\left(x_{1}^{-1}, 1\right),\left(y_{1}^{-1}, 1\right),\left(x_{1} y_{1}^{-1}, 1\right)\right\} \\
& \tau_{2}=\left\{\left(1, x_{2}\right),\left(1, y_{2}\right),\left(1, y_{2} x_{2}^{-1}\right),\left(1, x_{2}^{-1}\right),\left(1, y_{2}^{-1}\right),\left(1, x_{2} y_{2}^{-1}\right)\right\} \\
& \tau_{3}=\left\{\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right),\left(y_{1} x_{1}^{-1}, y_{2} x_{2}^{-1}\right),\right. \\
& \left.\left(x_{1}^{-1}, x_{2}^{-1}\right),\left(y_{1}^{-1}, y_{2}^{-1}\right),\left(x_{1} y_{1}^{-1}, x_{2} y_{2}^{-1}\right)\right\} \\
& \tau_{4}=\left\{\left(x_{1}, y_{2}\right),\left(y_{1}, y_{2} x_{2}^{-1}\right),\left(y_{1} x_{1}^{-1}, x_{2}^{-1}\right),\right. \\
& \left.\left(x_{1}^{-1}, y_{2}^{-1}\right),\left(y_{1}^{-1}, x_{2} y_{2}^{-1}\right),\left(x_{1} y_{1}^{-1}, x_{2}\right)\right\} \\
& \tau_{5}=\left\{\left(x_{1}, y_{2} x_{2}^{-1}\right)\left(y_{1}, x_{2}^{-1}\right),\left(y_{1} x_{1}^{-1}, y_{2}^{-1}\right),\right. \\
& \left.\left(x_{1}^{-1}, x_{2} y_{2}^{-1}\right),\left(y_{1}^{-1}, x_{2}\right),\left(x_{1} y_{1}^{-1}, y_{2}\right)\right\} \\
& \tau_{6}=\left\{\left(x_{1}, x_{2}^{-1}\right),\left(y_{1}, y_{2}^{-1}\right),\left(y_{1} x_{1}^{-1}, x_{2} y_{2}^{-1}\right),\right. \\
& \left.\left(x_{1}^{-1}, x_{2}\right),\left(y_{1}^{-1}, y_{2}\right),\left(x_{1} y_{1}^{-1}, y_{2} x_{2}^{-1}\right)\right\} \\
& \tau_{7}=\left\{\left(x_{1}, y_{2}^{-1}\right),\left(y_{1}, x_{2} y_{2}^{-1}\right),\left(y_{1} x_{1}^{-1}, x_{2}\right),\right. \\
& \left.\left(x_{1}^{-1}, y_{2}\right),\left(y_{1}^{-1}, y_{2} x_{2}^{-1}\right),\left(x_{1} y_{1}^{-1}, x_{2}^{-1}\right)\right\} \\
& \tau_{8}=\left\{\left(x_{1}, x_{2} y_{2}^{-1}\right),\left(y_{1}, x_{2}\right),\left(y_{1} x_{1}^{-1}, y_{2}\right),\right. \\
& \left.\left(x_{1}^{-1}, y_{2} x_{2}^{-1}\right),\left(y_{1}^{-1}, x_{2}^{-1}\right),\left(x_{1} y_{1}^{-1}, y_{2}^{-1}\right)\right\}
\end{aligned}
$$

The classes thus obtained are clearly equal or disjoint and therefore yield an admissible partition of $A_{1} \times A_{2}$. Note that the six classes $\tau_{3}, \tau_{4}, \ldots, \tau_{8}$ partition to set $\theta_{1} \times \theta_{2}$ into admissible classes. We call this the direct product of θ_{1} and θ_{2}.

If A is an abelian group of odd order then by the fundamental theorem of finite abelian groups we can write $A=C_{n_{1}} \times C_{n_{2}} \times \ldots \times C_{n_{t}}$ where $n_{t} \mid n_{t-1}$ $(i=2, \ldots, t)$ and n_{i} odd. Letting a_{i} be a generator of $C_{n i}(i=1,2, \ldots, t)$ we have $A=\left\{a_{1}{ }^{k_{1}} a_{2}{ }^{k_{2}} \ldots a_{t}{ }^{k_{t}} \mid k_{i} \in Z_{n i}\right\}$ and $A \cong Z_{n_{1}} \times Z_{n_{2}} \times \ldots \times Z_{n_{t}}$ under the canonical map $\varphi\left(a_{1}{ }^{k_{1}} a_{2}{ }^{k_{2}} \ldots a_{t}{ }^{k_{t}}\right)=\left(k_{1}, k_{2}, \ldots, k_{t}\right)$. In particular $\varphi(1)=(0,0, \ldots, 0)$ and corresponding to an admissible class

$$
\theta=\left\{x, y, y x^{-1}, x^{-1}, y^{-1}, x y^{-1}\right\}
$$

in an admissible partition of A we have an admissible class

$$
\theta^{\prime}=\{k, j, j-k,-k,-j, k-j\}
$$

(where $k=\left(k_{1}, k_{2}, \ldots, k_{t}\right), j=\left(j_{1}, j_{2}, \ldots, j_{t}\right), x=a_{1}{ }^{k_{1}} a_{2}{ }^{k_{2}} \ldots a_{t}{ }^{k_{t}}$ and $\left.y=a_{1}{ }^{j_{1}} a_{2}{ }^{j_{2}} \ldots a_{t}{ }^{j_{t}}\right)$ in an admissible partition of $Z_{n_{1}} \times Z_{n_{2}} \times \ldots \times Z_{n_{t}}$.

We now construct admissible partitions for $Z_{n_{1}} \times Z_{n_{2}} \times \ldots \times Z_{n_{t}}$ by induction on t. The case $t=1$ corresponds to the cyclic constructions given in [1, pp. 39-51], where it is proved that Z_{n} has an admissible partition for all $n \equiv 1$ or $3(\bmod 6), n \neq 9$. To simplify the analysis we give cases $t=2$ and $t>2$ as separate theorems.

Theorem 3.2. Let $A=C_{n_{1}} \times C_{n_{2}}$ where $n_{2} \mid n_{1}, n_{2}>1, n=n_{1} \cdot n_{2} \equiv 1$ or $3(\bmod 6)$. Then A has an admissible partition.

Proof. Since $n_{2} \mid n_{1}$ and $n_{1} \cdot n_{2} \equiv 1$ or $3(\bmod 6)$ we must have one of the following:
(1) $n_{1} \equiv 1(\bmod 6)$ and $n_{2} \equiv 1(\bmod 6)$
(2) $n_{1} \equiv 3(\bmod 6)$ and $n_{2} \equiv 1(\bmod 6)$
(3) $n_{1} \equiv 3(\bmod 6)$ and $n_{2} \equiv 3(\bmod 6)$
(4) $n_{1} \equiv 3(\bmod 6)$ and $n_{2} \equiv 5(\bmod 6)$
(5) $n_{1} \equiv 5(\bmod 6) \quad$ and $n_{2} \equiv 5(\bmod 6)$.

Cases (1), (2) and (3) (with $n_{1}, n_{2} \neq 9$) follow from the cyclic case and Lemma 3.1. For the remaining cases we will use the following notation:
(a) For an arbitrary $r \in Z_{n_{1}} \backslash\left\{0, n_{1} / 3,2 n_{1} / 3\right\}$ and $s \in Z_{n_{2}} \backslash\{0\}$ we let $A_{r, s}$ denote the following admissible sextuple in $Z_{n_{1}} \times Z_{n_{2}}$:

$$
A_{r, s}=\alpha=\{(r, s),(-r, s),(-2 r, 0),(-r,-s),(r,-s),(2 r, 0)\}
$$

(b) For an arbitrary $r \in Z_{n_{1}} \backslash\{0\}$ and $s \in Z_{n_{2}} \backslash\left\{0, n_{2} / 3,2 n_{2} / 3\right\}$ we let $B_{r, s}$ denote the following admissible sextuple in $Z_{n_{1}} \times Z_{n_{2}}$:

$$
\begin{gathered}
B_{r, s}=\beta=\{(r, s),(r,-s),(0,-2 s),(-r,-s),(-r, s),(0,2 s)\} . \\
\begin{array}{c}
s-s 2 s-2 s \\
0 \\
r \\
-r
\end{array} \begin{array}{|rr}
\beta & \beta \\
\beta & \beta \\
\hline
\end{array}
\end{gathered}
$$

(c) For an arbitrary $r \in Z_{n_{1}} \backslash\left\{0, n_{1} / 3,2 n_{1} / 3\right\}$ and $s \in Z_{n_{2}} \backslash\left\{0, n_{2} / 3,2 n_{2} / 3\right\}$ we let $C_{r, s}$ denote the union of the following two admissible sextuples in $Z_{n_{1}} \times Z_{n_{2}}$:

$$
\begin{aligned}
\gamma & =\{(r, s),(2 r,-s),(r,-2 s),(-r,-s),(-2 r, s),(-r, 2 s)\} \\
\gamma^{\prime} & =\{(r,-s),(2 r, s),(r, 2 s),(-r, s),(-2 r,-s),(-r,-2 s)\}
\end{aligned}
$$

$$
\begin{array}{r|cc:cc|}
s & -s & 2 s & -2 s \\
r & \gamma & \gamma^{\prime} & \gamma^{\prime} & \gamma \\
-r & \gamma^{\prime} & \gamma & \gamma & \gamma^{\prime} \\
\hdashline 2 r & \gamma^{\prime} & \gamma & & \\
-2 r & \gamma & \gamma^{\prime} & \\
\cline { 2 - 4 } & &
\end{array}
$$

(d) For an arbitrary admissible sextuple $\theta=\{m, n, n-m,-m,-n, m-n\}$ in $Z_{n_{1}}$ an arbitrary $s \in Z_{n_{2}} \backslash\left\{0, n_{2} / 3,2 n_{2} / 3\right\}$ we let $D_{\theta, s}$ denote the union of the following two admissible sextuples in $Z_{n_{1}} \times Z_{n_{2}}$:

$$
\begin{aligned}
\delta & =\{(m, s),(n, 2 s),(n-m, s),(-m,-s),(-n,-2 s),(m-n, s)\} \\
\delta^{\prime} & =\{(m,-s),(n,-2 s),(n-m,-s),(-m, s),(-n, 2 s),(m-n, s)\}
\end{aligned}
$$

(e) For an arbitrary $r \in Z_{n_{1}} \backslash\left\{0, n_{1} / 3,2 n_{1} / 3\right\}$ and an arbitrary admissible sextuple $\theta^{\prime}=\{p, q, q-p,-p,-q, p-q\}$ in $Z_{n_{2}}$ we let $E_{r, \theta^{\prime}}$ denote the union of the following two admissible sextuples in $Z_{n_{1}} \times Z_{n_{2}}$:

$$
\begin{aligned}
\epsilon & =\{(r, p),(2 r, q),(r, q-p),(-r,-p),(-2 r,-q),(-r, p-q)\} \\
\epsilon^{\prime} & =\{(-r, p),(-2 r, q),(-r, q-p),(r,-p),(2 r,-q),(r, p-q)\}
\end{aligned}
$$

We now construct admissible partitions for the remaining subcases of
Case $(3): n_{1} \equiv 3(\bmod 6), n_{2} \equiv 3(\bmod 6)$. If $n_{1}=9$ we must have $n_{2}=3$ or $n_{2}=9$. If $n_{2}=3$ then the admissible sextuples $A_{1,1}, A_{2,1}$ and $A_{4,1}$ together with the admissible pairs $\{(0,1),(0,2)\} ;\{(3,0),(6,0)\} ;\{(3,1),(6,2)\}$ and $\{(3,2),(6,1)\}$ give an admissible partition of $Z_{9} \times Z_{3}$. If $n_{2}=9$ then the admissible sextuples $A_{1,3}, A_{2,3}, A_{4,3} ; B_{3,1}, B_{3,2}, B_{3,4} ; C_{1,1}, C_{2,2}, C_{4,4}$ together with the admissible pairs $\{(0,3),(0,6)\},\{(3,0),(6,0)\},\{(3,3),(6,6)\}$ and $\{(3,6),(6,3)\}$ give an admissible partition of $Z_{9} \times Z_{9}$.

If $n_{2}=9, n_{1}>9$, then there exists an admissible partition π of $Z_{n_{1}}$ consisting of $\{0\},\left\{n_{1} / 3,2 n_{1} / 3\right\}$ and admissible sextuples of the form

$$
\theta=\{m, n, n-m,-m,-n, m-n\}
$$

[1]. For each such θ we construct the following admissible sextuples in $Z_{n_{1}} \times Z_{9}$:

$$
\begin{aligned}
& \tau_{0}=\{(m, 0),(n, 0),(n-m, 0),(-m, 0),(-n, 0),(m-n, 0)\} \\
& \tau_{1}=\{(m, 3),(n, 6),(n-m, 3),(-m, 6),(-n, 3),(m-n, 6)\} \\
& \tau_{2}=\{(m, 6),(n, 3),(n-m, 6),(-m, 3),(-n, 6),(m-n, 3)\}
\end{aligned}
$$

as well as $D_{\theta, 1}, D_{\theta, 2}, D_{\theta, 4}$. Note that this accounts for all the elements of $\theta \times Z_{9}$ (see Figure 1). In addition, we construct the admissible sextuples

$$
B_{n_{1} / 3,1}, B_{n_{1} / 3,2}, B_{n_{1} / 3,4}
$$

which together with the admissible pairs

$$
\begin{aligned}
& P_{0}^{0}=\{(0,3),(0,6)\}, \quad P_{0}=\left\{\left(n_{1} / 3,0\right),\left(2 n_{1} / 3,0\right)\right\} \\
& P_{1}=\left\{\left(n_{1} / 3,3\right),\left(2 n_{1} / 3,6\right)\right\}, \quad P_{2}=\left\{\left(n_{1} / 3,6\right),\left(2 n_{1} / 3,3\right)\right\}
\end{aligned}
$$

account for all the elements of $\left\{0, n_{1} / 3,2 n_{1} / 3\right\} \times Z_{9} \backslash\{(0,0)\}$.

Figure 1
Case $(4): n_{1} \equiv 3(\bmod 6), n_{2} \equiv 5(\bmod 6)$. Here $n_{2} \geqq 5$ whence $n_{1} \geqq 15$ and there is an admissible partition of $Z_{n_{1}}$ consisting of $\{0\},\left\{n_{1} / 3,2 n_{1} / 3\right\}$ and admissible sextuples $\theta=\{m, n, n-m,-m,-n, m-n\},[\mathbf{1}]$. We also partition $Z_{n 2} \backslash\{0\}$ into sets of the form $\sigma_{s}=\left\{ \pm s, \pm 2 s, \pm 2^{2} s, \ldots, \pm 2^{2} s\right\}$ where $2^{t+1} s=s$ or $-s$. Note that for all $s \neq 0,\left|\sigma_{s}\right| \geqq 4$ since $s \neq-s$ (n_{2} odd), $2 s \neq s$ and $2 s \neq-s\left(3 \nmid n_{2}\right)$.

For each θ in $Z_{n_{1}}$ and σ_{s} in $Z_{n_{2}}$ defined as above we construct the following
admissible sextuples in $Z_{n_{1}} \times Z_{n_{2}}$:

$$
\begin{aligned}
& \tau_{0}=\{(m, 0),(n, 0),(n-m, 0),(-m, 0),(-n, 0),(m-n, 0)\} \\
& D_{\theta, s}, D_{\theta, 2 s}, \ldots, D_{\theta, 2} t_{s} .
\end{aligned}
$$

In addition, we construct the admissible sextuples

$$
B_{n_{1} / 3, s}, B_{n_{1} / 3,2 s}, \ldots, B_{n_{1} / 3,2 t_{s}} .
$$

Those, together with the admissible pair $P=\left\{\left(n_{1} / 3,0\right),\left(2 n_{1} / 3,0\right)\right\}$ yield an admissible partition of $Z_{n_{1}} \times Z_{n_{2}}$ (see Figure 2).

Figure 2

Case $(5): n_{1} \equiv 5(\bmod 6), n_{2} \equiv 5(\bmod 6)$. The construction in this case is based on the following lemma, the proof of which is given in the Appendix.

Lemma 3.3. For all $n \equiv 5(\bmod 6)$ except $n=11$ there exists a partition of $Z_{n} \backslash\{0, w,-w, 2 w,-2 w\}$ (where $w=(n+1) / 6$) into $(n-5) / 6$ admissible sextuples.

If $n_{1} \neq 11, \quad n_{2} \neq 11$ we partition $Z_{n_{1}} \backslash\left\{0, w_{1},-w_{1}, 2 w_{1},-2 w_{1}\right\}$ $\left(w_{1}=\left(n_{1}+1\right) / 6\right)$ into admissible sextuples θ_{i} and $Z_{n_{2}} \backslash\left\{0,, w_{2},-w_{2}, 2 w_{2},-2 w_{2}\right\}$ $\left(w_{2}=\left(n_{2}+1\right) / 6\right)$ into admissible sextuples $\theta_{j}{ }^{\prime}$. For each $\theta_{i}, \theta_{j}{ }^{\prime}$ thus obtained we construct the six admissible sextuples given by the direct product of θ_{i} and $\theta_{j}{ }^{\prime}$
(see Lemma 3.1), as well as the admissible sextuples given by $D_{\theta_{i}, w_{2}}$ and $E_{w_{1}, \theta_{j}}$ (see Figure 3).

Figure 3
Note now that for each pair $\{r,-r\}$ in $Z_{n_{1}}$ where $r \neq 0, \pm w_{1}, \pm 2 w_{1}$ there is exactly one pair $\left\{x_{r},-x_{r}\right\}$ in $Z_{n_{2}} \backslash\{0\}$ such that the elements of $\{r,-r\} \times$ $\left\{x_{r},-x_{r}\right\}$ have not been accounted for. We construct the sextuples $A_{r, x_{r}}$ for each pair $\{r,-r\}, r \neq 0, \pm w_{1}, \pm 2 w_{1}$, and in addition we construct $A_{w_{1}, w_{2}}$, $A_{2 w_{1}, 2 w_{2}}$.

We now have that for each pair $\{s,-s\}, s \in Z_{n_{2}} \backslash\{0\}$ there is exactly one pair of elements $\left\{y_{s},-y_{s}\right\} y_{s} \in Z_{n_{1}} \backslash\{0\}$ such that the elements of the set $\left\{y_{s},-y_{s}\right\} \times\{s,-s\}$ have not been accounted for. We construct the sextuples $B_{\nu_{s}, s}$ for all pairs $\{s,-s\}, s \in Z_{n_{2}} \backslash\{0\}$. This accounts for all the remaining elements of $Z_{n_{1}} \times Z_{n_{2}} \backslash\{(0,0)\}$.

In the case $n_{1}=11$ we must have $n_{2}=11$ as well. Here an admissible partition of $Z_{11} \times Z_{11}$ is given by the admissible sextuples:
$A_{1,4}, A_{2,8}, A_{4,5}, A_{8,1}, A_{5,2} ;$
$B_{4,1}, B_{8,2}, B_{5,4}, B_{1,8}, B_{2,5}$;
$C_{1,1}, C_{2,2}, C_{4,4}, C_{8,8}$ and $C_{5,5}$.
If $n_{1}>11, n_{2}=11$ we use Lemma 3.3 to obtain a partition of $Z_{n_{1}} \backslash\left\{0, w_{1},-w_{1}, 2 w_{1},-2 w_{1}\right\}, w_{1}=\left(n_{1}+1\right) / 6$, into admissible sextuples θ_{1}. For each θ_{i} thus obtained we construct $D_{\theta_{i}, 1}, D_{\theta_{i}, 2}, D_{\theta_{i}, 4}, D_{\theta_{i}, 8}$. Corresponding to the admissible sextuple $\varphi=\{2,3,1,9,8,10\}$ in Z_{11} we construct $E_{r 1, \varphi}$.

In addition we construct the admissible sextuples $B_{2 w_{1}, 1}, B_{2 w_{1}, 2}, B_{2 w_{1}, 4}, B_{w_{1}, 8}$, $B_{w_{1}, 5}$.

Figure 4
We now note that for each pair $\{r,-r\}$ in $Z_{n_{1}} \backslash\{0\}$ there is exactly one pair $\left\{x_{r},-x_{r}\right\}$ in $Z_{11} \backslash\{0\}$ such that the elements of the set $\{r,-r\} \times\left\{x_{r},-x_{r}\right\}$ have not been accounted for. We then construct the admissible sextuples $A_{r, x r}$ for each pair $\{r,-r\}$ in $Z_{n_{1}} \backslash\{0\}$, thus completing an admissible partition of $Z_{n_{1}} \times Z_{11}$. This concludes the proof of Theorem 3.2.

Theorem 3.4. Let $A=C_{n_{1}} \times C_{n_{2}} \times \ldots \times C_{n_{t}}$ where $n_{i} \mid n_{i-1}, i=2, \ldots, t$, $n_{t}>1, t \geqq 3$ and $n=n_{1} \cdot n_{2} \ldots n_{t} \equiv 1$ or $3(\bmod 6)$. Then A has an admissible partition.

Proof. We consider three cases according to the residue class of $n_{1}(\bmod 6)$. Case $(1): n_{1} \equiv 1(\bmod 6)$. Here we must have $n_{2} \ldots n_{t} \equiv 1(\bmod 6)$ since $n_{2} \ldots n_{t} \equiv 3(\bmod 6)$ implies $n_{j} \equiv 3(\bmod 6)$ some $j=2, \ldots, t$ and since $n_{\jmath} \mid n_{1}, n_{1} \equiv 3(\bmod 6)$, a contradiction. There exists an admissible partition of $C_{n_{1}}$ [1] and an admissible partition of $C_{n_{2}} \times \ldots \times C_{n_{t}}$ (by induction). From Lemma 3.1 we obtain an admissible partition of A.

Case $(2): n_{1} \equiv 5(\bmod 6)$. Here we must have $n_{2} \ldots n_{t} \equiv 5(\bmod 6)$ and thus there exists $n_{k}, k=2, \ldots, t$, such that $n_{k} \equiv 5(\bmod 6)$. By Theorem 3.2 there exists an admissible partition of $C_{n_{1}} \times C_{n_{k}}$ and by induction there exists an admissible partition of $C_{n_{2}} \times \ldots \times C_{n_{k-1}} \times C_{n_{k+1}} \times \ldots \times C_{n_{t}}$, since $n_{2} \ldots n_{k-1} \cdot n_{k+1} \ldots n_{t} \equiv 1(\bmod 6)$. Again using Lemma 3.1 we obtain an
admissible partition of $\left(C_{n_{1}} \times C_{n_{k}}\right) \times\left(C_{n_{2}} \times \ldots C_{n_{k-1}} \times C_{n_{k+1}} \times \ldots \times C_{n_{t}}\right)$ $\cong A$.
Case $(3): n_{1} \equiv 3(\bmod 6)$. Here we can have $n_{2} \ldots n_{t} \equiv 1,3$ or $5(\bmod 6)$. If $n_{2} \ldots n_{t} \equiv 1(\bmod 6)$ then $n_{1} \neq 9$ and we repeat the argument of Case (1); if $n_{2} \ldots n_{t} \equiv 5(\bmod 6)$ then again $n_{1} \neq 9$ and we proceed as in Case (2).

Suppose now that $n_{2} \ldots n_{t} \equiv 3(\bmod 6)$. If $n_{1} \neq 9$ then there exists an admissible partition of $C_{n_{1}}$ by $[\mathbf{1}]$ and an admissible partition of $C_{n_{2}} \times \ldots \times$ $C_{n_{t}}$ (by induction) and thus there exists an admissible partition of A by Lemma 3.1.
If $n_{1}=9$ and $n_{t}=3$ then there exists an admissible partition of $C_{n_{1}} \times \ldots$ $\times C_{n_{t^{-1}}}$ and an admissible partition of C_{3} and again by Lemma 3.1 there exists an admissible partition of A.

If $n_{1}=9$ and $n_{t}=9$ then $n_{i}=9, i=1,2, \ldots, t$ and we consider separately the cases $t \geqq 4$ and $t=3$. If $t \geqq 4$ then there exists an admissible partition of $C_{9} \times C_{9}$ and an admissible partition of $C_{9} \times \ldots \times C_{9}(t-2$ times $)$ which by Lemma 3.1 yield an admissible partition of A. For $t=3$ an admissible partition of $\left(Z_{9} \times Z_{9}\right) \times Z_{9} \cong A$ is given in Figure 5 .

Figure 5

Note 1: The elements of $Z_{9} \times Z_{9}$ denoting the rows of Figure 5 appear partitioned into admissible sextuples θ as given in Theorem 3.2, and the additional admissible sextuple $\varphi=\{(0,3),(3,0),(3,6),(0,6),(6,0),(6,3)\}$ obtained by combining the admissible pairs $\{(0,3),(0,6)\},\{(3,0),(6,0)\}$ and $\{(3,6),(6,3)\}$.

Note 2: The notation in Figure 5 is analogous to that of Theorem 3.2, where the elements in the first projection are elements in $Z_{9} \times Z_{9}$.
4. AIP neofields and steiner triple systems. Let N_{v} be an $A I P$ neofield of order $v \equiv 2$ or $4(\bmod 6)$ with $\left(N_{v}{ }^{*}, \cdot\right)=A$. From [3, Theorem 2.1] we have that N_{v} is equivalent to a Steiner triple system τ_{n} of order $n=v-1$ having a regular (i.e., sharply transitive) automorphism group isomorphic to A. It immediately follows from the results of the previous section that every abelian group A of order $n \equiv 1$ or $3(\bmod 6), A \neq C_{9}$, is a regular automorphism group for some Steiner triple system τ_{n}. In this section we discuss nonisomorphic Steiner triple systems having the same abelian regular automorphism group.

Let N_{v} and $N_{v}{ }^{\prime}$ be two $A I P$ neofields based on the same set of elements N and having the same multiplicative group $A=C_{n_{1}} \times C_{n_{2}} \times \ldots \times C_{n_{t}}$ where $n_{1} \cdot n_{2} \ldots n_{t}=v-1 \equiv 1$ or $3(\bmod 6), n_{i} \mid n_{i-1}(i=2, \ldots, t), n_{t}>1$. If N_{v} and $N_{v}{ }^{\prime}$ are isomorphic under an isomorphism φ, φ must induce an automorphism of A and for each generator a_{i} of $C_{n_{i}}(i=1,2, \ldots, t)$ the order of $\varphi\left(a_{i}\right)$ in A must equal the order of a_{i} in A-which is n_{i}. It follows that the number of distinct presentations of an AIP neofield N_{v} (based on the same set N) is at most the number w_{t} of t-tuples $\left(x_{1}, x_{2}, \ldots, x_{t}\right)$ where x_{i} is of order n_{i} in A.

From Theorems 3.2, 3.4 and Lemma 1.3 we know that when $v \equiv 2(\bmod 6)$ an admissible partition of A always exists and it contains $(v-2) / 6$ admissible sextuples. For $v \equiv 4(\bmod 6)$ it can be easily verified that the constructions of Theorems $3.2,3.4$ can be slightly changed to give admissible partitions consisting of $(v-4) / 6$ admissible sextuples. Thus, for any $v \equiv 2$ or $4(\bmod 6)$ a neofield N_{v} can be constructed having $[v / 6]$ admissible sextuples in the admissible partition of its multiplicative group ($[x]$ denotes greatest integer smaller-equal than x).

In [3, Theorem 3.8] it is shown that given an admissible partition of an abelian group A consisting of σ admissible sextuples we can construct 2^{σ} AIP neofields having multiplicative group A. From the above remarks we get:

Lemma 4.1. Let $A=C_{n_{1}} \times C_{n_{2}} \times \ldots \times C_{n_{t}}, \quad n_{i} \mid n_{i-1} \quad(i=2, \ldots, t)$, $n_{1} \cdot n_{2} \ldots n_{t}=v-1 \equiv 1$ or $3(\bmod 6), A \neq C_{9}$. Then there are at least
(1) $\frac{2^{[v / 6]}}{w_{t}}$
nonisomorphic AIP neofields having multiplicative group A.

We now observe that nonisomorphic $A I P$ neofields having the same multiplicative group A may also have isomorphic additive loops. We wish to determine therefore a lower bound for the number of nonisomorphic AIP neofields having a given multiplicative group A and nonisomorphic additive loops, for these correspond to nonisomorphic Steiner triple systems having the same regular automorphism group A [3].

Let $\tau_{n}=[S, \mathscr{S}]$ be a Steiner triple system of order n having an abelian regular automorphism group $A=C_{n_{1}} \times C_{n_{2}} \times \ldots \times C_{n_{t}}, n_{i} \mid n_{i-1}(i=2, \ldots, t)$. The action of A on the elements of S is determined by the action of the automorphisms $a_{1}, a_{2}, \ldots, a_{t}\left(a_{i}\right.$ is a generator of $\left.C_{n_{i}}\right)$ on S, and this itself is completely determined by the action of $a_{1}, a_{2}, \ldots, a_{t}$ on a maximal generating set Ω of τ_{n}. Let $\Omega=\left\{s_{1}, s_{2}, \ldots, s_{\alpha}\right\} \subset S$. From [3, Lemma 5.1] we know that $\alpha \leqq \log _{2}(n+1)$. Now each a_{i} maps the generating set $\left\{s_{1}, s_{2}, \ldots, s_{\alpha}\right\}$ into another generating set $\left\{s_{1}{ }^{\prime}, s_{2}{ }^{\prime}, \ldots, s_{\alpha}{ }^{\prime}\right\}$. This yields at most $n(n-1) \ldots$ $(n-\alpha+1)$ choices for the action of a_{i} and there are therefore at most $(n(n-1) \ldots(n-\alpha+1))^{t}$ choices for a tuple $\left(a_{1}, a_{2}, \ldots, a_{t}\right)$ where a_{i} is a generator of $C_{n i}$. Thus, there are at most $\varphi_{t}=(n(n-1) \ldots(n-\alpha+1))^{t} w_{t}$ ways in which A can act as a regular automorphism group on τ_{n} and therefore from the arguments given in [3, p. 13] there are at most φ_{t} nonisomorphic AIP neofields having multiplicative group A and isomorphic additive loops. This, together with Lemma 4.1 implies that the number of nonisomorphic AIP neofields having multiplicative group A and non-isomorphic additive loops is at least

$$
\begin{array}{r}
\frac{2^{[v / 6]}}{w_{t} \varphi_{t}}=\frac{2^{[v / 6]}}{(n(n-1) \ldots(n-\alpha+1))^{t}}=\frac{2^{[v / 6]}}{((v-1)(v-2) \ldots(v-\alpha))^{t}} \\
>\frac{2^{[v / 6]}}{v^{\alpha t}} \geqq \frac{2^{[v / 6]}}{v^{2 \cdot \log _{2} v}}=\frac{2^{[v / 6]}}{2^{\left(\log _{2} v\right)^{2} . t}}>\frac{2^{[v / 6]}}{2^{\left[\log _{2} v\right)^{s}}} \tag{2}
\end{array}
$$

Since $2^{[v / 6]} / 2^{\left(\log _{2} v\right)^{3}} \rightarrow \infty$ as $v \rightarrow \infty$ we have:
Theorem 4.2. Let t be a fixed positive integer. If we consider abelian groups of the form $A=C_{n_{1}} \times C_{n_{2}} \times \ldots \times C_{n_{t}}$ where n_{i} are integers bigger than one, $n_{i} \mid n_{i-1}(i=2, \ldots, t)$ and $n=n_{1} \cdot n_{2} \ldots n_{t} \equiv 1$ or $3(\bmod 6)$, the number of nonisomorphic Steiner triple systems having the abelian group A for a regular automorphism group goes to infinity with n.

Appendix.

Lemma 3.3. For all $u \equiv 5(\bmod 6)$ except $u=11$ there exists a partition of $Z_{u} \backslash\{0, w,-w, 2 w,-2 w\}$ (where $\left.w=(u+1) / 6\right)$ into $(u-5) / 6$ admissible sextuples of the form ($m, n, n-m,-m,-n, m-n$).

Proof. We consider four cases according to the residue class of $u(\bmod 24)$.
(We use the following notation:

$$
\left.S(m, n)=S_{n-m}=(m, n, n-m,-m,-n, m-n) .\right)
$$

Case (1) $u=24 k+5 \quad(w=4 k+1)$. For $k=0$ the lemma holds vacuously.
For $k=1$, we have $u=29, w=5$ and the desired admissible sextuples are: $S_{1}=S(6,7) ; S_{2}=S(12,14) ; S_{3}=S(8,11)$ and $S_{4}=S(9,13)$.

For $k \geqq 2$ we obtain the desired sextuples by partitioning $\{1,2, \ldots, 4 k\} \cup$ $\{4 k+2, \ldots, 8 k+1\} \cup\{8 k+3,8 k+4, \ldots, 12 k+2\}$ into triples of the form ($m, n, n-m$) as follows:

m	n	$n-m$
$8 k+4$	$12 k+2$	$4 k-2$
$8 k+5$	$12 k+1$	$4 k-4$
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
$10 k+1$	$10 k+5$	4
$10 k+2$	$10 k+4$	2
$4 k+2$	$8 k+1$	$4 k-1$
$4 k+3$	$8 k$	$4 k-3$
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
$5 k-1$	$7 k+4$	$2 k+5$
$5 k$	$7 k+3$	$2 k+3$
$5 k+3$	$7 k+2$	$2 k-1$
$5 k+4$	$7 k+1$	$2 k-3$
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
$6 k$	$6 k+5$	5
$6 k+1$	$6 k+4$	3
$6 k+2$	$8 k+3$	$2 k+1$
$6 k+3$	$10 k+3$	$4 k$
$5 k+1$	$5 k+2$	1

Case (2) $u=24 k+23 \quad(w=4 k+4)$. For $k=0$, we have $u=23, w=4$
and the desired admissible sextuples are: $S_{1}=S(5,6) ; S_{2}=S(9,11)$ and $S_{3}=S(7,10)$.

For $k=1$, we have $u=47, w=8$ and the desired admissible sextuples are: $S_{1}=S(10,11) ; S_{2}=S(19,21) ; S_{3}=S(12,15) ; S_{4}=S(18,22) ; S_{5}=S(9,14)$; $S_{6}=S(17,23)$ and $S_{7}=S(13,20)$.

For $k \geqq 2$ we obtain the desired sextuples by partitioning $\{1,2, \ldots, 4 k+3\}$ $\cup\{4 k+5, \ldots, 8 k+6,8 k+7\} \cup\{8 k+9, \ldots, 12 k+11\}$ into triples ($m, n, n-m$) as follows:

m	n	$n-m$
$8 k+9$	$12 k+11$	$4 k+2$
$8 k+10$	$12 k+10$	$4 k$
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
$10 k+8$	$10 k+12$	4
$10 k+9$	$10 k+11$	2
$4 k+5$	$8 k+6$	$4 k+1$
$4 k+6$	$8 k+5$	$4 k+1$
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
$5 k+3$	$7 k+8$	$2 k+5$
$5 k+4$	$7 k+7$	$2 k+3$
$5 k+7$	$7 k+6$	$2 k-1$
$5 k+8$	$7 k+5$	$2 k-3$
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
$6 k+4$	$6 k+9$	\cdot
$6 k+5$	$6 k+8$	3
$6 k+6$	$8 k+7$	$2 k+1$
$6 k+7$	$10 k+10$	$4 k+3$
$5 k+5$	$5 k+6$	1

Case (3) $u=24 k+11 \quad(w=4 k+2)$. For $k=0, Z_{11} \backslash\{0,2,9,4,7\}=$ $\{1,3,5,6,8,10\}$ can never be arranged into an admissible sextuple.

For $k=1$ we have $u=35, w=6$ and the desired admissible sextuples are: $S_{1}=S(7,8) ; S_{2}=S(9,11) ; S_{3}=S(13,16) ; S_{4}=S(14,18)$ and $S_{5}=S(10,15)$.

For $k=2$ we have $u=\pi 9, w=10$ and the desired sextuples are: $S_{1}=$ $S_{1}(27,28) ; S_{2}=S(14,16) ; S_{3}=S(22,25) ; S_{4}=S(13,17) ; S_{5}=S(21,26)$; $S_{6}=S(12,18) ; S_{7}=S(23,30) ; S_{8}=S(11,19)$ and $S_{9}=S(15,24)$.

For $k \geqq 3$ we obtain the desired sextuples by partitioning the set

$$
\{1,2, \ldots, 4 k+1\} \cup\{4 k+3, \ldots, 8 k+3\}
$$

$$
\cup\{8 k+5, \ldots, 12 k+4,-(12 k+5)\}
$$

into the following triples $(m, n, n-m)$: (Note that we have chosen $-(12 k+5)=12 k+6$ instead of the more natural $12 k+5$ as the last element listed.)

m	n	$n-m$
$4 k+3$	$8 k+3$	$4 k$
$4 k+4$	$8 k+2$	$4 k-2$
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
$6 k+1$	$6 k+5$	4
$6 k+2$	$6 k+4$	2
$8 k+5$	$12 k+4$	$4 k-1$
$8 k+6$	$12 k+3$	$4 k-3$
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
$9 k+1$	$11 k+8$	$2 k+7$
$9 k+2$	$11 k+7$	$2 k+5$
$9 k+3$	$11 k+4$	$2 k+1$
$9 k+4$	$11 k+3$	$2 k-1$
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
$10 k+1$	$10 k+6$	5
$10 k+2$	$10 k+5$	3
$10 k+3$	$12 k+6$	$2 k+3$
$6 k+3$	$10 k+4$	$4 k+1$
$11 k+5$	$11 k+6$	1

Case (4) $u=24 k+17 \quad(w=4 k+3)$. For $k=0$ we have $u=17, w=3$ and the desired sextuples are $S_{1}=S(4,5)$ and $S_{2}=S(7,9)$.

For $k \geqq 1$ we partition into triples $(m, n, n-m$) the set $\{1,2, \ldots, 4 k+2\}$

$$
\begin{aligned}
& \cup\{4 k+4, \ldots, 8 k+4,8 k+5\} \\
& \cup\{8 k+7, \ldots, 11 k+7,-(11 k+8), 11 k+9, \ldots, 12 k+8\}
\end{aligned}
$$

as follows. (Note that in the place of $11 k+8$ we have $-(11 k+8)=13 k+9$.

m	n	$n-m$
$4 k+4$	$8 k+4$	$4 k$
$4 k+5$	$8 k+3$	$4 k-2$
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
$6 k+2$	$6 k+6$	4
$6 k+3$	$6 k+5$	2
$8 k+7$	$12 k+8$	$4 k+1$
$8 k+8$	$12 k+7$	$4 k-1$
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
$9 k+5$	$11 k+10$	$2 k+5$
$9 k+6$	$11 k+9$	$2 k+3$
$9 k+8$	$11 k+7$	$2 k-1$
$9 k+9$	$11 k+6$	$2 k-3$
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
$10 k+6$	$10 k+9$	3
$10 k+7$	$10 k+8$	1
$6 k+4$	$8 k+5$	$2 k+1$
$9 k+7$	$13 k+9$	$4 k+2$

References

1. J. R. Doner, CIP neofields and combinatorial designs, Ph.D. dissertation, University of Michigan, 1972.
2. E. C. Johnsen and T. F. Storer, Combinatorial structures in loops, II; Commutative inverse property cyclic neofields of prime-power order, Pacific J. Math. 52 (1974), 115-127.
3. - Combinatorial structures in loops, IV; Steiner triple systems in Neofields, Math. Z. 138 (1974), 1-14.

University of California,
Santa Barbara, California

