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Abstract

A finite group is called a CH-group if for every x, y ∈ G \ Z(G), xy = yx implies that ‖CG(x)‖ =
‖CG(y)‖. Applying results of Schmidt [‘Zentralisatorverbände endlicher Gruppen’, Rend. Sem. Mat.
Univ. Padova 44 (1970), 97–131] and Rebmann [‘F-Gruppen’, Arch. Math. 22 (1971), 225–230]
concerning CA-groups and F-groups, the structure of CH-groups is determined, up to that of CH-groups
of prime-power order. Upper bounds are found for the derived length of nilpotent and solvable CH-
groups.
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1. Introduction

In 1953, Ito published a paper [I] dealing with the class of F-groups, consisting of
finite groups G in which for every x, y ∈ G \ Z(G), CG(x)≤ CG(y) implies that
CG(x)= CG(y). An important subclass of F-groups is the class of I-groups, in which
all centralizers of noncentral elements are of the same order. Ito proved in [I] that I-
groups are nilpotent and are direct products of an abelian group and a group of prime-
power order. Only 49 years later, Ishikawa showed in [Ish] that groups in I are of class
at most 3. For a simpler proof, see the papers by Mann [M1] and Isaacs [Is]. The
F-groups were investigated by Rebmann in [R]. He determined their structure, up to
that of F-groups which are central extensions of groups of prime-power order.

Another important subclass of F-groups is the class of CA-groups, consisting of
groups in which all centralizers of noncentral elements are abelian. The CA-groups
(or rather the equivalent class of M-groups) were investigated by Schmidt in [S] (see
also [S1, Theorem 9.3.12]). He determined their structure up to that of CA-groups
which are central extensions of groups of prime-power order. It is very similar to the
structure of F-groups.

The first and the third authors were partially supported by the MIUR project ‘Teoria dei gruppi e
applicazioni’.
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In this paper we investigate the class of CH-groups, consisting of finite groups
in which noncentral commuting elements have centralizers of the same order.
We consider the centralizers in CH-groups to be in some sense homogeneous. We
show in Theorem 4.1 that the classes F, CA and CH satisfy the relation

CA⊂ CH⊂ F,

with both inclusions being proper.
Concerning CH-groups, our aim is to determine their structure, up to that of CH-

groups of prime-power order. In order to achieve that aim, we first improve a little the
results of Schmidt and Rebmann, so that now the structure of CA-groups and F-groups
is determined up to CA-groups and F-groups of prime-power order, respectively. Their
results, in the improved form, are presented together in Theorem A (see Section 3).
Applying Theorem A, we determine in Theorem 4.2 the structure of CH-groups, up to
that of CH-groups of prime-power order (see Section 4). Our results in Theorem 4.2
are analogous to those of Theorem A.

Theorem 4.2 enables us to describe the structure of nonsolvable CH-groups (see
Corollary 4.3), which, in view of Theorem A, coincide with nonsolvable CA-groups
and nonsolvable F-groups. We also determine the structure of nilpotent CH-groups,
CA-groups and F-groups (see Corollary 4.4).

In Section 5, we find upper bounds for the derived length of nilpotent CH-groups
(see Theorem 5.2) and of solvable CH-groups (see Theorem 5.3). In both cases, the
bounds are the best possible.

In our final Section 6, we prove in Theorem 6.3 that if G is a CH-group of p-power
order for some prime p, then G is either a CA-group or its nilpotency class is at
most 2p. Moreover, we show in Corollary 6.2 that the derived length of F-groups of
2-power order is at most 2.

2. Preliminary results

The aim of this section is twofold: firstly, we present a summary of the definitions
which are relevant to our discussion; and secondly, we quote or prove three important
lemmas, which will be used later.

In this paper all groups are finite. The basic definitions are:
• a group G is a CH-group (written G ∈ CH) if for every x, y ∈ G \ Z(G),

xy = yx implies that |CG(x)| = |CG(y)|;
• a group G is a CA-group (G ∈ CA) if CG(x) is abelian for every x ∈ G \ Z(G);
• a group G is an F-group (G ∈ F) if for every x, y ∈ G \ Z(G), CG(x)≤ CG(y)

implies that CG(x)= CG(y).
We now turn to the three lemmas. Our first lemma is well known (see [Ro1,

Theorem 5.1.11]). Here Z2(G) denotes the second center of G.

LEMMA 2.1. For every group G, [G ′, Z2(G)] = 1.

The second lemma is a recent nice result of Isaacs (see [Is, Lemma 1]).
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LEMMA 2.2. Let x be a noncentral element of G and let A be an abelian normal
subgroup of G. If a ∈ A, then |CG([a, x])|> |CG(x)|.

For our final lemma, we need some additional notation. If a group B acts on a
group A, we denote by [A, [B]1] (or [A, B]) the commutator subgroup of A and B in
the semidirect product AB. For an integer n ≥ 2, we define [A, [B]n] by the recursion
formula [A, [B]n] = [[A, [B]n−1], B]. Using this notation, the nilpotency class of a
nilpotent group G 6= 1 is the smallest integer n such that [G, [G]n] = 1.

LEMMA 2.3. Let G be a p-group of exponent p and let A be a normal abelian
subgroup of G. If G/CG(A) is abelian, then [A, [G]p−1] = 1.

PROOF. Write Ḡ = G/CG(A). Then Ḡ is a group of automorphisms of exponent p
of the elementary abelian p-group A. Since G has exponent p, for every g ∈ G and
a ∈ A we have both (g−1)p

= 1 and (ag−1)p
= 1. Therefore,

a · ag
· ag2
· · · ag p−1

= a · ag
· ag2
· · · ag p−1

· (g−1)p
= (ag−1)p

= 1.

Hence, viewing Ḡ embedded in the ring of the GF(p)-endomorphism of A, the
minimal polynomial of every g ∈ Ḡ divides q(X)= 1+ X + · · · + X p−1. Since
Ḡ is abelian, [Ro, Lemma 7.19] implies that [A, [Ḡ]p] = [A, [Ḡ]p−1]. But Ḡ =
G/CG(A), so it follows that [A, [G]p] = [A, [G]p−1]. Thus [B, G] = B, where
B = [A, [G]p−1] and hence B = 1, as G is a nilpotent group. 2

3. The structure of CA-groups and F-groups

It is easy to see that the class of CA-groups coincides with the class of M-groups,
consisting of groups in which all centralizers of noncentral subgroups are abelian. The
M-groups were investigated by Schmidt in [S] (see also [S1, Theorem 9.3.12]). He
determined their structure, up to that of M-groups which are central extensions of
groups of prime-power order. We shall refer to his results in the language of CA-
groups.

F-groups were investigated by Rebmann in [R]. He also determined their structure,
up to that of F-groups which are central extensions of groups of prime-power order.
Moreover, the structure of F-groups, as described by Rebmann, is very similar to the
structure of CA-groups, as described by Schmidt.

The results of Schmidt and Rebmann will be stated together as our Theorem A.
However, we state their condition (III) in a different form, in order to emphasize that as
a matter of fact, their results determine the structure of CA-groups and F-groups up to
that of CA-groups and F-groups of prime-power order, respectively. In the following
Proposition 3.1, which precedes Theorem A, we show that the two forms of condition
(III) are equivalent.

PROPOSITION 3.1. Let G be a nonabelian group and write Z = Z(G). Suppose that
G/Z is a Frobenius group with Frobenius kernel K/Z and Frobenius complement
L/Z and let p denote a fixed prime. Then the following statements are equivalent.
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(a) K/Z is a p-group, Z(K )= Z and L is abelian.
(b) K = PZ, where P is a normal Sylow p-subgroup of G, Z(P)= P ∩ Z and

L = HZ, where H is an abelian p′-subgroup of G.

Moreover, if (a) and (b) hold, then K is a CA-group (F-group, CH-group) if and only
if P is a CA-group (F-group, CH-group).

PROOF. Suppose, first, that (a) holds. Since (|L/Z |, |K/Z |)= 1, K/Z is a normal
Sylow p-subgroup of G/Z . Hence K is a normal nilpotent subgroup of G containing
a Sylow p-subgroup P of G and K = PZ = P × Z p′ , where Z p′ is the p-complement
in both K and Z . In particular, P E G. Moreover, Z(P)= Z(K ) ∩ P = Z ∩ P . Since
L ∩ K = Z , the Sylow p-subgroup Z p of Z is a normal Sylow p-subgroup of L and
there exists a p-complement H in L . Thus L = HZ and since L is abelian, H is an
abelian p′-subgroup of G. Hence (b) holds.

Conversely, suppose that (b) holds. Then K/Z is a p-group, L is abelian and
Z(K )= Z(P)Z = (P ∩ Z)Z = Z . Hence (a) holds.

Suppose, next, that (a) and (b) hold. We shall prove the following:

(i) K is a CA-group if and only if P is a CA-group;
(ii) K is an F-group if and only if P is an F-group;
(iii) K is a CH-group if and only if P is a CH-group.

We start with some notation and with a few remarks, which will be used freely in the
proofs below. We write Z = Z p × Z p′ , where Z p is the Sylow p-subgroup of Z and
Z p′ is its p-complement. Since K = PZ , it follows that K = P × Z p′ and if x ∈ K ,
then x = uz, where u ∈ P and z ∈ Z p′ . Moreover,

CK (x)= CP(u)× Z p′

and if x ∈ K \ Z(K ), then u ∈ P \ Z(P). In particular, if x ∈ P , then CK (x)=
CP(x)× Z p′ .

(i) Suppose, first, that K is a CA-group and x ∈ P \ Z(P). Since P ≤ K , it follows
that x ∈ K \ Z(K ) and K ∈ CA implies that CK (x) is abelian. Thus CP(x) is also
abelian and it follows that P is a CA-group.

Conversely, suppose that P is a CA-group and let x ∈ K \ Z(K ). Then CK (x)=
CP(u)× Z p′ for a suitable u ∈ P \ Z(P) and P ∈ CA implies that CP(u) is abelian.
Thus CK (x) is abelian and it follows that K is a CA-group.

(ii) Suppose, first, that K is an F-group and x, y ∈ P \ Z(P) satisfy CP(x)≤
CP(y). Since P ≤ K , it follows that x, y ∈ K \ Z(K ) and

CK (x)= CP(x)× Z p′ ≤ CP(y)× Z p′ = CK (y).

But K ∈ F, so CK (x)= CK (y) and hence CP(x)= CP(y), implying that P is an F-
group.

Conversely, suppose that P is an F-group and x, y ∈ K \ Z(K ) satisfy CK (x)≤
CK (y). Then

CK (x)= CP(u)× Z p′ ≤ CK (y)= CP(v)× Z p′,
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for suitable u, v ∈ P \ Z(P). Hence CP(u)≤ CP(v), and P ∈ F implies that CP(u)=
CP(v). Thus CK (x)= CK (y) and it follows that K is an F-group.

(iii) Suppose, first, that K is a CH-group and x, y ∈ P \ Z(P) satisfy xy = yx .
Since P ≤ K , it follows that x, y ∈ K \ Z(K ) and K ∈ CH implies that |CK (x)| =
|CK (y)|. Hence |CP(x)× Z p′ | = |CP(y)× Z p′ |, which implies that |CP(x)| =
|CP(y)|. It follows that P is a CH-group.

Conversely, suppose that P is a CH-group and x, y ∈ K \ Z(K ) satisfy xy = yx .
As K = PZ , there exist u, v ∈ P \ Z(P) and z1, z2 ∈ Z p′ such x = uz1, y = vz2
and uv = vu. Since P ∈ CH, it follows that |CP(u)| = |CP(v)| and consequently
|CK (x)| = |CP(u)× Z p′ | = |CP(v)× Z p′ | = |CK (y)|, which implies that K is a
CH-group. 2

We now state Theorem A, which presents the classification theorems of Schmidt [S]
(see also [S1, Theorem 9.3.12]) and Rebmann [R] together. As mentioned above,
we state condition (III) in a different form. Our form corresponds to condition (b)
of Proposition 3.1, which by that proposition is equivalent to the statements of the
above authors, which correspond to condition (a) of Proposition 3.1. In Theorem A,
the structure of CA-groups and F-groups is determined, up to that of CA-groups and
F-groups of prime-power order, respectively. We denote by π(G) the set of primes
dividing the order of the group G.

THEOREM A. Let G be a nonabelian group and write Z = Z(G). Then G is a CA-
group (F-group) if and only if it is of one of the following types.

(I) G is nonabelian and has an abelian normal subgroup of prime index.
(II) G/Z is a Frobenius group with Frobenius kernel K/Z and Frobenius

complement L/Z, where K and L are abelian.
(III) G/Z is a Frobenius group with Frobenius kernel K/Z and Frobenius

complement L/Z, such that K = PZ, where P is a normal Sylow p-subgroup of
G for some p ∈ π(G), P is a CA-group (F-group), Z(P)= P ∩ Z and L = HZ,
where H is an abelian p′-subgroup of G.

(IV) G/Z ' S4 and if V/Z is the Klein four group in G/Z, then V is nonabelian.
(V) G = P × A, where P is a nonabelian CA-group (F-group) of prime-power order

and A is abelian.
(VI) G/Z ' PSL(2, pn) or PGL(2, pn) and G ′ ' SL(2, pn), where p is a prime and

pn > 3.
(VII) G/Z ' PSL(2, 9) or PGL(2, 9) and G ′ is isomorphic to the Schur cover of

PSL(2, 9).

We conclude this section with a proposition concerning CA-groups. We denote the
derived length of G by dl(G).

PROPOSITION 3.2. The following statements hold.

(a) The group G is a CA-group if and only if whenever x, y ∈ G \ Z(G) satisfy
xy = yx, then CG(x)= CG(y).
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(b) If G is a nilpotent CA-group, then dl(G)≤ 2 and that bound is the best possible.
(c) If G is a solvable CA-group, then dl(G)≤ 4 and that bound is the best possible.

PROOF. (a) If G is a CA-group and x, y ∈ G \ Z(G) satisfy xy = yx , then CG(x)
is abelian and y ∈ CG(x). Hence CG(x)≤ CG(y) and, by symmetry, also CG(y)≤
CG(x). Thus CG(x)= CG(y), as claimed.

Conversely, suppose that CG(x)= CG(y)whenever x, y ∈ G \ Z(G) and xy = yx .
Let z ∈ G \ Z(G) and let u ∈ CG(z) \ Z(G). Since uz = zu, it follows from our
assumptions that CG(z)= CG(u) and hence u ∈ Z(CG(z)). Thus CG(z) is abelian,
which implies that G is a CA-group.

(b) If G is a nilpotent CA-group, then either G is abelian or Z2(G) > Z(G). In the
latter case, let g ∈ Z2(G) \ Z(G). Then, by Lemma 2.1, G ′ ≤ CG(g) and hence G ′ is
abelian. It follows that dl(G)≤ 2. On the other hand, each group of order p3 for some
prime p is a CA-group, so that bound is the best possible.

(c) Let G be a solvable CA-group. We may assume that G is nonabelian. Then, by
Theorem A applied to CA-groups, G is of one of the types (I)–(V) of that theorem.
If G is of type (I) or (II), then clearly dl(G)= 2. If G is of type (III), then G = P L ,
where P is a nilpotent CA-group which is normal in G and L is abelian. It follows by
(b) that dl(G)≤ 3. If G is of type (IV), then dl(G)≤ 4 since dl(S4)= 3. Finally, if G
is of type (V), then it follows by (b) that dl(G)≤ 2. Thus in the solvable case we have
dl(G)≤ 4. On the other hand, the group GL(2, 3) is a solvable CA-group of type (IV)
and dl(GL(2, 3))= 4, so that bound is the best possible. 2

4. Main results

Our first main result determines the inclusion relations between the classes of
groups dealt with in this paper.

THEOREM 4.1. The following inclusion relations hold:

CA⊂ CH⊂ F.

PROOF. It follows by Proposition 3.2(a) that every CA-group is a CH-group.
We now prove that every CH-group is an F-group. Let G be a CH-group and let

x, y ∈ G \ Z(G). Suppose that CG(x)≤ CG(y). Then x ∈ CG(y) and since G is a
CH-group, it follows that |CG(x)| = |CG(y)|. Thus CG(x)= CG(y) and hence G is
an F-group, as claimed.

It will be shown in Examples A and B that these inclusions are proper. 2

EXAMPLE A. There exist CH-groups which are not CA-groups. Consider the group
G = (C2 × D8) : C2 which can be described by the following presentation:

G = 〈a, b, c, d | a2
= b2
= c2
= d2

= (ac)2 = (bd)2 = (cd)2 = (abd)2

= (abc)2 = (bc)4 = 1〉.
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Observe that G = SmallGroup(32,49) in [GAP]’s small groups library. It can be
checked using [GAP] that G is a CH-group, but not a CA-group.

We also refer to Example C for another example of a CH-group that is not a CA-
group.

EXAMPLE B. There exist F-groups which are not CH-groups. Consider the group

G = 〈a, b, c, d, e, f | a2
= b2
= c2
= d2

= e2
= f 2

= (ab)2 = (bc)2

= (cd)2 = (de)2 = (e f )2 = ( f a)2 = (ad)2 = (be)2 = (c f )2

= (abde)2 = (bce f )2 = (cd f a)2 = 1〉.

One can check, using [GAP], that G is an F-group of exponent 4. However, G is
not a CH-group. To see that, observe that |G| = 29, |Z(G)| = 8 and the class sizes
of G are {1, 4, 8}. Hence there exist x, y ∈ G \ Z(G) such that |CG(x)| = 27 and
|CG(y)| = 26. Thus CG(x) ∩ CG(y) > Z(G) and there exists g ∈ G \ Z(G) such that
x, y ∈ CG(g). So, either |CG(g)| 6= |CG(x)| or |CG(g)| 6= |CG(y)| and hence G is
not a CH-group.

We now state and prove our second main result. This is Theorem 4.2, in which
we describe the structure of CH-groups using Theorems 4.1 and A. Theorem 4.2 is
analogous to Theorem A, and it determines the structure of CH-groups up to that of
CH-groups of prime-power order.

THEOREM 4.2. Let G be a nonabelian group and write Z = Z(G). Then G is a CH-
group if and only if it is of one of the following types.

(I) G is nonabelian and has an abelian normal subgroup of prime index.
(II) G/Z is a Frobenius group with Frobenius kernel K/Z and Frobenius

complement L/Z, where K and L are abelian.
(III) G/Z is a Frobenius group with Frobenius kernel K/Z and Frobenius

complement L/Z, such that K = PZ, where P is a normal Sylow p-subgroup of
G for some p ∈ π(G), P is a CH-group, Z(P)= P ∩ Z and L = HZ, where H
is an abelian p′-subgroup of G.

(IV) G/Z ' S4 and if V/Z is the Klein four group in G/Z, then V is nonabelian.
(V) G = P × A, where P is a nonabelian CH-group of prime-power order and A is

abelian.
(VI) G/Z ' PSL(2, pn) or PGL(2, pn) and G ′ ' SL(2, pn), where p is a prime and

pn > 3.
(VII) G/Z ' PSL(2, 9) or PGL(2, 9) and G ′ is isomorphic to the Schur cover of

PSL(2, 9).

PROOF. Assume, first, that G is a nonabelian CH-group. We shall prove that then
G is one of the groups described in (I)–(VII). By Theorem 4.1, we know that G is
an F-group. Hence we may apply Theorem A, which determines the structure of
F-groups. In the following, we shall denote by (1)–(7) the conditions (I)–(VII) of
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Theorem A applied to F-groups, respectively. So we may assume that G satisfies one
of the conditions (1)–(7) applied to F-groups.

Observe, first, that if G satisfies (1), (2), (4), (6) and (7), then G satisfies (I), (II),
(IV), (VI) and (VII), respectively.

Next, suppose that G satisfies (3). We wish to show that G satisfies (III). We need
only prove that P is a CH-group. Let x, y ∈ P \ Z(P)= P \ (Z ∩ P) satisfy xy =
yx . Since PZ/Z is the Frobenius kernel of G/Z , it follows that CG(x), CG(y)≤ PZ .
Hence CG(x)= CP(x)× Z p′ and CG(y)= CP(y)× Z p′ , where Z p′ denotes the
p-complement of Z . But G is assumed to be a CH-group and x, y ∈ G \ Z , so
|CG(x)| = |CG(y)|. Thus |CP(x)| = |CP(y)| and it follows that P is a CH-group,
as required.

Finally, we show that if G satisfies (5), then it also satisfies (V). By (5), G = P × A,
where P is a nonabelian group of prime-power order and A is abelian. Since G is a
CH-group, it follows immediately that P is a CH-group and thus G satisfies (V). This
completes the proof in one direction.

Suppose, now, that G is a nonabelian group satisfying one of the conditions (I)–
(VII). We wish to show that then G is a CH-group.

It follows by Theorem A, that groups satisfying (I), (II), (IV), (VI) and (VII) are
CA-groups and hence, by Theorem 4.1, they are CH-groups, as required.

Suppose, next, that G satisfies (III). Let x, y ∈ G \ Z satisfy xy = yx . We need to
show that |CG(x)| = |CG(y)|.

If x ∈ G \ K , then also y ∈ G \ K . Thus x and y are elements of conjugates of
L , say x ∈ Lu

\ Z and y ∈ Lv \ Z for suitable u, v ∈ G. It follows that CG(x)≤ Lu

and CG(y)≤ Lv and since Lu, Lv are abelian, we may conclude that CG(x)= Lu and
CG(y)= Lv . But |Lu

| = |Lv|, so |CG(x)| = |CG(y)|, as required.
So assume that x ∈ K \ Z = PZ \ Z and hence also y ∈ PZ \ Z . Then

CG(x), CG(y)≤ PZ and if x = uz1, y ∈ vz2, where u, v ∈ P and z1, z2 ∈ Z ,
then CG(x)= CP(u)× Z p′ and CG(y)= CP(v)× Z p′ , where Z p′ denotes the
p-complement of Z . As Z(P)= P ∩ Z , it follows that u, v ∈ P \ Z(P) and as xy = yx ,
we have uv = vu. Since P ∈ CH, it follows that |CP(u)| = |CP(v)|, which implies that
|CG(x)| = |CG(y)|, as required. Thus, if G satisfies (III), then G is a CH-group.

Suppose, finally, that G satisfies (V). Then G = P × A, where P is a nonabelian
CH-group of prime-power order and A is abelian. It follows easily that G is a CH-
group in this case too. 2

The relations between nonsolvable CH-groups, CA-groups and F-groups are
described in the following remark.

REMARK A. It is easy to see from Theorems A and 4.2 that the nonsolvable CH-
groups coincide with the nonsolvable CA-groups and with the nonsolvable F-groups.

In particular, Theorem A and Theorem 4.2 yield the following corollary.

COROLLARY 4.3. If G is a nonsolvable CH-group (F-group, CA-group), then G is a
central extension of either PSL(2, q) or PGL(2, q), for some prime-power q > 3.
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On the other hand, it follows from Theorems A and 4.2 that nilpotent CH-groups,
CA-groups and F-groups have the following similar structure.

COROLLARY 4.4. If G is a nonabelian nilpotent CH-group (CA-group, F-group),
then G = P × A, where P is a nonabelian CH-group (CA-group, F-group) of prime-
power order and A is abelian.

PROOF. If G is a nonabelian nilpotent CH-group (CA-group, F-group), then by
Theorem 4.2 (Theorem A) either G is nonabelian and has an abelian normal subgroup
of prime index, or G = P × A, where P is a nonabelian CH-group (CA-group,
F-group) of prime-power order and A is abelian. It is clear that nilpotency implies
that also in the former case, the structure of G is as described in the latter case. 2

5. Nilpotent and solvable CH-groups

The main results in this section are upper bounds for the derived length of nilpotent
CH-groups (see Theorem 5.2) and of solvable CH-groups (see Theorem 5.3).

We start with an auxiliary proposition, the proof of which uses Lemmas 2.1, 2.2 and
arguments from [Is].

PROPOSITION 5.1. Let G be a nilpotent CH-group. Then there exists a normal
subgroup M of G such that G ′ ≤ M and M ′ is abelian. Moreover, [M ′, M] ≤ Z(G).

PROOF. We may clearly assume that G is nonabelian. Write Z = Z(G) and let
g ∈ Z2(G) \ Z . Denote |CG(g)| = n. For every h ∈ G we have gh

= g[g, h] and
[g, h] ∈ Z , which implies that 〈gG

〉 is an abelian normal subgroup of G. Let A be
a maximal abelian normal subgroup of G containing 〈gG

〉. Clearly Z ≤ A. Since
G is nilpotent, A satisfies CG(A)= A. Moreover, G being a CH-group implies that
|CG(y)| = n for every y ∈ A \ Z .

Consider now the set
S = {x ∈ G : |CG(x)| = n}

and define M = 〈S〉. If x ∈ S and a ∈ A, then Lemma 2.2 implies that |CG([a, x])|>
|CG(x)| = n and hence [a, x] ∈ Z . It follows that [A, M] ≤ Z , so [A, M, M] = 1
and the three-subgroups lemma yields [M ′, A] = 1. Thus M ′ ≤ CG(A)= A, which
implies that M ′ is abelian and [M ′, M] ≤ [A, M] ≤ Z .

It remains only to show that G ′ ≤ M . Since G is a CH-group, we know that
CG(g) \ Z ⊆ S and hence CG(g)⊆ M ∪ Z . As g 6∈ Z , it follows that CG(g)≤ M
and Lemma 2.1 yields

G ′ ≤ CG(Z2(G))≤ CG(g)≤ M,

as required. 2

THEOREM 5.2. If G is a nilpotent CH-group, then dl(G)≤ 3 and this bound is the
best possible.
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PROOF. By Proposition 5.1 there exists M ≤ G such that G ′ ≤ M and M ′′ = 1. Hence
G ′′′ = 1, which implies that dl(G)≤ 3. It will be shown in Example C that this bound
is the best possible. 2

EXAMPLE C. There exist nilpotent CH-groups G such that dl(G)= 3. Consider the
group G = SmallGroup(57, 348) in [GAP]’s small groups library. It is defined as

G = 〈a, b | a5
= b5
= [b, c] = [c, e] = [d, e] = [a, f ] = [b, f ] = [c, f ]

= [d, f ] = [e, f ] = [a, g] = [b, g] = [c, g] = [d, g] = [e, g] = 1〉,

where

c = [a, b], d = [a, c], e = [a, d], f = [a, e], g = [b, d].

It can be checked using [GAP] that G is a CH-group of order 57 and that dl(G)= 3.
Moreover, we observe by Proposition 3.2(b) that G is not a CA-group.

Theorems 4.2 and 5.2 yield an upper bound for the derived length of solvable CH-
groups.

THEOREM 5.3. If G is a solvable CH-group, then dl(G)≤ 4 and that bound is the
best possible.

PROOF. We may assume that G is nonabelian. Thus, by Theorem 4.2, G is of one of
the types (I)–(V) of that theorem. If G is of type (I) or (II), then clearly dl(G)= 2. If
G is of type (III), then G = P L , where P is a nilpotent CH-group that is normal in G
and L is abelian. It follows by Theorem 5.2 that dl(G)≤ 4. If G is of type (IV), then
dl(G)≤ 4 since dl(S4)= 3. Finally, if G is of type (V), then it follows by Theorem 5.2
that dl(G)≤ 3. Thus in the solvable case we have dl(G)≤ 4. On the other hand, the
group GL(2, 3) is a solvable CH-group of type (IV) and dl(GL(2, 3))= 4, so that
bound is the best possible. 2

Concerning an upper bound for the nilpotency class of nilpotent CH-groups, we
have the following (negative) remark.

REMARK B. There exists no upper bound for the nilpotency class of nilpotent CA-
groups, and consequently no such bound exists for nilpotent CH-groups either. Indeed,
more precisely, for any prime p, the nilpotency class of CA-groups of p-power order
is unbounded. For instance, the wreath product C pn o C p is a CA-group, and its
nilpotency class is n(p − 1)+ 1, where n can be any positive integer.

6. CH-groups and F-groups of prime-power order

We conclude this paper with two results concerning CH-groups and F-groups of
prime-power order. Here p denotes a prime number.

Our first result deals with the derived length of F-groups, whose order is a power
of 2 (see Corollary 6.2). For this result, as well as for the next one concerning the
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nilpotency class of CH-groups, we need the following lemma, which relies upon a
result of Mann in [M].

LEMMA 6.1. Let G be a p-group. If G is an F-group and

exp(G/Z(G)) > p,

then G is a CA-group. Moreover, if G is nonabelian, then its class sizes are {1, p, pa
}

for some integer a > 1.

PROOF. We may assume that G is nonabelian. By [M, theorem on p. 82], G has an
abelian normal subgroup A of index p. If x ∈ A \ Z(G), then CG(x)= A. So, if
y ∈ G \ A, then y p

∈ Z(G) and CG(y)= Z(G)〈y〉. Hence, CG(g) is abelian for every
g ∈ G \ Z(G) and G is a CA-group. Moreover, if g ∈ G, then

|CG(g)| ∈ {|G|, |A|, p|Z(G)|}.

As exp(G/Z(G)) > p, we must have p|Z(G)|< |A|. 2

COROLLARY 6.2. Let G be a 2-group. If G is an F-group, then dl(G)≤ 2. More
generally, this inequality holds for nilpotent CA-groups, CH-groups and F-groups G,
with G/Z(G) of even order.

PROOF. Let G be an F-group of a 2-power order. If exp(G/Z(G)) > 2 then,
by Lemma 6.1, G is a CA-group and hence dl(G)≤ 2 by Proposition 3.2. If
exp(G/Z(G))≤ 2, then G/Z(G) is abelian and again dl(G)≤ 2.

It follows, by Theorem 4.1, that if G is either a CA-group or a CH-group of 2-power
order, then dl(G)≤ 2. Finally, if G is a nonabelian nilpotent CA-group, CH-group or
F-group, with G/Z(G) of even order, then, by Corollary 4.4, G = P × A, where P is
a nonabelian 2-group which is a CA-group, CH-group or F-group, respectively, and
A is abelian. Hence it follows from our opening results that dl(G)≤ 2. 2

Our last result deals with the nilpotency class of CH-groups of prime-power order.
By Remark B, the nilpotency class of CA-groups of p-power order is unbounded. So
it is quite surprising that the nilpotency class of CH-groups of p-power order, which
are not CA-groups, is bounded by 2p.

THEOREM 6.3. Let G be a p-group. If G is a CH-group, then one of the following
holds:

(a) G is a CA-group; or
(b) the nilpotency class of G is at most 2p.

PROOF. Suppose that G is a CH-group. We may clearly assume that Z = Z(G) < G.
If exp(G/Z) > p, then G is a CA-group by Lemma 6.1. Hence it suffices to prove

that if exp(G/Z)= p, then (b) holds.
So suppose that exp(G/Z)= p. By Proposition 5.1, there exists a normal subgroup

M of G such that G ′ ≤ M , M ′ is abelian and [M ′, M] ≤ Z . Write G = G/Z and
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use the bar convention. We first apply Lemma 2.3 to the factor group G/M ′ with
respect to the abelian normal subgroup M/M ′, recalling that G

′
≤ M . It follows that

[M/M ′, [G/M ′]p−1] = 1, so [M, [G]p−1] ≤ M ′.
Next, we apply Lemma 2.3 to G, with respect to the abelian normal subgroup M ′.

Observe that M centralizes M ′ and hence G/CG(M
′) is abelian. By Lemma 2.3,

[M ′, [G]p−1] = 1. As [M, [G]p−1] ≤ M ′, we obtain [M, [G]2p−2] = 1 and hence
[M, [G]2p−2] ≤ Z . Finally, recalling that G ′ ≤ M , we conclude that

[G, [G]2p] = [G
′, [G]2p−1] ≤ [[M, [G]2p−2], G] = 1

and hence the nilpotency class of G is at most 2p. 2
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