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LIMIT THEOREMS FOR A DIFFUSION PROCESS
WITH A ONE-SIDED BROWNIAN POTENTIAL
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Abstract

We consider a diffusion process X(t) with a one-sided Brownian potential starting from
the origin. The limiting behavior of the process as time goes to infinity is studied. For each
t > 0, the sample space describing the random potential is divided into two parts, Ãt

and B̃t , both having probability 1
2 , in such a way that our diffusion process X(t) exhibits

quite different limiting behavior depending on whether it is conditioned on Ãt or on B̃t

(t → ∞). The asymptotic behavior of the maximum process of X(t) is also investigated.
Our results improve those of Kawazu, Suzuki, and Tanaka (2001).
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1. Introduction

In [4] a diffusion process {X(t), t ≥ 0} with a one-sided Brownian potential was studied,
and it was shown that the limit distribution of t−1/2X(t) as t → ∞ exists and is given by

1

2

√
2

π
e−x2/2 dx + 1

2
δ0(dx),

the support being [0, ∞). The long-time behavior of X(t) is diffusive (in the sense that a limit
distribution exists under the Brownian scaling) with probability 1

2 and subdiffusive with the
remaining probability 1

2 .
In this paper we treat the same model and give much more precise statements. In fact

we prove, among other things, that (log t)−2X(t) has a limit distribution with probability 1
2 ;

for the precise meaning of this, see Theorem 1.5.
Let us describe our model, following [4]. We denote by W the space of continuous functions

w defined on R and vanishing identically on [0, ∞). Let P be the Wiener measure on W, namely
the probability measure on W such that {w(−x), x ≥ 0, P} is a Brownian motion with time
parameter x. By � we denote the space of real-valued, continuous functions defined on [0, ∞).
For ω ∈ �, we write X(t) ≡ X(t, ω) ≡ ω(t), the value of ω at t . For w ∈ W and x0 ∈ R,
we let Px0

w be the probability measure on � such that {X(t), t ≥ 0, Px0
w } is a diffusion process

with generator

Lw = 1

2
ew(x) d

dx

(
e−w(x) d

dx

)
,
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starting from x0. We define the probability measure P x0 on W × � by

P x0(dw dω) = P(dw) Px0
w (dω).

We regard {X(t), t ≥ 0, P x0} as a process defined on the probability space (W × �, P x0)

and call it a diffusion process with a one-sided Brownian potential. Our aim is to clarify the
limiting behavior of {X(t), t ≥ 0, P 0} as t → ∞.

For the case in which w(x) does not vanish identically for x ≥ 0 or, more precisely, the
case in which {w(x), x ≥ 0, P} and {w(−x), x ≥ 0, P} are independent Brownian motions,
the corresponding diffusion process, {X(t), t ≥ 0, P x0}, was introduced by Brox [1] and
Schumacher [5] as a diffusion analogue of Sinai’s random walk [6]. In [1] and [5] it was proved
that {(log t)−2X(t), t ≥ 0, P 0} has a nondegenerate limit distribution.

We begin by presenting the result of [4]. Let M be the space of probability laws on � and
let ρ be the Prokhorov metric on M. Let {X(t), t ≥ 0, P 0} be a diffusion process with a
one-sided Brownian potential. Set

Xλ(t) = λ−1/2X(λt), t ≥ 0,

for a constant λ > 0, and denote by Pλ(w) ∈ M the probability law of the process {Xλ(t),

t ≥ 0, P0
w}. Also, denote by PN ∈ M the probability law of the identically vanishing process,

and by PR ∈ M the probability law of the reflecting Brownian motion on [0, ∞) starting from
0.

Theorem 1.1. ([4].) For any ε such that 0 < ε < ρ(PN, PR)/2,

lim
λ→∞ P{ρ(Pλ(w), PN) < ε} = 1

2 ,

lim
λ→∞ P{ρ(Pλ(w), PR) < ε} = 1

2 .

Our present results (namely Theorems 1.2 and 1.3, stated below) imply Theorem 1.1. To state
the theorems, we introduce some notation.

For w ∈ W and x0 ∈ R, the diffusion process {X(t), t ≥ 0, Px0
w } can be constructed from

a Brownian motion via time change and scale change [3, p. 165]. See [4] for the explicit
representation of this diffusion process. The scale function of the process is given by

S(x) =
∫ x

0
ew(y) dy, x ∈ R.

If S(x) → −∞ (as x → −∞), then the diffusion process {X(t), t ≥ 0, Px0
w } is recurrent

and, hence, conservative. By restricting the whole space W to the set of ws satisfying S(x) →
−∞ (as x → −∞), which still has P-measure 1, we may assume that the diffusion process
{X(t), t ≥ 0, Px0

w } is recurrent for any w.
For ω ∈ �, we write

a(t) ≡ a(t, ω) =
∫ t

0
1(0,∞)(X(s)) ds, t ≥ 0, (1.1)

where 1A denotes the indicator function of the (generic) set A. Then, for any w ∈ W and
x0 ∈ R, we have

Px0
w

{
lim

t→∞ a(t) = ∞
}

= 1,
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A diffusion process with a one-sided Brownian potential 999

since the diffusion process {X(t), t ≥ 0, Px0
w } is recurrent. In what follows, we reduce � so

that it equals the set of ωs satisfying a(t) → ∞ (as t → ∞). For λ > 0 and ω ∈ �, we let

aλ(t) ≡ aλ(t, ω) =
∫ t

0
1(0,∞)(Xλ(s)) ds, t ≥ 0.

Since aλ(t) = λ−1a(λt) → ∞ (as t → ∞), we can define

a−1
λ (t) = inf{s > 0 : aλ(s) > t}, t ≥ 0,

the right-continuous inverse function of aλ(t). We also let

Gλ(t) = Xλ(a
−1
λ (t)), t ≥ 0.

Then {Gλ(t), t ≥ 0, P0
w} is a reflecting Brownian motion on [0, ∞) starting from 0.

For w ∈ W and a ∈ R, we let

σ(a) ≡ σ(a, w) = sup{x < 0 : w(x) = a},
and introduce two subsets A and B of W as follows:

A = {w ∈ W : σ( 1
2 ) > σ(− 1

2 )},
B = {w ∈ W : σ( 1

2 ) < σ(− 1
2 )}.

Each of these subsets has P-measure 1
2 . For w ∈ W and λ > 0, we define wλ ∈ W by

wλ(x) = λ−1w(λ2x), x ∈ R.

Then
{wλ, P} d= {w, P }, (1.2)

where ‘
d=’ denotes equality in distribution. For each λ > 0, we also introduce two further

subsets Aλ and Bλ of W as follows:

Aλ = {w ∈ W : wλ ∈ A},
Bλ = {w ∈ W : wλ ∈ B}.

Each of these also has P-measure 1
2 , by (1.2).

In the following theorems, P{· · · | ·} denotes the conditional probability. We write Ãλ =
Alog λ and B̃λ = Blog λ.

Theorem 1.2. For any T > 0 and ε > 0,

lim
λ→∞ P

{
P0

w

{
sup

0≤t≤T

|Xλ(t) − Gλ(t)| < ε
}

> 1 − ε

∣∣∣ Ãλ

}
= 1.

For w ∈ W, we let

ζ ≡ ζ(w) = sup
{
x < 0 : w(x) − min

x≤y≤0
w(y) = 1

}
,

M ≡ M(w) =
{

σ( 1
2 ) if w ∈ A,

ζ(w) if w ∈ B,

V ≡ V (w) = min
x≥M

w(x).

We also define b ≡ b(w) in (M, 0) by w(b) = V . Note that b is determined uniquely by w

(P-almost surely).
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Theorem 1.3. For any ε > 0,

lim
t→∞ P{P0

w{|(log t)−2X(t) − b(wlog t )| < ε} > 1 − ε | B̃t } = 1.

To state the result on the maximum process of X(t), we let

H(w) = max
M≤x≤0

w(x).

Note that H(w) = 1
2 if w ∈ A and 0 < H(w) < 1

2 if w ∈ B.

Theorem 1.4. For any ε > 0,

lim
t→∞ P 0

{∣∣∣∣ log max0≤s≤t X(s)

log t
− H(wlog t )

∣∣∣∣ > ε

}
= 0.

Our present results, together with those of [4], immediately imply the following theorem.

Theorem 1.5. In each of the following instances, the distribution of X̃t under P 0 tends to a
limit distribution as t → ∞, as described.

• X̃t = t−1/2X(t): limit distribution is µI(dx) = 1
2

√
2/πe−x2/2 dx + 1

2δ0(dx); support
is [0, ∞).

• X̃t = (log t)−2X(t): limit distribution is µII(dx) = P{(b ∈ dx) ∩ B} + 1
2δ∞(dx);

support is (−∞, 0) ∪ {∞}.
• X̃t = t−1/2 max0≤s≤t X(s): limit distribution is

µIII(dx) = 1
2 PR

{
max

0≤s≤1
X(s) ∈ dx

}
+ 1

2δ0(dx);

support is [0, ∞).

• X̃t = log(max0≤s≤t X(s))/log t: limit distribution is µIV(dx) = P{H ∈ dx}; support
is (0, 1

2 ].
• X̃t = (log t)−2 min0≤s≤t X(s): limit distribution is µV(dx) = P{M ∈ dx}; support is

(−∞, 0).

Moreover, the Laplace transforms of the distributions of b, H , and M appearing in the
definitions of µII, µIV, and µV are as follows. For ξ > 0,

E[eξb, B] = sinh(
√

2ξ/2)√
2ξ cosh

√
2ξ

,

E[eξH , A] = 1
2 eξ/2,

E[eξH , B] =
∫ 1/2

0
eξx dx,

E[eξM, A] = sinh(
√

2ξ/2)

sinh
√

2ξ
,

E[eξM, B] = sinh(
√

2ξ/2)

(sinh
√

2ξ)(cosh
√

2ξ)
.

Here E[·, A] denotes the expectation with respect to P on the set A.
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Let η(t, x) be the local time at x of the Brox–Schumacher diffusion process. Hu and Shi [2]
showed that, for any x ∈ R,

log η(t, x)

log t

d−→ U ∧ Û , t → ∞,

where ‘
d−→’ denotes convergence in distribution and U and Û are independent random variables

uniformly distributed in (0, 1).
For our diffusion process {X(t), t ≥ 0, P 0} with a one-sided Brownian potential, Z. Shi

(private communication (2000)) informed us that the same method based on the second Ray–
Knight theorem as in [2] can be used to show that

log a(t)

log t

d−→ 1 ∧ (2U), t → ∞,

where U is a random variable uniformly distributed in (0, 1).
In Section 3 we investigate the asymptotic behavior of the occupation time a(t) as t → ∞.

2. Preliminaries

For λ > 0, w ∈ W, and x0 ∈ R, let Px0
λw be the probability measure on � such that

{X(t), t ≥ 0, Px0
λw} is a diffusion process with generator

Lλw = 1

2
eλw(x) d

dx

(
e−λw(x) d

dx

)
,

starting from x0. Denote by Ex0
λw the expectation with respect to Px0

λw. The following lemma
was proved in [1].

Lemma 2.1. ([1].) For any λ > 0 and w ∈ W,

{X(t), t ≥ 0, P0
λwλ

} d= {λ−2X(λ4t), t ≥ 0, P0
w}.

In preparation for the proofs of Theorem 1.2 and Theorem 1.3, we present the following
theorems.

Theorem 2.1. Let µ ≡ µ(λ) = λ1/4 log λ. Then, for any T > 0 and ε > 0,

lim
λ→∞ P

{
P0

µwµ

{
sup

0≤t≤T

|X(t) − G(t)| < ε
}

> 1 − ε

∣∣∣ Alog λ

}
= 1,

where G(t) = X(a−1(t)) and a−1(t) = inf{s > 0 : a(s) > t}, the right-continuous inverse
function of a(t) defined in (1.1).

Theorem 2.2. Let r be a real-valued function of λ > 0 such that r(λ) → 1 (as λ → ∞). Then
there exists a subset B# of B, with P{B \ B#} = 0, such that, for any w ∈ B# and ε > 0,

lim
λ→∞ P0

λw{|X(eλr(λ)) − b(w)| < ε} = 1.

We remark that to prove Theorem 2.2 it is enough to show the following proposition.
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Proposition 2.1. There exists a subset B# of B, with P{B \B#} = 0, such that for any w ∈ B#

the following holds: there exists a δ > 0 such that, for any r1 and r2 satisfying 1 − δ < r1 <

r2 < 1 + δ and any ε > 0,

lim
λ→∞ inf

r∈[r1,r2]
P0

λw{|X(eλr ) − b(w)| < ε} = 1. (2.1)

In Section 4 we prove Theorem 2.1 and Theorem 1.2, in Section 5 we prove Proposition 2.1
and Theorem 1.3, and in Section 6 we prove Theorem 1.4.

3. Asymptotic behavior of the occupation time a(t) as t → ∞
In this section we investigate the limiting behavior of {t−1a(t), t ≥ 0, P 0} as t → ∞. To

do so, we need two lemmas. The first, Lemma 3.1, which is needed for the proof of Theorem 2.1,
will be proved in Section 4.

Lemma 3.1. There exists a subset A# of A, with P{A \ A#} = 0, such that, for any w ∈ A#

and T > 0,

lim
λ→∞ E0

λw

[
1

T eλ

∫ T eλ

0
1(0,∞)(X(s)) ds

]
= 1. (3.1)

The second lemma, Lemma 3.2, can be obtained from Proposition 2.1.

Lemma 3.2. There exists a subset B# of B, with P{B \ B#} = 0, such that, for any w ∈ B#,

lim
λ→∞ E0

λw

[
1

eλ

∫ eλ

0
1(−∞,0)(X(s)) ds

]
= 1.

The main result in this section is as follows.

Theorem 3.1. For any ε > 0,

lim
t→∞ P

{
P0

w

{
1

t

∫ t

0
1(0,∞)(X(s)) ds > 1 − ε

}
> 1 − ε

∣∣∣∣ Ãt

}
= 1, (3.2)

lim
t→∞ P

{
P0

w

{
1

t

∫ t

0
1(0,∞)(X(s)) ds < ε

}
> 1 − ε

∣∣∣∣ B̃t

}
= 1. (3.3)

Proof. We prove (3.2); we can prove (3.3) in the same way by using Lemma 3.2.
By Lemma 3.1 we have, for w ∈ A#,

lim
t→∞ E0

(log t)w

[
1

t

∫ t

0
1(0,∞)(X(s)) ds

]
= 1.

Here A# is a subset of A with P{A \ A#} = 0. Therefore, it follows that

lim
t→∞ P

{
P0

(log t)w

{
1

t

∫ t

0
1(0,∞)(X(s)) ds > 1 − ε

}
> 1 − ε

∣∣∣∣ A

}
= 1

for any ε > 0. Moreover, (1.2) and Lemma 2.1 imply that

lim
t→∞ P

{
P0

w

{
1

t

∫ t

0
1(0,∞)(X((log t)4s)) ds > 1 − ε

}
> 1 − ε

∣∣∣∣ Alog t

}
= 1. (3.4)
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Changing the variable of the integral in (3.4) yields

lim
u→∞ P

{
P0

w

{
1

u

∫ u

0
1(0,∞)(X(s)) ds > 1 − ε

}
> 1 − ε

∣∣∣∣ Alog t

}
= 1, (3.5)

where t ≡ t (u) is determined by u = t (log t)4.
Let us prove that

lim
u→∞ P{Alog t (u) � Alog u} = 0, (3.6)

where A1 � A2 = (A1 ∩ Ac
2) ∪ (Ac

1 ∩ A2) for sets A1 and A2. We note that

r = log t (u)

log u
→ 1 as u → ∞. (3.7)

Using the fact that wλ1λ2 = (wλ1)λ2 for λ1, λ2 > 0, we have

P{Alog t (u) � Alog u} = E[| 1A(wlog t (u)) − 1A(wlog u)|]
= E[| 1A((wlog u)r ) − 1A(wlog u)|], (3.8)

where E denotes the expectation with respect to P. By (1.2), the right-hand side of (3.8) is
equal to

E[| 1A(wr) − 1A(w)|],
which converges to 0 as u → ∞, due to (3.7). This proves (3.6). From (3.6) it follows that
P{· · · | Alog t (u)} → 1 (as u → ∞) is equivalent to P{· · · | Alog u} → 1 (as u → ∞). Hence,
by (3.5), we obtain (3.2).

Corollary 3.1. The probability distribution of t−1
∫ t

0 1(0,∞)(X(s)) ds under P 0 converges to
1
2δ0 + 1

2δ1 as t → ∞.

4. Proofs of Theorem 2.1 and Theorem 1.2

In this section we prove Theorem 2.1 and Theorem 1.2. First we introduce a lemma from [4].
For ω ∈ �, let

τ(a) ≡ τ(a, ω) = inf{t > 0 : X(t) = a}, a ∈ R.

Lemma 4.1. ([4].) Let w ∈ W and a < 0. Assume that w(a) > w(x) for all x > a. Then, for
any ε > 0,

lim
λ→∞ P0

λw{eλ(J−ε) < τ(a) < eλ(J+ε)} = 1,

where J = max{J0, 2w(a)} and J0 = w(a) − min{w(x) : x ≥ a}.
Next we prove Lemma 3.1.

Proof of Lemma 3.1. Let w ∈ A. In this case we note that V > − 1
2 . First we choose r0 and

r1 satisfying −V < r0 < r1 < 1
2 . We then see that

lim
λ→∞ P0

λw{τ(er0λ) < τ(σ (r1))} = lim
λ→∞

∫ 0
σ(r1)

eλw(x) dx∫ 0
σ(r1)

eλw(x) dx + er0λ
= 1, (4.1)
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since limλ→∞ λ−1 log
∫ 0
σ(r1)

eλw(x) dx = r1 > r0. Moreover, an application of Lemma 4.1
with a = σ(r1) gives

lim
λ→∞ P0

λw{eλ(2r1−ε) < τ(σ (r1)) < eλ(2r1+ε)} = 1 (4.2)

for any ε > 0. Combining (4.1) and (4.2) yields

lim
λ→∞ P0

λw{τ(er0λ) < eλθ } = 1 for some θ ∈ (0, 1). (4.3)

Next we choose a ρ > 1
2 satisfying

min{w(x) : σ(ρ) ≤ x ≤ σ( 1
2 )} > V. (4.4)

(Note that the set of w ∈ A for which there is no ρ > 1
2 satisfying (4.4) is P-negligible.)

By applying Lemma 4.1 with a = σ(ρ), we have

lim
λ→∞ P0

λw{eλ(2ρ−ε) < τ(σ (ρ)) < eλ(2ρ+ε)} = 1

for any ε > 0. Therefore, for any T > 0,

lim
λ→∞ P0

λw{τ(σ (ρ)) > T eλ} = 1. (4.5)

Now we define mλw, a probability measure on Iλ = [σ(ρ), er0λ], by

mλw(E) =
∫
E∩[σ(ρ),0] e−λw(x) dx + ∫

E∩(0,er0λ] dx∫ 0
σ(ρ)

e−λw(x) dx + er0λ

for any Borel set E in Iλ. This is the invariant probability measure for the reflecting
Lλw-diffusion process on Iλ. Note that

lim
λ→∞ mλw((0, er0λ]) = lim

λ→∞
er0λ∫ 0

σ(ρ)
e−λw(x) dx + er0λ

= 1 (4.6)

since limλ→∞ λ−1 log
∫ 0
σ(ρ)

e−λw(x) dx = −V < r0.
By the comparison theorem for one-dimensional diffusion processes, for λ > 0 we can

construct diffusion processes {Yλ(t), t ≥ 0} and {Zλ(t), t ≥ 0}, on a probability space (�̃, P̃),
with the following properties:

{Yλ(t), t ≥ 0} is a reflecting Lλw-diffusion process on [σ(ρ), ∞) starting from er0λ. (4.7)

{Zλ(t), t ≥ 0} is a reflecting Lλw-diffusion process on Iλ with initial distribution mλw.

P̃{Yλ(t) ≥ Zλ(t) for all t ≥ 0} = 1. (4.8)

Since {Zλ(t), t ≥ 0} is a stationary process with invariant probability measure mλw, by
(4.6) we have

lim
λ→∞ Ẽ

[
1

T eλ

∫ T eλ

0
1(0,∞)(Zλ(s)) ds

]
= 1 (4.9)
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for any T > 0. Here Ẽ denotes the expectation with respect to P̃. Moreover, (4.8) and (4.9)
imply that

lim
λ→∞ Ẽ

[
1

T eλ

∫ T eλ

0
1(0,∞)(Yλ(s)) ds

]
= 1. (4.10)

Let us prove (3.1). Using the strong Markov property of {X(t), t ≥ 0, P ·
λw}, for any T > 0

we obtain

E0
λw

[
1

T eλ

∫ T eλ

0
1(0,∞)(X(s)) ds

]

≥ E0
λw

[
1

T eλ

∫ T eλ

τ(er0λ)

1(0,∞)(X(s)) ds, τ (er0λ) < eλθ

]

≥ Eer0λ

λw

[
1

T eλ

∫ T eλ−eλθ

0
1(0,∞)(X(s)) ds

]
P0

λw{τ(er0λ) < eλθ }. (4.11)

Owing to (4.3), (4.5), (4.7), and (4.10), we see that the right-hand side of (4.11) converges to
1 as λ → ∞. Hence, we obtain (3.1).

We now present three lemmas in preparation for the proof of Theorem 2.1.

Lemma 4.2. Let µ ≡ µ(λ) = λ1/4 log λ. Then, for any T > 0 and ε > 0,

lim
λ→∞ P

{
P0

µwµ

{
sup

0≤t≤T

|t − a(t)| < ε
}

> 1 − ε

∣∣∣ Alog λ

}
= 1.

Proof. Using Chebyshev’s inequality, we have

P
{

P0
µwµ

{
sup

0≤t≤T

|t − a(t)| ≥ ε
}

≥ ε, Alog λ

}
= P{P0

µwµ
{T − a(T ) ≥ ε} ≥ ε, Alog λ}

≤ P

{
1

ε
E0

µwµ
[T − a(T )] ≥ ε, Alog λ

}
. (4.12)

By Lemma 2.1, we have

E0
µwµ

[a(T )] = E0
µwµ

[∫ T

0
1(0,∞)(X(s)) ds

]

= E0
w

[∫ T

0
1(0,∞)(Xλ(log λ)4(s)) ds

]

= E0
w

[
1

λ

∫ T λ

0
1(0,∞)(X(log λ)4(s)) ds

]

= E0
(log λ)wlog λ

[
1

λ

∫ T λ

0
1(0,∞)(X(s)) ds

]

= E0
(log λ)wlog λ

[
1

λ
a(T λ)

]
.

Therefore, the right-hand side of (4.12) is equal to

P

{
1

ε
E0

(log λ)wlog λ

[
T − 1

λ
a(T λ)

]
≥ ε, Alog λ

}
= P

{
1

ε
E0

(log λ)w

[
T − 1

λ
a(T λ)

]
≥ ε, A

}
.
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This probability converges to 0 as λ → ∞, since

lim
λ→∞ E0

(log λ)w

[
1

T λ
a(T λ)

]
= 1 for w ∈ A#

by Lemma 3.1. Here A# is a subset of A with P{A \ A#} = 0. Hence, we obtain Lemma 4.2.

Lemma 4.3. Let µ ≡ µ(λ) = λ1/4 log λ. Then, for any T > 0 and ε > 0,

lim
λ→∞ P

{
P0

µwµ

{
sup

0≤t≤T

|G(t) − G(a(t))| < ε
}

> 1 − ε

∣∣∣ Alog λ

}
= 1.

Proof. We note that, for any w ∈ W and λ > 0, {G(t), t ≥ 0, P0
µwµ

} is a reflecting
Brownian motion on [0, ∞) starting from 0. Since, with probability 1, Brownian sample paths
are locally Hölder continuous with exponent γ , for every γ ∈ (0, 1

2 ), we obtain Lemma 4.3
from Lemma 4.2.

The following lemma plays an important role in the proof of Theorem 2.1.

Lemma 4.4. Let f be a real-valued, continuous function of t ≥ 0 with f (0) = 0, and let

α(t) =
∫ t

0
1(0,∞)(f (s)) ds.

Take T > 0 and assume that there exists a T1 > T such that α(T1) > T . Define the right-
continuous inverse function of α(t) by

α−1(t) = inf{s > 0 : α(s) > t}, 0 ≤ t ≤ T ,

and let
g(t) = f (α−1(t)), 0 ≤ t ≤ T .

Then
|g(t) − f (t)| = |g(t) − g(α(t))| − min{f (t), 0}, 0 ≤ t ≤ T . (4.13)

Proof. First assume that α−1(α(t)) = t . In this case we notice that f (t) ≥ 0 and

|g(t) − f (t)| = |g(t) − f (α−1(α(t)))| = |g(t) − g(α(t))|,
which establishes (4.13).

Next assume that α−1(α(t)) = t . In this case α−1(α(t)) > t . Moreover, f ≤ 0 on the
interval [t, α−1(α(t))] and f (α−1(α(t))) = 0, i.e. g(α(t)) = 0. Noting that g(t) ≥ 0, we
obtain

|g(t) − f (t)| = |g(t)| + |f (t)| = |g(t) − g(α(t))| − min{f (t), 0}.
This completes the proof of the lemma.

Proof of Theorem 2.1. By virtue of Lemma 4.4, we have

P
{

P0
µwµ

{
sup

0≤t≤T

|G(t) − X(t)| ≥ ε
}

≥ ε, Alog λ

}

≤ P

{
P0

µwµ

{
sup

0≤t≤T

|G(t) − G(a(t))| ≥ ε

2

}
≥ ε

2
, Alog λ

}

+ P

{
P0

µwµ

{
inf

0≤t≤T
X(t) ≤ −ε

2

}
≥ ε

2
, Alog λ

}
. (4.14)
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The first term on the right-hand side of (4.14) converges to 0 as λ → ∞, due to Lemma 4.3.
The second term is bounded above by

P

{
P0

µwµ

{
inf

0≤t≤T
X(t) ≤ −ε

2

}
≥ ε

2

}
= P

{
P0

µw

{
inf

0≤t≤T
X(t) ≤ −ε

2

}
≥ ε

2

}
,

which converges to 0 as λ → ∞, by [4, Lemma 4.2]. This completes the proof of Theorem 2.1.

Proof of Theorem 1.2. By combining Theorem 2.1 and Lemma 2.1, we have

lim
λ→∞ P

{
P0

w

{
sup

0≤t≤T

|Xµ4(t) − Gµ4(t)| < ε
}

> 1 − ε

∣∣∣ Alog λ

}
= 1

or, equivalently,

lim
ν→∞ P

{
P0

w

{
sup

0≤t≤T

|Xν(t) − Gν(t)| < ε
}

> 1 − ε

∣∣∣ Alog λ

}
= 1,

where λ ≡ λ(ν) is determined by ν = λ(log λ)4. We obtain Theorem 1.2 by the same argument
as in the proof of Theorem 3.1.

5. Proofs of Proposition 2.1 and Theorem 1.3

In this section we prove Proposition 2.1 and Theorem 1.3. We begin by introducing a lemma
due to Brox [1]. Let w ∈ W and α < m < β < 0. We call a triple of negative numbers
� = (α, m, β) a valley of w if the following conditions are satisfied.

(i) w(α) > w(x) > w(m) for all x ∈ (α, m) and w(β) > w(x) > w(m) for all x ∈ (m, β).

(ii) w(α) − w(m) > Hβ,m := sup{w(y) − w(x) : m < y < x < β} and w(β) − w(m) >

Hα,m := sup{w(y) − w(x) : α < x < y < m}.
For a valley � = (α, m, β), we call D(�) = {w(α) − w(m)} ∧ {w(β) − w(m)} the depth of
� and A(�) = Hβ,m ∨ Hα,m the inner directed ascent of �. A valley � = (α, m, β) is said to
contain x0 if α < x0 < β.

Lemma 5.1. ([1].) Let w ∈ W and let � = (α, m, β) be a valley of w containing x0. Then,
for any r1 and r2 satisfying A(�) < r1 < r2 < D(�) and any ε > 0,

lim
λ→∞ inf

r∈[r1,r2]
Px0

λw{|X(eλr ) − m| < ε} = 1.

Let us now prove Proposition 2.1.

Proof of Proposition 2.1. Let w ∈ B. In this case M = ζ and V < − 1
2 . Let

V ′ ≡ V ′(w) = max
x≥b

w(x)

and define b′ ≡ b′(w) in (b, 0) by w(b′) = V ′. Note that b′ is determined uniquely by w

(P-almost surely).

First we consider the case V ′ − V > 1. Let

c ≡ c(w) = sup{x < b′ : w(x) = 0}
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and define w̃ ∈ W by

w̃(x) =
{

w(x) for x ≥ c,

−x + c for x < c.

We can choose a c′ < c satisfying

w̃(b′) < w̃(c′) < 1
2 ,

J̃ :=
{
w̃(c′) − min

c′≤x≤0
w̃(x)

}
∨ 2w̃(c′) < 1.

An application of Lemma 4.1 with a = c′ yields

lim
λ→∞ P0

λw̃{τ(c′) < eλ(J̃+ε)} = 1 (5.1)

for any ε > 0. Since

P0
λw̃{τ(c′) < eλ(J̃+ε)} ≤ P0

λw̃{τ(c) < eλ(J̃+ε)} = P0
λw{τ(c) < eλ(J̃+ε)},

(5.1) implies that

lim
λ→∞ P0

λw{τ(c) < eλθ0} = 1 for some θ0 ∈ (0, 1). (5.2)

On the other hand, we see that � = (ζ, b, b′) is a valley of w of depth 1 containing c. Thus,
there exists a negative number α such that α < ζ and �′ = (α, b, b′) is a valley of w containing
c with A(�′) < 1 < D(�′). (The set of w ∈ B for which there is no α satisfying this condition
is P-negligible [1].) Therefore, by Lemma 5.1, there exists a δ0 > 0 such that, for any r1 and
r2 satisfying 1 − δ0 < r1 < r2 < 1 + δ0 and any ε > 0,

lim
λ→∞ inf

r∈[r1,r2]
Pc

λw{|X(eλr ) − b| < ε} = 1. (5.3)

Using the strong Markov property of {X(t), t ≥ 0, P·
λw} and (5.2) and (5.3), we obtain (2.1)

for any δ ∈ (0, δ0 ∧ (1 − θ0)) in the case V ′ − V > 1.
Next we let V ′ − V < 1. In this case we note that 0 < V ′ < w(ζ) < 1

2 . Thus, we can
choose a ρ′ satisfying V ′ < ρ′ < w(ζ), and note that σ(ρ′) < b. Applying Lemma 4.1 with
a = σ(ρ′) yields

lim
λ→∞ P0

λw{eλ(ρ′−V −ε) < τ(σ (ρ′)) < eλ(ρ′−V +ε)} = 1

for any ε > 0. Since ρ′ − V < 1, it follows that

lim
λ→∞ P0

λw{τ(σ (ρ′)) < eλθ1} = 1 for some θ1 ∈ (0, 1). (5.4)

Also, we can choose a ρ satisfying

w(ζ ) < ρ < 1
2 ,

min{w(x) : σ(ρ) ≤ x ≤ ζ } > V.
(5.5)

(Note that the set of w ∈ B for which there is no ρ satisfying (5.5) is P-negligible.)
An application of Lemma 4.1 with a = σ(ρ) yields

lim
λ→∞ P0

λw{eλ(ρ−V −ε) < τ(σ (ρ)) < eλ(ρ−V +ε)} = 1 (5.6)
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for any ε > 0. Let τλ = τ(σ (ρ)) ∧ τ(eλ/2); we then observe that

lim
λ→∞ P0

λw{τ(σ (ρ)) < τ(eλ/2)} = lim
λ→∞

eλ/2∫ 0
σ(ρ)

eλw(x) dx + eλ/2
= 1, (5.7)

because limλ→∞ λ−1 log
∫ 0
σ(ρ)

eλw(x) dx = ρ < 1
2 . By (5.6) and (5.7), for any ε > 0 we have

lim
λ→∞ P0

λw{eλ(ρ−V −ε) < τλ < eλ(ρ−V +ε)} = 1.

Since ρ − V > 1, for any small δ1 > 0 we may consider the process {X(t), 0 ≤ t ≤
eλ(1+δ1), P0

λw} to be a reflecting Lλw-diffusion process on I ′
λ = [σ(ρ), eλ/2]. We define m′

λw,
a probability measure on I ′

λ, by

m′
λw(E) =

∫
E∩[σ(ρ),0] e−λw(x) dx + ∫

E∩(0,eλ/2] dx∫ 0
σ(ρ)

e−λw(x) dx + eλ/2

for any Borel set E in I ′
λ. This is the invariant probability measure for the reflecting

Lλw-diffusion process on I ′
λ. Notice that, for any ε > 0 satisfying [b − ε, b + ε] ⊂ [σ(ρ), 0],

lim
λ→∞ m′

λw((b − ε, b + ε)) = lim
λ→∞

∫ b+ε

b−ε
e−λw(x) dx∫ 0

σ(ρ)
e−λw(x) dx + eλ/2

= 1, (5.8)

since

lim
λ→∞

1

λ
log

∫ b+ε

b−ε

e−λw(x) dx = −V >
1

2
,

lim
λ→∞

1

λ
log

∫
(b−ε,b+ε)c∩[σ(ρ),0]

e−λw(x) dx < −V.

Recall that σ(ρ′) < b < 0. In the following, ε > 0 is chosen to be small enough that
σ(ρ′) < b − ε and b + ε < 0. Let {XR

λ (t), t ≥ 0} be a reflecting Lλw-diffusion process on I ′
λ

with initial distribution m′
λw defined on a probability space (�̃, P̃). This is a stationary process.

From (5.8), it follows that

lim
λ→∞ P̃{b − ε < XR

λ (0) < b + ε} = 1 (5.9)

and that, for any r1 and r2 satisfying 0 < r1 < r2,

lim
λ→∞ inf

r∈[r1,r2]
P̃{b − ε < XR

λ (eλr ) < b + ε} = 1. (5.10)

By (5.9), (5.10), and the comparison theorem for one-dimensional diffusion processes, we
deduce that

lim
λ→∞ inf

r∈[r1,r2]
Pb−ε

λw {X(eλr ) < b + ε} = 1, (5.11)

lim
λ→∞ inf

r∈[r1,r2]
P0

λw{X(eλr ) > b − ε} = 1, (5.12)

for any r1 and r2 satisfying 0 < r1 < r2 < 1 + δ1.
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Now, by (5.4), we notice that

lim
λ→∞ P0

λw{τ(b − ε) < eλθ1} = 1 for some θ1 ∈ (0, 1). (5.13)

Choose any δ ∈ (0, δ1 ∧ (1−θ1)). Then, by the strong Markov property of {X(t), t ≥ 0, P·
λw},

(5.11), and (5.13), for any r1 and r2 satisfying 1 − δ < r1 < r2 < 1 + δ we obtain

lim
λ→∞ inf

r∈[r1,r2]
P0

λw{X(eλr ) < b + ε} = 1. (5.14)

Combining (5.12) and (5.14) yields (2.1) for V ′ − V < 1. This completes the proof of
Proposition 2.1.

Proof of Theorem 1.3. Using Lemma 2.1 and (1.2), we have

P{P0
w{|λ−2X(eλ) − b(wλ)| < ε} > 1 − ε, Bλ}
= P{P0

λw{|X(eλr(λ)) − b(w)| < ε} > 1 − ε, B}, (5.15)

where r(λ) = 1 − 4λ−1 log λ. The right-hand side of (5.15) converges to 1
2 as λ → ∞, by

virtue of Theorem 2.2, which is derived from Proposition 2.1 as we remarked above. We hence
obtain Theorem 1.3.

6. Proof of Theorem 1.4

We first present a lemma in preparation for the proof of Theorem 1.4.

Lemma 6.1. Let r be a real-valued function of λ > 0 such that r(λ) → 1 (as λ → ∞). Then,
for almost all w ∈ W (with respect to P) and any ε > 0,

lim
λ→∞ P0

λw

{
eλ(H−ε) ≤ max

0≤s≤eλr(λ)
X(s) ≤ eλ(H+ε)

}
= 1.

Proof. We prove that, for almost all w ∈ W,

lim
λ→∞ P0

λw{τ(eλ(H−ε)) < eλr(λ) < τ(eλ(H+ε))} = 1, (6.1)

which clearly implies the lemma. Let w ∈ W and, for any ε such that 0 < ε < H(w), let

M ′ =
⎧⎨
⎩

σ( 1
2 − ε/2) if w ∈ A,

sup
{
x < σ(− 1

2 ) : w(x) − min
x≤y≤σ(−1/2)

w(y) = 1 − ε/2
}

if w ∈ B.

Then we see that

lim
λ→∞ P0

λw{τ(eλ(H−ε)) < τ(M ′)} = lim
λ→∞

∫ 0
M ′ eλw(x) dx∫ 0

M ′ eλw(x) dx + eλ(H−ε)

= 1, (6.2)

since

lim
λ→∞ λ−1 log

∫ 0

M ′
eλw(x) dx = max

M ′≤x≤0
w(x) ≥ H − ε

2
> H − ε.
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Moreover, by applying Lemma 4.1 with a = M ′, we have

lim
λ→∞ P0

λw{τ(M ′) < eλr(λ)} = 1. (6.3)

Combining (6.2) and (6.3) yields

lim
λ→∞ P0

λw{τ(eλ(H−ε)) < eλr(λ)} = 1. (6.4)

Next, for any ε > 0 we let

M ′′ =
⎧⎨
⎩

σ( 1
2 + ε/2) if w ∈ A,

sup
{
x < σ(− 1

2 ) : w(x) − min
x≤y≤σ(−1/2)

w(y) = 1 + ε/2
}

if w ∈ B.

Then we have

lim
λ→∞ P0

λw{τ(eλ(H+ε)) > τ(M ′′)} = lim
λ→∞

eλ(H+ε)∫ 0
M ′′ eλw(x) dx + eλ(H+ε)

= 1, (6.5)

since

lim
λ→∞ λ−1 log

∫ 0

M ′′
eλw(x) dx = max

M ′′≤x≤0
w(x) ≤ H + ε

2
< H + ε.

Moreover, an application of Lemma 4.1 with a = M ′′ yields

lim
λ→∞ P0

λw{τ(M ′′) > eλr(λ)} = 1. (6.6)

By (6.5) and (6.6), we obtain

lim
λ→∞ P0

λw{eλr(λ) < τ(eλ(H+ε))} = 1,

which, combined with (6.4), proves (6.1). The proof of Lemma 6.1 is thus complete.

Proof of Theorem 1.4. By Lemma 2.1 and (1.2), we have∫
W

P(dw) P0
w

{∣∣∣∣ log max0≤s≤eλ X(s)

λ
− H(wλ)

∣∣∣∣ > ε

}

=
∫

W

P(dw) P0
λw

{∣∣∣∣2 log λ + log max0≤s≤eλr(λ) X(s)

λ
− H(w)

∣∣∣∣ > ε

}
, (6.7)

where r(λ) = 1 − 4λ−1 log λ. The right-hand side of (6.7) converges to 0 as λ → ∞, by
Lemma 6.1. We hence obtain Theorem 1.4.
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