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ABSTRACT: Al is becoming an important part of complex products and systems (CoPS), transforming them into
complex intelligent systems (ColS), on which our society depends. Traditionally, system development relied on
model-based approaches, and the emerging data-driven approaches offer new possibilities. This paper explores the
intertwining of model-based and data-driven approaches in emerging ColS through a comparative case study of
their role in cloud-based automotive systems, which are part of the transportation system. The findings show that
data-driven approaches not only complement model-based approaches but also play a pivotal role in the evolution
of ColS.

KEYWORDS: systems engineering (SE), complex intelligent systems, artificial intelligence, large-scale
engineering systems, data driven

1. Introduction

Automobiles have been central to transportation since their mass production in the 1910s. Technological
advances have made them more functional and safer. Despite these improvements, road fatalities remain
high, with 1.19 million deaths globally in 2021 (World Health Organization, 2023) highlighting the
importance of safety-critical automotive systems. The technological evolution in software and hardware
has led to enhanced functionality and safety of automotive systems while increasing their complexity
(Berger & Carlson, 2022). Sensors, GPS, and wireless networks, along with data collection, contribute to
the transportation system transforming them into a system of systems (SoS) (Zhang et al., 2011). An SoS
comprises of independent functioning heterogeneous and interdependent systems (Jamshidi, 2017).
Examples include networked IoT devices, aviation, transportation, and energy systems. These are
Complex Products and Systems (CoPS) (Hobday, 1998), which are hierarchical, technology-focused,
and customized critical infrastructure systems.

Systems engineering (SE) is an interdisciplinary approach for developing and managing CoPS
systematically (Sage & Rouse, 2011). To address SE development complexities, models to represent
different aspects of the system and its evolution are becoming commonplace (Madni et al., 2023; Ramos
et al., 2012). Model-based systems are insufficient as they require updates and modifications to changing
conditions that are observed during system operations over time (Rhodes & Ross, 2010). Characterizing
system behavior through output data measurement is an important part of developing such dynamic
systems (Ljung, 2010). With advancements in Al and machine learning, opportunities arise for
organizations to employ data-driven approaches in systems development (Hutchinson, 2021). This
opening leads to CoPS expand their functionality and capabilities, transforming into Complex Intelligent
Systems (ColS) (Lakemond et al., 2024).
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However, few studies have explored the intertwining of model-based and data-driven approaches in ColS
development. Through a comparative case study of embedded and cloud-based systems within an
automotive system developing organization, the purpose of this research is to understand this
intertwining of model-based and data-driven approaches and the evolution of emerging ColS. The key
research questions are

* How do model-based and data-driven approaches contribute to the evolution of emerging ColS?
* How do these approaches coexist and complement each other?

In the rest of the paper, Section 2 introduces the theoretical background of CoPS development, the role of
models and data, and perspectives on ColS. Section 3 outlines the methodology and research choices
made. Section 4 presents empirical findings from interviews and secondary data. Section 5 compares and
explores the deep intertwining of the approaches. Finally, section 6 highlights insights and contributions
to understanding ColS.

2. Theoretical background

The paper relies on three theoretical strands. First, it examines the nature of Complex Products and
Systems (CoPS) in terms of the complexity of these systems and the range of activities that span from
requirements gathering to project management. The second theoretical basis is derived from systems
engineering, complemented by a framework of the process of engineering the CoPS systems involving
models and data. The third theoretical framework addresses the incorporation of Al and data-driven
approaches in the development of intelligence embedded in the modeling and design of Complex
Intelligent Systems (ColS)

2.1. Complex products and systems and model-based systems engineering

Complex products and systems (CoPS) are high-cost, engineering-intensive products developed in small
batches or as single units (Hobday, 1998, p.690). CoPS are interconnected subsystems with complex,
hierarchical architectures, high degree of novelty and customization (Davies & Hobday, 2005).
Increasing complexity creates emergent behaviors and feedback loops for system redesign (Nightingale,
2000). Further, in systems development, the inclusion of embedded software increases uncertainties,
necessitating dynamic adaptation of system architectures (Davies & Hobday, 2005; Takeishi &
Fujimoto, 2011). The development of CoPS encompasses design, engineering, integration, and project
management (Hobday, 1998).

SE is defined as a transdisciplinary and integrative approach that covers the lifecycle of an engineered
system using technological and management methods rooted in system principles (INCOSE, 2023). It
involves sequential, iterative and evolutionary approaches to mature a system using process models
such as the Vee, incremental spiral or DevOps (INCOSE, 2023), covering development phases such
as requirements definition, architecture design, analysis, integration, verification, validation and
implementation (Forsberg et al., 2005). The formalized application of modeling throughout the
development and later phases of the lifecycle is defined as Model Based System Engineering
(MBSE), where models facilitate collaboration across disciplines and stakeholders (Madni
et al., 2023).

2.2. Importance of data and complex intelligent systems

MBSE addresses system hierarchy and system-subsystem interrelationships (structural and behavioral
aspects). However, it does not adequately cover the more dynamic contextual, temporal, and perceptual
aspects (Rhodes & Ross, 2010). This limitation is significant in the development of CoPS, without data
from testing and prior operations (Ramos et al., 2012; Rhodes & Ross, 2010). Models need to be
dynamically maintained, enabled by the data gathered from sensors using data analytics to support the
development lifecycle (Jiang et al., 2021; Zimmerman et al., 2019).

Data-driven approaches use statistical methods to build models from data. They are used in developing
control systems and critical aspects in complex modeling, e.g., aviation systems often use flight test data
for subsystem models for system identification (Ljung, 2010). There is an increased focus on models that
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are dynamically updated in complex software, including those for SoS that are safety critical, to build
self-adaptation and contextual awareness (Bencomo et al., 2019). The boundaries between development-
time and run-time are shortening (Baresi & Ghezzi, 2010) resulting in a shift from reliance on traditional
processes such as the Vee model to more evolutionary and agile approaches, to facilitate continuous
integration and deployment (Balachandran et al., 2024). Increased computational power and Al have
enabled data-driven approaches such as machine learning (Bishop & Nasrabadi, 2006) to dynamically
learn new models from data (Pillonetto et al., 2025) aiding the digital transformation of CoPS (Lakemond
et al., 2024).

The digital transformation of CoPS into complex intelligent systems (ColS), has increased the
intertwining of technology and management in system development (Lakemond et al., 2024). In
aviation, digital transformation has led to complex platform-based architectures for resource sharing
and reuse between modules (Lakemond & Holmberg, 2022). Safety-critical, CoPS and emerging
ColS potentially expand their boundaries while keeping critical functionalities stable (Yu
et al., 2024).

To explore the intertwining of model-based and data-driven approaches in the development of ColS, the
paper reports an empirical study, situated in an automotive systems developing organization. The study
aims to understand how the two approaches coexist and completement the safety-criticality of
automobiles and the maintenance of the road infrastructure as a ColS. In the reported empirical study,
both are considered as constituents of transportation system of systems.

3. Research design

This section outlines the methodology of this study, the data sources, case context and data analysis.

3.1. Research methodology and design

This research intends to explore the intertwining of model-based and data-driven approaches in ColS. A
phenomena-based approach that includes Al in general (Von Krogh, 2018) and ColS in particular (Yu
et al., 2024) impacting organizations is adopted. This approach connects existing and new theoretical
perspectives, with epistemic opportunities through abductive reasoning (S@tre & Van de Ven, 2022).
We use a case study methodology up close and in-depth, in a real-world setting (Yin, 2018). The main
selection criteria for the case were: 1) both models and data as vital parts of the system ii) it should be an
emerging complex intelligent system, and iii) linked to the future of transportation and mobility. A
comparative case design was adopted to study model-based and data-driven approaches, improving the
robustness of the study and relying on replication logic to unravel the anticipated as well as unexpected,
contrasting results (Yin, 2018).

3.2. Case context

Takeishi and Fujimoto (2011) predicted that information and communication systems would enhance
modularization by separating hardware and software in automobiles. Over time, increasing
digitalization in automobiles with advanced electronics, Al, and sensors has resulted in software-
defined vehicles (Panchal & Wang, 2023). The increased complexity of technologies has made
development challenging, emphasizing continuous integration and evolving architecture (Berger &
Carlsson, 2022). To manage the new digitalization challenges, systems engineering practices have
become essential in the automotive industry (O’Niel, 2023). Today, vehicles can communicate with
other vehicles, people, and infrastructure (Coppola & Silvestri, 2019), making automobiles complex
and intelligent systems.

NIRA Dynamics, Linkoping, Sweden, focuses on high-tech systems and innovative solutions for
vehicle safety, driver support, and road maintenance. The company uses sensor data from various parts
of the automobile, in conjunction with OEMs, to support its products and systems. Both model-based
and data-driven approaches are employed in their development. These solutions are categorized into
two types: embedded systems and cloud-based systems. In embedded systems, there are four products -
tire pressure indicator (TPI), loose wheel indicator (LWI), tread wear indicator (TWI) and tire grip
indicator (TGI), detailed in section 4.1. Cloud-based systems, as detailed in section 4.2, utilize
aggregated data collected from two million vehicles. The first product, road surface alerts (RSA),
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provides drivers with precise, location-specific hazard warnings, including safety alerts such as
aquaplaning or black ice. The second product, road surface conditions (RSC), uses data to map road
conditions and degradation, for real-time insights for road maintenance contractors and municipalities.
See Figure 1 for details.
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Figure 1. Embedded and cloud-based systems

3.3. Data collection and analysis

To understand complex and emergent phenomena, engaging reflective practitioners is essential (Van de
Ven, 2007). Interviews are ideal to scope their technical and managerial expertise (Flick, 2009). We use
semi-structured interviews to guide and constitute primary data. The selection of the interview
participants was guided by purposeful sampling taking into consideration their role, expertise,
experience, and involvement in the product development. See Table 1 for details.

Table 1. Interview details

Respondent System Responsibility Duration
A TPI Software development 60min
B TPI, LWI, TGI, TWI Test lead 83 min
C TWI Product management 75 min
D RSC & RSA System architect 60 min
E LWI System architect 47min
F RSA System architect 68 min
G RSA Design lead and design lead 70 min
H RSC & RSA Interface developer 69 min
I TPI System architect 60 min
J RSC & RSA Team manager 60 min
K TPI System architect 69 min

The selected respondent profiles include product manager, product and system architects, design lead,
software developer, interface developer, test lead, and team manager to ensure diversity of perspectives.
To avoid bias, the selection list ensured a balance between the representatives from embedded and cloud-
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based systems. Questions focused on aspects such as system architecture, detailed product description,
system interconnections, feedback loops, and the use of models and data in development and operation.
A key strength of case study research is its reliance on multiple sources of evidence to enhance the
validity of the study (Eisenhardt, 1989). For this purpose, secondary data (Table 2) were collected. Apart
from information from the company website, product and seminar videos were analyzed to understand
the systems and context. In addition, research articles based on NIRA’s embedded and cloud-based
systems were reviewed. Patents were considered as an important data source due to its technical and
highly structured nature. The selection process of patents was guided by interview insights to ensure
relevance to embedded and cloud-based systems. From an initial screening of 49 patents, 11 were
shortlisted. Five patents, covering the two types of systems, were chosen based on their coverage of
aspects such as the models, data, networked vehicles, use of machine learning and feedback loops.

Table 2. Secondary data

Data source Content details Quantity
Product & seminar System function, interrelations, customer value, system approx. 2hr
videos (online) development, data aggregation
Patents Patents relating to TGI, TWI, TPI, LWI and RSC/RSA 5 patents
Research articles Additional research articles on NIRA Dynamics, including two 5 articles
master theses.
Other online sources Company website -

Analysis of the interviews followed a structured process proposed by Gioia et al. (2013). We use this to
identify the second order concepts and aggregate dimensions from the first order codes of the interview
data. A sample of data structure is shown in Table 3. The emerging concepts were analyzed and
organized thematically to guide the secondary data analysis.

Table 3. Data structure

Aggregate dimen-

Second order concepts sions

Estimating system behavior, model-based understanding of phenomena, regulatory Predictability
compliance, uncertainty in models.

Situational awareness, model adaptation and learning, data flow and integration, data Adaptability

fusion, data reliability, real time estimation.
Data aggregation, synergy of approaches, system scaling, short and long-term orientation. ~ Evolution

4. Findings
In this section, we describe the key characteristics of embedded and cloud-based systems and

interlinkages. We discuss these interconnections emphasizing the critical role of model-based and data-
driven approaches in relation to the evolution of ColS.

4.1. Embedded systems — reliance on models and data

Automobile safety relies on embedded systems, with modern vehicles using up to 100 electronic
control units (ECUs) for various functions, including braking. Among them, the brake ECU plays a key
role in ensuring vehicle stability through the anti-lock braking system (ABS) which detects wheel
lockup using signals from the wheel speed sensor (WSS). Embedded systems, utilizing data from
Original Equipment Manufacturer’s (OEM) hardware such as the brake ECU, offer a cost-effective
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alternative to physical sensors. They also enable the incorporation of future technologies like
autonomous driving and inter-vehicle communication. Empirical data provide an overview of these
systems, highlighting how they embody model-based and data-driven approaches and how these
approaches are interlinked.

TPI detects tire pressure loss indirectly through relative roll radius measurement and spectral analysis of
wheel speed signals, using WSS and inertial sensor data. By measuring relative wheel speed and the
decrease in rolling radius, the tire is modeled as a spring-damper system. Frequency variations in the
measurement indicate pressure loss in a tire. Spectrum analysis of the wheel speeds is also employed to
further analyze the frequencies and create a model of vibration. This can be used to scan eigenfrequencies
and monitor resonance changes. A preprocessing step facilitates the two types of measurements which
are subsequently combined to evaluate and create a warning signal. LWI detects anomalous behavior of a
wheel by comparing the wheel speed from two reference signals. It detects the frequencies and identifies
the amplified signals that correspond to a loose wheel through pattern matching of the speed spectrum.
By measuring the variance against these detection signals, a threshold violation is used to send a warning
signal.

TGI continuously monitors friction between the road and tire through signal analysis. It compares the
signals with a guideline friction map that considers the tire properties and road conditions. TGI measures
the slip from the WSS data and tire stiffness value by iteratively incorporating slip data and tire
characteristics. It uses a friction algorithm that dynamically adapts the friction estimation based on real-
time data from GPS, traction control, and networked vehicles. The tire models can thus be dynamically
updated to accommodate the road conditions. TWI estimates tread wear by measuring roll radius from
tire pressure, wheel speed, and GPS data. It calculates the relative roll radius, using the tire pressure and
vertical load on the tire. It also compensates for temperature and force applied to tires, during acceleration
and braking. The system model uses data from other vehicles in the network to self-adapt and estimate
real behavior.

A model-based approach is ideal for modeling physical phenomena involving friction, speed, position
and vehicle characteristics. The respondents claim that deterministic model-based approaches are
necessary for ensuring system safety. They emphasize the automotive industry’s reliance on safety
standards, highlighting the importance of verifying and validating system functionalities, often using a V
process model. Application development involves breaking down requirements to model functional
components represented by codes in the algorithms, which are later verified and validated to ensure
predictable system behavior.

From the empirical accounts, the embedded systems use a model-based approach as a foundation with
a critical role for data-driven approaches. In the case of TPI, relative roll radius, one of the indirect
methods of measurement, is model-based. There are several physical phenomena that affect the relative
roll radius such as the twisting of the axle due to engine torque on wheels. In the case of spectrum-
based analysis, the indirect method is partly model-based and partly data-driven. Here instead of the
tire, vibration is modeled from measured data. The final output is combined from the two methods
using neural networks to detect threshold signals and to issue warnings. The limitations of traditional
indirect TPI monitoring can be addressed using machine learning models trained on vehicle and tire
pressure data, capturing complex relationships for better assessment and adaptability. The respondents
highlight the challenges of using purely model-based approaches and the need to complement them
with data-driven approaches.

“The most dominant factor in our product is the tire, and the tire is very difficult to

model.” - Respondent C

“ When we have a model but with unknown parameters, then we use the data to tune

that. And I think that if you have a model that is somewhat correct, or at least quite good,

why not use that? Because you can still be data-driven in how you adapt the

parameters.” — Respondent 1
Embedded system development, while model-based, benefits from data-driven approaches using
extensive testing and operational data to refine algorithms. For example, TGI uses cloud data from other
vehicles to adapt the model, enhancing safety and customer value beyond a single automobile. Such a

1620 ICED25



combined approach highlights how the system is evolving through a combination of approaches. The
cloud-based systems extend this evolution by harnessing real-time data to expand the system.

4.2. Cloud-based systems

Cloud-based systems use aggregated data to generate warnings for vehicle users and alerts for
infrastructure maintenance. Data from embedded systems like TGI form a major part of the input to
the cloud systems. The specification of the products defines the time window for creating customer
value dynamically, affecting the architectural requirements of the system. RSA require quick
response times with precise alerts, while RSC rely on data gathered over longer periods, such as a day.
Depending on the customer, data aggregation varies. Aggregation functions hold the state of each
individual road, and the aggregated data can be used in different aspects and timescales, enabling
outputs to be tailored either for immediate vehicle alerts or for long-term roughness analysis,
depending on customer needs. Respondent D, an architect for data streaming, explains the logic in
this quote:

“In live sessions you don’t care about if the road was slippery yesterday, you want to

know if it’s slippery now. But for infrastructure, you want to know if this road becomes

slippery every half an hour, every day during the entire winter because you maybe need

to do some maintenance on the road to decrease the slipperiness recurrence.”
The system architect explains that raw data gathered from the network of vehicles, covering 6 million
roads, is uploaded to the cloud, which NIRA accesses and aggregates into a baseline. A preprocessing
step filters out junk data, removes broken signals and produces data sets based on aspects such as
roughness, friction or weather. Subsequently, data is refined and recombined with additional metadata
from vehicles, such as wiper activity and engine intake humidity, to further enhance the analysis and
build relationships between heterogeneous data types. Subsequently, map matching is performed to link
events to specific locations. Depending on the use case—automotive or infrastructure—customer value is
created from the data. The aggregation time window can be a day or 10 minutes, depending on whether it
is for RSC or RSA, respectively. For example, it could be used for winter maintenance or to alert vehicles
about aquaplaning.
Respondent G, a platform architect focusing on algorithms, highlights that model-based approaches are
foundational for the cloud systems. However, cloud-based systems like RSA, being predominantly data-
driven, are much more complex than the model-based embedded systems. This is reflected in the quote
from respondent G, who has also worked in embedded systems in the past.

“There is a very large system, it is complex and not one person has an overview of the

entire system. And this is quite different from the onboard (embedded) systems that 1

work with before. There you could be one person, and you can know the entire system

and then make a plan for integration.”
Systems such as RSA and RSC have many potential use cases beyond those described earlier. Given
the varied scope, cloud-based systems continue to evolve while remaining intricately interlinked
with embedded systems. One key advantage of cloud-based systems is their enhanced computational
power and scalability independent of OEM’s hardware limitations. In contrast, embedded systems
rely on the limited computational power of the ECUs. Furthermore, data-driven development
provides greater adaptability, enabling the system to evolve further by harnessing the potential
of AL

5. Discussion

Based on a comparative study of embedded and cloud-based systems in the automotive domain, this
paper explores the emergence of ColS and the intertwining of model-based and data-driven approaches
in their development. The study highlights important interconnections between models and data. From
the case study, it is apparent that model-based and data-driven approaches play a vital role in the
development of complex and increasingly intelligent systems.

Embedded systems are an important part of automotive control systems and are intricately connected to
the hardware. They perform safety-critical functions by providing predictability, based on models that

ICED25 1621



encapsulate physical phenomena. From the case study, it is evident that model-based approaches are
vital to ensure that the system performs the intended functions and their inter-relations, covering the
structural and behavioral aspects (Rhodes & Ross, 2010). However, the dynamic nature of systems
makes it challenging to model all aspects, requiring data-driven approaches, as implied by the
empirical data and highlighted by Ramos et al. (2012) and Jiang et al. (2021). Complementing models
with data is necessary to support the structural and behavioral aspects such as external adaptation and
incorporating emergent properties (Rhodes & Ross, 2010; Ljung, 2010). Data from embedded systems
enhances the algorithms and the underlying models improving understanding within the automotive
system’s boundaries and aiding self-adaptation and contextual awareness (cf. Bencomo et al., 2019).
The examples of TGI and TPI, where data enriches the tire model and the pressure estimation,
highlight this.

In contrast, cloud-based systems capture aggregated data from networked automobiles to model road
conditions and integrates heterogeneous data (e.g. additional sensor data, GPS and weather data) for
short-term alerts and long-term road condition analysis, addressing the contextual, temporal and
perceptual aspects of the complex systems (cf. Rhodes and Ross, 2010). Contextual aspects in this
case refer to the dynamic road conditions such as change in friction due to surface degradation in
winter. Temporal aspects refer to the different timescales for which data is produced and consumed,
either for alerts or for actionable maintenance insights. The perceptual aspects involve multiple
stakeholders associated with the system such as the automobile users, and the road infrastructure
contractors. This points to not only data production and consumption but also the generation of
insights into the stakeholder’s preferences (e.g. road use or traffic behavior) where humans and the
system are coupled.

The complex software functionality in automobiles and the use of layered architecture (Berger &
Carlsson, 2022) facilitates reuse and recombination of data and resources. The networked automobile
system here represents an emerging complex intelligent system (ColS) (cf. Lakemond & Holmberg,
2022). The cloud platform not only facilitates the recombination of heterogeneous data (e.g. weather
data, TGI and TPI data, GPS and additional sensor data) and resources (e.g. embedded system
storage and cloud storage) but also acts as a core platform that offers service to the transportation
system. This is in line with the findings of Yu et al. (2024) in the context of platform-based research
arenas.

The comparative case study revealed how ColS is evolving, specifically the network of intelligent
automobiles, supporting the larger transportation system. It highlights the foundational role of model-
based approaches and the equally critical role of data-driven approaches in facilitating the evolution of
the system. On the one hand model-based approaches aid data gathering to scope system behavior in
embedded systems, playing a crucial role in the sub-system’s (automobile) safety. On the other hand,
cloud-based systems facilitate the composition of data from multiple sources to enhance the underlying
models and safety-criticality at a system level. In effect, cloud-based systems rely on model-based
approaches to generate accurate data about road conditions while the data-driven approaches improve the
capability of the ColS to dynamically adapt to the environmental context.

This case study illustrates how model-based and data-driven approaches contribute to the development of
ColS and its evolution. The case study has demonstrated this through the comparison of embedded
systems that operate at the subsystem level and cloud-based systems operate at ColS level.

6. Conclusions

Through a case study, this paper explored the intertwining of model-based and data-driven
approaches in automotive systems representing an emerging ColS constituting an important part of a
larger transportation system. The findings highlight how model-based and data-driven approaches
coexist and complement each other, at various levels of the system and contribute to the evolution
of ColS.

Model-based approaches in embedded systems support the safety-critical functions by increasing the
predictability of system behavior and generate data in the process. Data-driven approaches make use of
the flexibility of the cloud-based platform and use the data generated to provide feedback to embedded
systems, the network (e.g. connected vehicles) and road infrastructure, serving different purposes for
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various end users. It is apparent that model-based approaches are dominant at the subsystem level, in this
case embedded systems. Data-driven approaches play a dual role of complementing model-based
approaches at sub-system level and enabling the expansion of the system, in this case cloud-based
systems. While the two approaches complement each other, they are also autonomous in their
functionality, demonstrating the adaptability of ColS as they evolve.

Although this study focused on the automotive sector and a single case, a set of carefully selected experts,
patents, and additional sources enrich the understanding of the phenomenon. While such a focus may
introduce some selection bias, careful triangulation was employed to enhance the validity of this study.
The findings indicate the significant role of model-based and data-driven approaches in the evolution of
ColS. Furthermore, the platform-based strategies identified in this study are consistent with those
reported in aviation systems and research arenas, increasing the generalizability of the findings. This
provides a basis for further exploration of integrated model-based and data-driven approaches that evolve
ColS towards systems of systems.
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