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Abstract. We define a natural discriminant for a hyperelliptic cu’ef genusg over a fieldK as a
canonical element of th@g + 4)th tensor power of the maximal exterior product of the vectorspace
of global differential forms onX. If v is a discrete valuation oA and X has semistable reduction
at v, we compute the order of vanishing of the discriminant at terms of the geometry of the
reduction ofX overwv. As an application, we find an upper bound for the Arakelov self-intersection
of the relative dualizing sheaf on a semistable hyperelliptic arithmetic surface.
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0. Introduction

In the present paper we introduce a natural discriminant for hyperelliptic curves of
genug; > 2. Itwill be defined as a canonical element of (Bg+4)th tensor power

of the maximal exterior product of the vectorspace of global differential forms on
the curve. To fix ideas, let us first consider the analogous case of an elliptic curve
E over afieldK, given, say, by the Weierstrald equation

yz + a1y + azy = 3+ agxz + aqx + ag.

Itis well known that while its discriminamk € K depends on the special equation,
the element\p x = A(dz/(2y + a1z + a3))®™ € (H(E,Qp,,))"" is a
genuine invariant ofZ. Moreover, ifv is a discrete valuation ak andO, C K

is the associated discrete valuation ring, we may regarg, as a rational section
Ag s of the bundlgr,wg,5)®*? onS = Spea?d,, wherer: £ — S is the minimal
regular model offZ over S andwg 5 is the relative dualizing sheaf. Assuming
semistable reduction af there is a simple geometric interpretation of the order of
vanishing ofA¢ /¢ atw: Itis the number of singular points of the geometric special
fibre of € — S. Our main Theorem (3.1) is a generalization of this fact to the case
of hyperelliptic curves. Given a semistable cuf/¢S with smooth hyperelliptic
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generic fibreX/ K, it gives a formula for the order of vanishing of the discriminant
Axss € (detH(X, Q% ,))*® ™4 of X atv in terms of the geometry of the
special fibre. On the way to this formula we give an explicit construction of a
regular model ofX over a finite extension d§ as the ramified double covering of

a pointed prestable curve of genus zero. As an application, we find an upper bound
for the Arakelov self-intersection? of the relative dualizing sheaf on semistable
hyperelliptic arithmetic surfaces (Corollary 7.8). The search for an upper bound for
w? has been initiated by A. N. Parshin [Parl]. He observed that in the geometric
case such a bound follows from the Bogomolov—Miyaoka—Yau inequality between
Chern-classes of an algebraic surface and that in the arithmetic case it would
lead to the positive answer of various diophantine questions, as for instance the
abc-conjecture. The most naive arithmetic analogue of the Bogomolov—Miyaoka—
Yau inequality seems to be wrong: There are curves of genus two which provide
counterexamples (cf. [BMM]). In [MB], Moret-Bailly therefore formulates as a
hypothesis a shape of an upper boundJd®which still implies the same arithmetic
consequences as given by Parshin. Our bound has the shape of Moret-Bailly’s
hypothesis. Unfortunately, it has two shortcomings. Firstly, it involves the choice
of a metric on the relative dualizing sheaf of the universal curve over the moduli
space of curves of genys which we cannot make explicit. Secondly (and this is
more serious), it is very special to the hyperelliptic situation. In particular it does
not involve the discriminant of the number field.

This work owes most to Chapter 4 of [C-H], where Cornalba and Harris describe
the structure of the boundary of the moduli space of hyperelliptic curves of
genusg and give an expression of tH8g + 4)th power of the Hodge bundle
in terms of the boundary components. The existence of a canonical element in
(detHO(X, Qk/K))Q?(Bg*“) for a hyperelliptic curve of genug seems to be well
known (see for example [U] in the casepf 2), though | don’t know any ref-
erence in the general case. Our construction of a regular model for a hyperelliptic
curve has been inspired by work of E. Horikawa [Hor] and U. Persson [Per]. An
upper bound fow? of the form of our Corollary 7.8 had been previously established
in the casg = 2 and with respect to the Arakelov metric by J.-B. Bost in a letter to
B. Mazur [Bost2], using explicit formulas given in [Bost1]. In fact it was this letter
and Mazur’s answer to it [Maz], which was the starting point of our investigation.

1. Hyperelliptic semistable curves

By a graphwe understand a tripléV, £, ¢), whereV and& are disjoint sets (the
set of vertices and the set of edges respectivelyxdtite coincidence relation) is
a rule that to each edgé associates a subsétZ) C V consisting of one or two
vertices. For example, for everyc N we define thecyclic graph of lengtn

Cn = ({‘/i}iez/nlv {Ei}iEZ/n% C(EZ) = {‘/27 ‘/i-l-l} fori e Z/TLZ).
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We adopt the usual notions from graph theory such as finiteness, connectedness,
morphism of graphs, subgraph, quotient of a graph by a group action. A connected
graph that has no cyclic subgraph will be callettes.

DEFINITION 1.1. Amarked graphs a graph together with a distinguished subset
of its set of vertices (the set of ‘marked vertices’). A marked graph is called
semistabldstablg, if it is connected and if from every unmarked vertex there start
at least two (three) edges.

For example, the (unmarked) cyclic graphis semistable (the edge which starts
and ends at the unique vertex, is counted twice).

DEFINITION 1.2. LetI’ = (V, &, ¢) be a graph and an automorphism af. An
edgeF of I will be calleddirection-reversingwith respect tor, if 7(E) = E,
c(E) = {V1,V,} andr(Vq) = Va.

For example, the unique edge of the cyclic graphis direction-reversing with
respect to the identity. Lef be a (marked) graph and an involution (i.e. an
automorphism of ordex 2) of I'. We denote by"; the (marked) graph that is
obtained fromI" by omitting all edges which are direction-reversing with respect
tor.

DEFINITION 1.3. An involutionT of a marked graph' is calledhyperelliptic if
it leaves marked vertices fixed and if the quotiBpf () is a tree. A marked graph
is calledhyperelliptig if it admits a hyperelliptic involution.

PROPOSITION 1.4LetT be a finite semistable marked graph which is not an
unmarked cyclic graph. Then there is at most one hyperelliptic involutidn on
Proof. Let7 andr’ be two hyperelliptic involutions of. Let V' be a vertex and
assume firstthat(1') # V. Itis then easy to see that there exists a cyclic subgraph
C containingV” and thatC' is mapped onto itself by any hyperelliptic involution.
Now C' contains a verte¥Xp which is marked or from which there starts an edge
not belonging ta”. In both cases it is easy to see that necessalilp) = 7(Vo).
But the action ofr (and7’) on C is completely determined by its action on one
of its vertices, so we have(V) = 7/(V)). Now let us assume(V) = V. Then
(V') = V, because otherwise, interchanging the role ahdr’ in the previous
argument, we would obtain a contradiction. This showsttaatdr’ act identically
on the set of vertices df. It is now easy to see thatandr’ act identically also on
the set of edges df. O

Recall (cf. [Kn]) that ann-pointed prestable curvef genusg over a scheme
S consists of a proper flat morphism X — S andn sectionss;: S — X of «
such that for each geometric poinof S the following holds:
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(1) The geometric fibr& is a reduced curve and has only ordinary double points
as singularities.

(2) The pointsP; = s;(s) are distinct regular points of ;.

(3) dimH(X,,0x,) = g.

An n-pointed prestable curveX, (F;);-1...,) over an algebraically closed field

is called stable (semistably if it is connected and if on each smooth rational
component ofX the number of points that are double pointsXfor are among
the P; is at least three (two). More generally, arpointed prestable curve over

an arbitrary scheme is called stable (semistable), if each of its geometric fibres is
stable (semistable).

To every prestable cun& over an algebraically closed field we associate in the
usualway a graph x, whose vertices correspond to the irreducible components and
whose edges correspond to the double poinfs.diVe providd x with a canonical
marking by requiring that a vertex be marked if and only if the corresponding
irreducible component ok has genus: 1. It is then clear that the marked graph
associated to a semistable (stable) curve is semistable (stable) in the above sense.

Let X' be ann-pointed prestable curve over an algebraically closed field. Let
p € X be a double point. LeX — X be the partial normalization of atp and
p1,p2 € X the points of the preimage of Let Z ~ P} and choose three points
21, %2, 23 € Z. The (u + 1)-pointed prestable curve, obtained by taking the union
of X andZ, identifying p; with z; (: = 1,2) and taking as marked points and
those coming fromX , will be called themodification of X at p.

Let (Y, (Pi,...,P,)) be ann-pointed prestable curve over an algebraically
closed fieldk of characteristig# 2. Recall (cf. [H-M], Section 4) that a morphism
m: X — Y is called aradmissible double covering the following holds

(1) X is a prestable curve andis a finite morphism of degree two.

(2) = is ramified over every poinf’; (: = 1,...,n) andétale over any other
smooth point oft".

(3) If ¢ € Y is a double point, then eitheris étale over or 7—%(¢) = {p} and
there are isomorphisms

Oxp = kllz,y]l/ (- y),
Oy, = K[, 0]}/ (u - v),

such thatr induces the morphisri|[u, v]]/(u - v) — k[[z,y]]/(z,y) which
mapsu to z? andw to y?.

We can now define the central notion of this paper.

DEFINITION 1.5. Letk be afield of characteristi¢ 2 and letX/k be a semistable
curve.
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(1) Assume first that is algebraically closed. Then we c&l/k hyperelliptig if
the following holds

(a) The associated marked grdph is hyperelliptic.

(b) Let X’ be the (pointed) prestable curve that is the modificationXof
at each of its double points which corresponds to an eddéxoWhich
is direction-reversing with respect to the hyperelliptic involution'gf.
Then there exists an admissible double covefifig— Y onto a pointed
prestable curv& of genus 0 that carries marked points into marked points.

(2) In general, we calK/k hyperelliptic if X /k is hyperelliptic in the sense of
1, whereX = X ®,k andk is some algebraic closure bf

Let X be a hyperelliptic semistable curve. The hyperelliptic involutioaf I x
induces a canonical involution on the set of components and on the set of double
points of X. A double point ofX is calleddirection-reversingif the corresponding
edge ofl"x is direction-reversing with respect o

LEMMA 1.6. Letk be an algebraically closed field of characteris#ic2. Let X/
be a prestable curve of gengsndY /k a connectedh-pointed prestable curve
ofgenus 0. Let : X — Y be an admissible double covering. Then all components
of X are smooth andX is connected if and only if > 1 in which case we have
n = 2g + 2. If, in addition, X is semistable ang > 2, then it is hyperelliptic
without direction-reversing double points

Proof. It is clear that the components &f are smooth, since by definition of
admissible double covering&, has singular points only when two different com-
ponents meet. i = 0 thenX — Y is étale and it follows thak is isomorphic
toYIIY. Letn > 1. Then, by induction on the number of component¥ pit is
easy to see that is connected of genuswith 2g + 2 = n. The last statement of
the lemma is clear. O

Assumek algebraically closed with char# 2 and letX/k be a hyperelliptic
semistable curve of genys> 2. Denote byr the canonical involution of its set
of double points. Lep be a non-direction-reversing double point. Then the partial
normalization ofX at{p, 7(p)} is the disjoint sum of two connected components
X1, Xo. Letg; be the genus okX; (i = 1,2). There are two cases:

e 7(p) # p. Theng = ¢g1 + g2 + 1 and we callp to be of typen;, where
[ :=min{g1,92} € {0,...,[(¢ ©1)/2]}.

e 7(p) = p. Theng = g1 + g» and we callp to be of types;,, wherel :=
min{gla 92} € {17 sy [9/2]}

Direction-reversing points will also be callemlbe of typexy,. If & is not algebraical-
ly closed andk an algebraic closure, then all points Bf® & lying over a fixed
singular pointp of X are of the same type. We callto be of the corresponding

type.
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2. The discriminant of a hyperelliptic curve

Throughout this section, we make the following assumptigrns:an integer> 2.

K is afield of characteristigt 2 with at least 2 + 2 elementsX i /K is a smooth
hyperelliptic curve of genug such that there exists a finite morphism of degree
two from X x onto the projective line@,..

PROPOSITION 2.1. (1Y he function field?’ of X has generators andy and
defining relationy® = f(x), wheref(z) € K|z] is a separable polynomial of
degree2g + 2. . B

(2) If F = K(&,7), wherej? = f(z) and f(z) € K[z] is separable of degree
2g + 2, then there is an invertible matrix

<Z Z) € Glo(K)

and anelement € K* suchthatr = (ai+b)/(cz+d) andy = e/(cz+d)9+1.4.

Proof. (1) It is well known (cf. [Artl] Ch. 16.7) that the function field &f i
is K (x)[y]/(y? < f(z)) for some square-free polynomifi(z) € K[z] of degree
29+ 1or2y+ 2. Ifdegf(z) = 29 + 1, choose an elemeatc K with f(a) # 0
(here we use the assumption tha # 2¢g + 2) and make the transformation
r = 1/(Z ©a) +a,y = (& ©a)~ WDy, to get an equatiop? = f(z), where
degf(z) = 2g + 2. Thus we may assume th#{z) has degree @+ 2. Let
K be an algebraic closure df. Since X is smooth by hypothesis, the curve
X = Xg ® K is also regular and of gengsand its function field is described by
the same equatiog? = f(z). Therefore, by loc. cit.f () is square-free i []
and thus separable.

(2) Itfollows from the assumptions th&t(z) is of index two inF’ and of genus
zero. By loc. cit. we conclude théf () = K (z) and therefore that = % for
an invertible matrix

It is easy to see that then we have necessgrity (e/(ci + d)9+1)j for some
ee K*. a

Recall that the discriminark () of a nonzero polynomiaf(z) € K[z] of degree
d is defined as

A(f) = A2 T](a; <aj) € K%,
i£]
whereA € K* is the leading coefficient ang, ..., a4 are the zeroes of in
an algebraic closure df. Lety? = f(z) be an equation foK i as in the above
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proposition. Recall further the well-known fact that the differentidlelz /y (i =
0,...,g<1) formabasis oH°( X[, Qx,/x)- We defineanelemedt= Ay,

of the one-dimensional vector-spake= (A’ H*(X i, Q% /,))®®*% by set-

ting
g—1 ®(89+4)
Yy Y

7

whereD = 2-(4+4 . A(f). (The reason for the power of two in the definition of
D will be given in Section 6.) By the following result, is a canonical element of
14

PROPOSITION 2.2. (1)A is independent of the special choice of the equation
2
ye = f(=).
(2) Let K'/K be an arbitrary field-extension and i := Xx ® K'. Then
A" = Ax,, /k is the image of\ under the canonical mapping

g
0 8
Vo V@K = (N\H (X, O, j5e) 2.
K
Proof. It is a straightforward calculation to show thiats invariant under trans-

formations as described in Proposition 2.1 (2). This proves the first statement. As to
the behavior under base change: This follows directly from the constructibrof

3. Statement of the main theorem, first reductions

In this section,R denotes a discrete valuation ring, its quotient field,v the
induced discrete valuation dd (normalized in the sense thatK) = 7), k the
residue field ofR. Let X/ R be a prestable curve with smooth generic filire and
let p be a singular point of the special fibig, of X. Themultiplicity n(p) of p is
defined as the length of the-moduleX(X/R), := Ox ,/Fi, whereF; denotes
the first Fitting ideal of theDx ,-moduleQo, ,r. Therelative dualizing sheaf
wx/ g Of X/ R is the unique invertible subsheafprkK/K (wherej,: X — X
is the canonical immersion), which coincides wmﬁ(/R on the smooth part of
X/R.

The behaviour of these invariants under base change is as follows' L&t
be a discrete valuation ring dominatiigjand setX’ = X ® R’. Then we have
Yu(p;) = ep(p), where the sum is over the points of the fibre gvef X' — X
ande is the ramification index o?’/R. The relative dualizing sheafy: p is
simply the pull back ofvy,r under the projectiok’ — X.

Now assume: to be algebraically closed and l&t/ R be a second prestable
curveandf: X — X abirational projectivéz-morphism. Then we haveu(p;) =
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1(p), where the sum is over the singular pointsXgf mapping onte. Therefore,
if X — X happens to be the minimal desingularization¥aftheny(p) is simply
the number of double points &, lying abovep (cf. [MB], proof of Theorem 2.4).
On the other hand, we ha\few;(/R = wy/g- This follows from [Art2], Corol-
lary (3.4)(ii) and the fact thak has only rational singularities.
Assume chak # 2 andk not necessarily algebraically closed and that
is hyperelliptic and satisfies the assumptions made at the beginning of Section 2.
Then we can considéy = Ay, /x as arational sectioh y, r of the ‘line bundle’
M = (N HO(X,wy/))®®*+% on SpecR and denote by ord\ the order of
vanishing ofA in the closed point € SpecR. In other words, we set

ord; A = v(a),

wherea € K, A = Ap® a € M ® K andAg is a generator oM .
R
After these preliminaries we can formulate our main theorem

THEOREM 3.1.Let (R, K, k,v) be a discrete valuation ring witR € R*. Let
X/R be a semistable curve with smooth hyperelliptic generic ffe of genus

g > 2 and assume that there exists a finite morphism of degree twoXrgranto
the projective lineP.. If X/R is either the minimal regular or the stable model of
Xk overR, then the following holds

(1) The special fibreX;, of X/R is hyperelliptic in the sense of Sectibn
(2) LetT be the hyperelliptic involution on the set of double pointXgf Then in
a givenr-orbit all double points have the same multiplicity, which we call the
multiplicity of thatr-orbit.
(3) With the notation introduced at the end of Sectigket
o = the number of double points of typg,
A; = the number of--orbits of double points of type;,
Bj = the number of double points of type

(t=0,...,[g=1/2],j =1,...,[9/2]), where we count double points-(
orbits) with multiplicities. Then we have the equation

ordy(A) = g+ Ap+ 2520572 Ailg i) (i + 1) + 4L YF B9 9);
The proof of the theorem will be given in Section 5. In the present section we
restrict ourselves to prove some first reductions.

LEMMA 3.2. (a) It suffices to show the theorem under the additional assumption
that the residue fiel& is algebraically closed

(b) Assume that is algebraically closed and leX/R be a stableR-curve
satisfying the assumptions of the theorem. Denot& By the minimal regular
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model ofX . Assume that the conclusions of the theorem hold tru&§aiR and that
X, has no direction-reversing double points. Then the conclusions of the theorem
hold true also forX/R.

(c) Assumek to be algebraically closed. LeR’/R be a finite extension of
discrete valuation rings and let’ be the minimal regular model & ® R'. If the
conclusions of the theorem hold true f&f then also forX.

Proof. Part (a) and (c) of the lemma are easy consequences of Proposition 2.2
and the remarks we made at the beginning of this section. To prove part (b), first
observe that by assumption, there exists an admissible double cosgring Y},
onto a(2g + 2)-pointed genus-0-cur,. In what follows, ap*-chain (of lengthn)
of X}, is a closed connected subschethef X, that is maximal with the property
that all the irreducible components gf are isomorphic td",% and meet the rest
of X}, in exactly two points. The graph ¢ is then linear. It is well known that
X, arises fromX}, by contracting all th@,%-chains ofXy. Let Z be aP!-chain of
X, and letZs, ..., Z, be its successive components andp, € X, the points
whereZ meets the rest ak,. Denote byr the hyperelliptic involution on the set
of components and double points®f.. We distinguish three cases

e Type-O-caser(p1) = p2. We have thenr(Z;) = Z,,1-;fori =1,...,n
and it follows thatn = 2m + 1 is odd because otherwise the double point
P = Z(1/2yn N Z(1/2)n+1 Would be direction-reversing. The middle component
Zm+1 1S the only one oZ which is ramified ovel.

e Typea-case:r(p1) € {p1,p2}. Then there is @!-chainZ’ of X}, which is
disjointtoZ and has successive componéfis. . ., Z,, suchthat(Z;) = Z/.
Thereexistsahe {1,...,[g<1/2]} suchthat all the: + 1 7-orbits of double
points of X, contained inZ U Z’, are of typey,.

e Typep-case:r(p1) = p1. Then all components of are fixed byr. There
exists an € {1,...,[g/2]} such that all the: + 1 double points ofX}, lying
on Z, are of typeg;.

Let Z be the set of all components &, which are isomorphic t®* and meet
the rest ofX, in exactly two points, except those, which are the middle component
of some type-0-chain. LeX}, be the pointed prestable curve obtained frdinby
contracting all components belongingZoand marking one ramification point on
each middle component of type-0-chains. On the other hany, It the(2g + 2)-
pointed prestable genus-0-curve which is obtained figmby contracting all
images of components belonging®o It is clear thatr restricts to a hyperelliptic
involution onlx, , thatX; is the modification ofX}, in all of its direction-reversing
double points, and thaf;, — Y, induces an admissible double coveriig — Y)/
carrying marked points into marked points. This proves fats hyperelliptic.

In the typex and type3 cases @-chainZ is contracted to ar¢-orbit of) double
point(s) of X, which is of multiplicityn + 1 and is of the same type as thedrbits
of) double points lying or¥. If Z is of type 0, then + 1 7-orbits of double points
contained inZ, are contracted to a double point &f,, which is of multiplicity
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n+ 1 and of typeny,. It follows that statements (2) and (3) of the theorem also hold
for X/R. O

4. Construction of minimal models

Let R, K, k,v be as in the assumptions at the beginning of the last section. Except
for Lemma 4.1, we assunieto be algebraically closed. Assume furthermore that
2¢€ R”.

LEMMA 4.1. Let X /K be a smooth hyperelliptic curve. There exists a discrete
valuation ring R’ (with quotient fieldK’, residue field’, and normalized discrete
valuationv’), finite overR and dominatingR, such thatX» = Xx ® K' is a
regular proper model of the function field'(z, y) associated to the equation

2g9+2

v = flz) = A ] (@ 2a),

=1

whered € (R')*,a; € R' fori =1,...,29 + 2, a; # a; andv’(a; ©a;) € 2Ny

fori # jand#{a;|i=1,...,29+ 2} > 3 (a; € k' being the residue class of).
Proof. By Proposition 2.1 we may assume (after passing to some finite extension

of K) that X i belongs to an equatioff = A - Hfﬂz(g: <a;) forsomeAd € K*

and pairwise differeni; € K. After a simple transformation we may even assume

a; € Rforalliand#a;, ..., az,52} > 2. Ifthe number of differers; equals 2, we

can write (after some renumberingy = - -- = @,—1 # @, = - - - = G242, Where

r > 3 and wheren := v(a1 <a2) is minimal among the valuegai <a;) (1 < i <

r<1). Lett € R be alocal parameter. We may assumetttas at least elements.

Therefore we find an elemele R suchthab<(a; <a1)/t™ is invertible inR for

i=1,...,r 1. After the transformatiom = ¢ (b + 1/%) + a1,y = (1/3)9+1g

we can make the additional assumption thigt#. . ., az,72} > 3. Passing to the

extensionk (v/t)/ K we achieve finally(A4) € 27 andv(a; <a;) € 2N, for all

i # j. After the transformation: = z,y = t(1/2*(4)g the equation has all the

required properties. O

For the rest of this section |6t x /K be the regular proper model of the function
field K (z,y) associated to the equatigh = f () := A -TI2Y1?(z <4;), whered
and theg; satisfy the conditions (with respect#dlisted in the above lemma. Our
purpose is to give a very explicit description of the minimal regular maget of

X g andto showthatit is semistable. First we associ@Bg a 2)-pointed prestable
curveY to the polynomialf (z) = Hff{z(g: &a;) as follows: LetYp := P, and
let Py, C Y the closure of the poirtl : 0) € P in Yp. The principal divisor on

Yo, defined byf (z) € K (Yo) is divy, (f(2)) = (S212P) (29 + 2) Psc, Where
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P; C Ypisthe closure ofa; : 1) € P in Yy (i = 1,...,2g + 2). By definition,Y

is obtained frony by successively blowing up closed points of the special fibre,
where theP; meet, until the strict transform &f; P, becomes regular. By abuse of
notation, we denote the strict transformBfin Y (i € {1,...,29 + 2,00}) by

the same symbd¥;. Itis then clear thatY’, (Py,. .., Py42)) is a(2g + 2)-pointed
prestable curve of genus zero with generic fibfe = P1..

The graphl'y, associated to the special fibYg of Y is a finite tree that can
be described directly in terms of the elemesit& R:Letm C R be the maximal
ideal of R and forn € No let r,: {a1,...,a2y42} — R/m" be the natural
mapping that associates &9 its residue class modula™. We define a grapif’
as follows. The vertices df are the elements of the Sg(7") = L1,,>0V,,, Where
V., ={V € R/m" |#r;1(V) > 2}. The set of edges df consists of pairgV, V'),
whereV € V,, V' € V,,.1 for somen > 0 andV’ — V under the canonical map
Vn+1 — Vn. The coincidence relatian finally, is defined by:((V, V')) = {V,V'}.
Itis easily seen thaF is a finite tree and that it is canonically isomorphidtg .

T has a canonical vertel, the unique element of,. It corresponds to the
irreducible component df, which is the strict transform of the special fibreYet
We define a canonical partial ordering on the set of verticdsloy setting

VVieVvey,,V ey, where
m>n, and V'—V underV,, = V,.

The vertexi} is the absolute minimum with respect to this partial ordering. It will
be convenient to associate to each veiteaf 7" the following list of numbers

n(V) :=mn, whereV €V,
(V) = #r,YV),
V) =e(V)e Y o),

v/ €Vt
Vizv

. [ 1 if nandy(V) are odd
) = {0 otherwise ’
(V) = > e(V;), whereVo,Vi,....V, =V
=1

are the vertices of the linear subgraphrof
that connect$p andV,
B(V) = 3(C(V) & (V).

If V' is anirreducible component &f,, we denote by:(V'), ¢(V') etc. the numbers
associated to the corresponding vertexofFor example® (V) is the number of

1 Quing Liu has brought to my attention that the construction of this tree already appears in
[Bosch].
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sectionsP; (1 = 1,...,2g + 2), meeting the irreducible componé¥itof Y. The
geometrical meaning @¢(V'), C(V') and(f) (V') is revealed by the lemma below.

LEMMA 4.2. (1) Let (f) denote the principal divisor o defined byf(z) €
K(Y). Then we havef) = EZ.ZQZ(P,» SPy) + Xvcy, ired ()(V)V.

(2) ThedivisotC := Efi{zPiJrEngk ired. C'(V)V isregular(as a subscheme
of V).

(3) B(V) is integral for anyV and, denoting by3 the divisor(g + 1) Py, +
YyB(V)V onY, we hav&B = C <(f). In particular, £ := Oy (B) is a square
root of Oy (C) in the Picard group of".

Proof. The statement for the horizontal part(¢f) is obvious. LetV C Y}, be
an irreducible component and denoteupythe corresponding valuation &f (Y").
Itis easy to see (cf. proof of Lemma 5.1) that(z <a;) = min(n(V),v(a <a;)),
wherea € {ay, ..., a2} represents the vertex @fthat corresponds to. From
this, the statement about the vertical part ¥ follows immediately. Parts (2) and
(3) of the lemma are now easy to verify. O

The proposition below describes a well-known construction of ramified double
coverings and lists some of its properties.

PROPOSITION 4.3LetY be a regular integral Noetherian separated sche@ie,
an effective divisor oY, £ an invertibleOy-module andF’ a global section of
£?, whose divisor i€”. F induces a morphismi 1 ® £ 5 Oy (<C) — Oy,
which on the sheafl := Oy @ £! induces the structure of af?y -algebra. Let
X := SpecA. Then the following holds

(1) The structure morphism: X — Y is flat and finite of degre2.

(2) If C is regular and all residue fields &f have characteristie 2, thenX is
regular.

(3) LetC be regular and/ a connected component©f Thenz*V = 2V for a
prime divisori¥ on X, which as a scheme is mapped isomorphically dnto
by .

(4) LetY’ be another regular integral Noetherian separated schemefand —
Y a morphism transversal to' (i.e. f(Y') € C). LetC’ := f*C, L' = f*L.
As above, the sectiofi’ := f*F of £ induces arQy--algebra structure on
A= Oy @ £/71. We haveSpecd’ = X x Y’

Proof. One can restrict to the affine case where the verification is straight-
forward. O

Returning to our special situation, I1&t, C, £ be as in Lemma 4.2 and define
F € T(Y, £?) to be the image of the canonical section®f (C) under the iso-
morphismOy (C) — £%2 = Oy (2B) induced by the relatiot’ = 2B + (f). The
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construction in the proposition gives us a schetie= Spe¢Oy @ L£~1) together
with a finite flat morphismr: X’ — Y of degree two.

PROPOSITION 4.4X" is regular andX’/R is a proper flatR-curve whose spe-
cial fibre is a normal crossing divisor and whose generic fibre is isomorphic to the
hyperelliptic curveX . LetV be an irreducible component of the special fibje

of Y. We seWy := n*V andgy = 1/2(C.V) <1. Thengy is integral and> <2

and

(1) gy = «2if and only if C(V) = 1. In this case Wy = 2- W, for an
exceptional diviso#¥;, of X' that meets the rest of the special fib¥fg of X"
in exactly two points

(2) If gy = <1, thenWy = Wy1 I Wy, where thelVy; are prime divisors
isomorphic(as schemggo P meeting the rest ak, in at least two points

(3) If gy > 0, thenWy, is a prime divisor thatas a schemks a regulark-curve
of genugy . If gy = 0, thenWy, meets the rest of, in at least two points

Proof. It follows from Lemma 4.2 and Proposition 4.3, that is a regular
proper flatR-curve. Using the local description &f’ coming from the construc-
tion as a double covering of, it is easy to see that the special fibre is a normal
crossing divisor. By 4.3.4. the generic fibre ¥f is integral with function field
K(z)[y]/(v? < f(z)) and is therefore isomorphic t& . Now letV be an irre-
ducible component of},.

If C(V) = 1thenn(V) is odd and from the description of the tréeat follows
easily that/ cuts the rest of}, in exactly two points. Thereforg, = %(V.V)@l =
2. By Proposition 4.3.3)y = 2W/{, for a prime divisod¥{, which as a scheme
is isomorphic to/” = P and meets the rest of!, in exactly two points. It follows
that(W7,.Wy,) = <1. By Castelnuovo’s criteriori}’], is exceptional.

If C(V) = 0, then by Proposition 4.3/, = X' xyV (as a scheme) and
Wy — V is finite of order two, ramified over exactyC.V') points of V. If
(C.V) > 0, then by Hurwitz’ formulgC.V') = 2-(genus ofi¥y,)+2. In particular,
gy is integral.

One checks easily that ¥ corresponds to an extremal vertexiof® (V) is at
least two. Thus, i{C.V') = 0, thenV does not correspond to an extremal vertex
and cuts the rest dfy, in at least two points. |

The above proposition shows in particular that the exceptional divisors’of
are exactly the components &f; which dominate a componeft of Y}, with
C(V)=1.LetX' — X be the blow-down of all exceptional divisors & . It is
clear now that X is the minimal regular model & and is semistable.

Let Z,, denote thé2¢g + 2)-pointed curve that is obtained froF by contracting
all component¥” of Y, with C(V') = 1 (observe that thedé do not carry marked
points).
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COROLLARY 4.5.The morphisnX;, — Zj induced byX; — Y} is an admissible

double covering an&, is hyperelliptic without direction-reversing double points.
Proof. By Lemma 1.6, it suffices to show the first part of the corollary. It is clear

that X, — Z, has properties (1) and (2) of an admissible covering.¢Let Z,,

be a double point anii, V> C Z;, the two components meeting §n If ¢ is the

image of a component of Y, under the blow-down map;, — Zj, then both

the preimage o, underX;, — Z, and that ofl; is ramified over. Otherwise,

X, — Z is étale overq. ThereforeX, — Z, satisfies also condition (3) of

admissible coverings. O

5. Proof of Theorem 3.1

By the Lemmas 3.2 and 4.1, we may assumefhiatalgebraically closed and that
X/R is the minimal regular model of the hyperelliptic curig, associated to an

equation
2g9+2
y* = flz) = A [] (& =),
i=1

where A and theg; satisfy the conditions listed in Lemma 4.1. We have already
seen in Corollary 4.5 that the special fibXg is hyperelliptic. SinceX is regular,
all the double points o, have multiplicity one, so the second statement of the
theorem is trivially fulfilled and the formula for og@lA) is all that remains to be
shown. For this, some preparation is necessary.

We keep the notation of the previous section. Thus the ohjégts”, T', X', X
etc., associated with the above equation, are defined. We will employ some abuse of
notation to describe vertical divisors 81 X’ andX: If V' € V(T) is a vertex ofT,
we denote by the same symbol the corresponding prime divisbr. tts pull-back
under the projectionr: X’ — Y will be denotedWy,, as in Proposition 4.4. If
C(V) # 1, the image oWy under the blow-down mag’ — X will again be
denoted byivy,. Finally, we will not distinguish between vertical divisors &n
and elements o1,

LEMMA 5.1. For F € V(T) let Dp € zY") pbe defined byDp(V) =
n(inf(F,V)).

(1) For any b € R there exists anF’ € V(T') such that the vertical part of the
principal divisor of (z <b) € R[z] C K(Y) is preciselyD. If, on the other
hand, F € V() C R/m™) is represented by € {a1,...,az42}, then
divyer(z <b) > Dp.

(2) For any primitive polynomiah € R|z] of degreer there existy,...,b, €
{al, - azg+2} with
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divyert(h) < divyert (ﬁ(x <Z>bz)> .

=1

Proof. First we will introduce some notation. For a vertgxof 7' we let vy
be the valuation orK (Y') that corresponds to the vertical prime divisor Bn
associated t&. So we have diwr(h) = Zyepvy(h) - V foranyh € K(Y).

If V= Vp, we will omit the indexV from vy,. There will be no confusion arising
from this, since for a polynomidi(z) = S;s0c;z° € K[z] C K(Y) we have
vy (h(z)) = mMin;zov(c;).

From the construction df it follows that if V' is an irreducible component of
Y%, @ smooth point o¥ has an open affine neighborhobdhat is R-isomorphic
to some open part aR[¢] such that ovel/ we have the equation = "¢ + a,
wheret € R is a local parameter, = n(V), anda € {az1,...,az42} represents
V as a vertex off'. Therefore for anyx(X) € R[z] the equatiorvy (h(z)) =
v(h(t"z 4+ a)) holds.

We prove the first statement of the lemma. Giveg R, we letn > 0 be
maximal such that the image of b under the mapping? — R/m" lies inV,.
We have to show thaty (z <b) = n(inf(£#,V)) for any vertex/ of T'. For this,
leta € {a1,...,a2442} be arepresentative ¢f. By the above remark, we have
vy (zeb) = v(t"V)z4asb) = min(n(V),v(a<b)). Therefore the claim follows
from the fact that infF', V') = max{V' < V | V' is represented by}.

On the other hand, given a vertéxof T" letb € {az1,...,az12} be arepresen-
tative. Clearly, for any vertek with representative € {ay, ..., a2y 42}, we have
n(inf(F,V)) <min(n(V),v(a <b)). ThereforeDy < divyer(z <b).

The proof of the second statement of the lemma is more involved. We need to
introduce further notation.

If V andV"’ are two vertices of’ with n(V) = n(V') &1l andV < V', thenwe
will say thatV is apredecessoof V'’ and thafi”’ is asuccessoof V. Each vertex
exceptlp has exactly one predecessor. The set of successdfg isfprecisely
V1. Leth € K(Y) andV # V, a vertex ofT'. Then we denote byAvy (k) the
differencevy (h) <wvy- (h), whereV' is the predecessor &f.

| claim that for any primitive polynomiat € R[z] and any verteX” of 7" we
have

> Avpi(h) <

V'eS(V)

{deg(h) if V ="Vp "

Awvy(h) otherwise
whereS(V') denotes the set of successor$/of

Admitting the claim for a moment, we conclude that given a primitive R[z]
of degreer, there exists a familyly )y ¢y of subsetdy C {1,...,r} with

() Iy, = {1,...,r}.
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@iy Iy D Iy forV < V.

(iii) Iy = Oyresqry I forall vV e V(T) with S(V) # 0.
(iv) #Iy > A’Uv(h) forall vV > ;.

From properties (i)—(iii) it follows that

Ly ={1,...,r}.
Vevy(T)
V maximal

We choose a representative € {a,..., a2} and seb; = ay for all maximal
verticesV of T'and all7 € Iy .

It is easy to see then that for arbitréry> Vo we haveAvy (II7_, (z ©b;)) =
#Iy > Avy(h). Sincevy = E?ZlAuVj, whereVp < V1 < --- <V, =V are
successive vertices of the linear subgrapi @bnnecting/, andV, it follows that

vy <ﬁ(IL‘ <=>bz)> > Uv(h).

1=1

This proves the second statement of the lemma.

It remains the task to prove the claif®). Assume first that” # V4. Leta €
{a1,...,a2442} arepresentative for andn = n(V'). Let V' be the predecessor
of V and set for abbreviatiom := vy (h), m' := vy (h). By the remark we made
at the beginning of the proof, there are primitive polynomigls, by € R[z] such
that

A" Yz + a) = t™ hy(z),
h(t"z + a) = t"hy (x).

Since obviously™ h(tz) = t™hy (), we haveAvy (h) = mem! = v(hy (tz)).
Lety > 0 be maximal suchthat, (z) € (¢, z)". Thenhy (z) = B k() tiar "
for some polynomialé;(x) € R[z| such that;,(z) & (z,t) for at least onég €
{0,...,pu}. It follows thathy (tz) = t#XE k; (tz)z#*~" and thatsl  k; (tz)zH "
is primitive. ThereforeAwvy (h) = pu andh, (z) = X ok;i(tz)z#~. In particular,
we have

deghy (z) < Avy(h), @
whereh(z) € k[z] denotes the residue classiaf (z) modulotR[z].
Now letV be an arbitrary vertex &f and letV, .. . , Vi be the successors bf.
Fori =1,...,swe choose elements € {a1, ..., a2} representing/; and set

¢ := (b; <a)/t". Thenc; € R andc; # ¢; modm for i # 5. Similarly as above,
we have fori = 1,...,s the equationg; := Awvy; (h(z)) = v(hyv(tz + ¢;)) and
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hy(z) = Z’;i:ou,gi)tq(x &)1 for certainu,(f) € R[z]. Therefore the residue
classg; of ¢; in k is an at least:;-fold zero ofhy-(z) and it follows

Y Awvy,(h) < deghy (x). (b)
=1

Clearly, (a) and (b) together imply the claim.

LEMMA 5.2. Definek € zY(") by K(V) := B(V) + n(V). We consider the
global differentialdz /y on X, as a rational section of the dualizing sheag, .
Its divisor onX is

/d
div <—$> (el Pet Y K(V) Wy
y vev(T)
C(V)£1

Proof. Lett € R be a local parameter. Léf € V,, be a vertex ofl" with
C(V) # 1 and leta € {a1,...,a2442} be a representative fdr. Let ¢ be a
smooth point ofY}, that lies on the irreducible component which corresponds to
V. By construction ofY’, there is an open affine neighborhoidof ¢ which is
R-isomorphic to an open part of SpBE] such that inA = I'(U, Oy) we have
the equation: = "¢ + a. By construction ofX’, we have

DU, 0x) =T(U, 0y & LY ~ A[n]/(n? <h),

whereh € R[¢] is the primitive polynomiak—()(V) ("¢ + a) and where over
U' = n1(U) we have the equatiop = ¢t B(V)y. It follows that dr/y =
tBV)+n(V) d¢ /. By choosingU small enough we may assume thatis gen-
erated byh andh’ and we conclude (similarly as in the proof of Proposition 6.2 of
Section 6) that g/n is an invertible section abx/ /g |y = QlU,/R. The statement
for the vertical part of di\dz/y) follows. For the horizontal part it is enough to
look at the restriction of €/y to the generic fibre o'/ R. But there the result is
classical (and easy to see). O

Lemmas 5.3 and 5.4 below are of purely combinatorial nature. Nevertheless,
Lemma 5.4 is the key to our proof of the theorem.

LEMMA5.3. LetI be afinite index-set. For anye I let f;: Ng — Z be increasing
mappings

(1) There is a sequende™),,cx, of I-tupels(z?);cn € N} with the properties

(a) for anyi € I and anyn € No, z? < 2"+,

)

(b) for anyn € No we haveX;c;z] = n;
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(€)  minfi(z7) = max{riréip filys) lyi € No, > i = n} .

el
e il

(2) If the f; are strictly increasing and a sequen@@?);c1)nen, in N} satisfies
the propertiega)—(c)of (1), then for anyn € Ny we have

fin (2F,) = min fi(a7'),
wherei, € I is the unique index with? ** = 27 + 1.

The proof of Lemma 5.3 is straightforward, so we omit it. In the next lemma,
for D € zV(1), we denote bys(D) the number migcy,(ry D(V).

LEMMA 5.4. There exists a sequen¢g&;);>1 in V(T') with the following pro-
perties

(1) For anym € No, w(K + X" 1 Dp,) is maximal among the numbesgC +
¥ .Dg,), whereGy, . .., G, runs through alin-tupels of elements a#(7').
(2) For vV e V(T) set

V) o p(V)/2<1, ifp(V)iseven,
V)= { (p(V) <1)/2, otherwise.

Then for allV' # Vp, (V) is the number of indices: with F,,, > V. For
i > v(Vo) we haveF; = ;.

(3) Letn € N. The mappindC + 27 *Dy. € zY() takes its minimal value
w(K + X" 1Dr,) at the vertex?,,.

(4) For anym € N, the numben(F,,) is even.

Proof. By induction onN = max{v(a; <aj)|i # j}. The caseV = 0 is
trivial. Let V1, ..., V, be the elements of,. Fori = 1,...,r we denote byi™ the
full subtree ofl", whose vertices are greater or equal}oT” is isomorphic to the
tree associated to the polynomidj(z < (a; <b;)/t?) € R[z], wheret is a local
parameterb; € {ax,...,az 2} representd; € R/t?R and where the index
runs through all values for whiah; = b; mod¢2. Letn?, ¢, K’ etc. be the objects
associated t@", analogous ta, ¢, K etc. For example, we have

ni(V) = n(V) &2
KH(V) = K(V) + (Vi) <2,
(V) = Dp(V) &2

S

for V,F € V(T%) C V(T).
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By induction hypothesis, there are sequer(dg’é)jeN in V(T") that have the
properties 1-4 of the lemma. We define functighsNy — Z by setting

filz) = w’ <1c+zijF@> = min (IC(V) +iDF;-(V)> :
j=1

=1’ Vev(T?)

The f; are strictly increasingf{(z + 1) > f;(x)+ 2) and we can apply Lemma 5.3
to obtain a sequendg,, )..cn, Of elements iy := {1,...,r} with

fim (@) = meipfi(x;ﬂ) for all m € Np,
(2
wherez]” = #{0 < k < m ©1|i; =i}. Now we define forn > 0

o[ W) <O,
m+1 -—
Vo, otherwise

| contend that this sequence has the required properties.

For abbreviation, seb,, := K + £ 1Dp; andng = Xie;y(Vi). Let V[ be
the unique element betweéf andV;. It is not difficult to see that the following
statements hold true:

() F, = Vpifandonly ifm > no + 1.
(i) Forallm < ngandi = 1,...,r, we haver]" = #{1<j < m|F; > V;}.
(i) Foralli =1,...,r we havey(V;) = #{m € No | F},, > V;}.
(iv) If m < no <1, we haveD,,(V/) > w'(D,,) for all i and 0> D,,(V/) >
w'(D,,) for at least oné.
(v) If m > ng then for alli we have 0< D, (V) < w'(Dy,).

Using these statements, properties (1)—(4) for the sequ@hige are easy to
derive. |

With the help of thel’; we can now construct a basis B (X, WW/R)-

PROPOSITION 5.5Let (£});>1 be a sequence iW(T") satisfying the properties
listed in Lemmeb.4. For everyi € N letb; € {a1,...,az42} be an element
representing the clask; € V,,(r;) C R/m™FY) Lett € m denote a prime element
of Randsetfol0 <i < g<l

_ : dx
w; =t% - <H(g: @bﬁ) m € H( Xk, Qxy /),
j=1

wheree; := <w(K + E§:1DFj) andw is defined as before Lemrbal. Then
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(1) wo, . - .,wy—1 is anR-basis ofH(X,wx  z)

g-—1
@ Yeu=3; ¥ AN6M+D+; ¥ v
=0

V>V V>Vp
@(V)even (V) odd

wherey(V) is defined as in Lemnta4.

Proof. (1) By Lemmas 5.1 and 5.2 we have @) > 0 and thereforev; €
HO(X,wyg) fori = 0,...,g9 &1. Since thew; form a K-Basis of H%(X,
QkK/K), they are linearly independent. We show that they Sp&x,, wx/r). For
this letw = t°h(z)(dz/y) (Whereh(z) € R|z] is primitive of degreel < g < 1)
be an arbitrary element df®(X, wx/r)- By Lemma 5.1 and by construction of
the F;, we havew(K + divyen(h)) < <e4. Since difw) > 0, it follows ey < e and
therefore there exists an elemerg R, such thatv <c - wy = hi(z) - dz/y for a
polynomialh(x) € R[z] of degree at most < 1. We proceed by induction ah

(2) By property 3 of theF;, we have

7
e; = ©K(Fiy1) ) Dr,(Fii1).
j=1

Since furthermore’; = Vo for i > (Vo) = g andK(Vo) = Dp,;(Vo) = O, it

follows
g—1 i—1
Y ei=> K(F)e> > Dp(F). (*)
i=0 i>1 i>1j=1

For the first term of this equation, we have

Y KE)= Y v(V)2eeV)).

i>1 Vev(T)
n(V)e2n

This follows from the definition ofC and property 2 of thé";. SinceDy, (F;) =
Dp;(F;) = 2-#{V € V(T)|n(V) € 2N,V < F;, V < Fj}, we have for the
second term

i—1
2.2 Di(F)= 3 1(V)((V) =D,
S (VYo

where we have again made use of property 2 ofEhd”lugging in these expres-
sions into(x), we get the required formula. O
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Let D = 24944 . A(49+2) .11, . (a; ©a;) andwy, ..., w,—1 as in the above
proposition. Then obviously

Ax/p =D (t “(wo A+ /\wgfl))(ffg#l)7

wheret € R is a prime element and= %7~ oeZ Therefore we have

g—1
ord Ax/p =g-v(D) =89 +4)-) e 1)
i=0
It is easily seen that
o(D)= > 2(V)+22y(V)+1)+ > (2y(V)+1)2y(V).
V>V V>V
p(V)even p(V )odd

Plugging in this and the formula of Proposition 5.5.2 into (1), we get

ordsAx/r =2 ) (v(V)+1)(g&v(V))

V>V
(V) even

+2 ) v(V)(gey(V)). )
V>Vy
(V) odd

There is an obvious one-to-one correspondence between vestidgsof T
and its edges (t& € V,, (n > 1) there corresponds the edge that conn&tts
andV, whereV’ is characterized by < V',V € V,,_1), and therefore also a
bijection V' — py from V(T') <{V,} to the set of double points df,. We set
o(pv) = (V) andy(py) = (V). Let Zj be the(2g + 2)-pointed prestable
genus-0 curve obtained frof), by contracting all componenis with C(V) =1
of Y}, (cf. end of Section 4) and let Y, — Z; be the contraction map. Observe
that for two double pointgs, p2 of Yy, with r(p1) = r(p2), we havep(p1) = ¢(p2),
so thatp and~y are defined on the set of double points&t Observe furthermore
that for a double poing of Z;, the number of double points &, lying abovey is
one, ifp(q) is even and it is two, ifp(¢) is odd. So we can reformulate (2) as

ordy(Ax/p) = 2 > (v(9) + (g =7(9))

g€ Zy, double point
©(q) even

+4 > 9. 3)

g€ Zy, double point
¢(q) odd
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Let ¢ be a double point o, and letZ;, Z, C Z; be the closed subsets of
Zy, whose union isZ;, and which intersect precisely ify}. Then one of these
two subsets carries exactly(q) marked points ofZ, while the other carries
(29 + 2) ©p(q) of these. The admissible double coverikig — Z;, is ramified
overgq if and only if ¢(q) is odd. It follows from Lemma 1.6 that in this case the
double points ofX, lying aboveg are of types;, wherel = min{~(q), g9 <v(q)},
whereas ifp(q) is even, they are of type;, wherel = min{vy(q), g <1 <v(q)}.
After these considerations it is clear that (3) implies the formula of the theorem.

Remark From the above proof it is easy to see that there are hyperelliptic
curves X/K, such that ord(dz/y A --- A 2971 dz/y) < O for any choice of
equationy? = f(z). This is in opposition to the case of elliptic curves, where
ords(dz/y) = O if and only if the corresponding equation is minimal. Still one
could think of calling an equatiog? = f(z) minimal, if ord, A(f) is minimal —
or, whatis the same, if ogdidz /y A - - - A9~ 1 dz: /) is maximal (cf. [Lock], where
such an attempt has been made). But unlike in the case of elliptic curves, we will
in general have ordAmin > (1/g) ords A x/x, whereAmin = A(f) for a minimal

equationy? = f(x) for the hyperelliptic curveX/K.

6. Good reduction and characteristic two

There should be an analogue of Theorem 3.1 in characteristic two. In this section,
we prove this analogue only in the case of good reduction and generic characteristic
# 2. More precisely, letR, K, k,v) be a discrete valuation ring where cliar~

2 andk is perfect and letX/R be a smooth propeR-curve of genug; with
hyperelliptic generic fibreéX . LetA € My = (ANMH°(X, Q}(K/K))@’(Bg*“) be
defined as in Section 2. As in Section, := (\H°(X, QY ,)) ¥+ defines

an integral structure o, and it makes sense to speak of the order of vanishing
ord; A of A atthe closed point € SpecR. Our objective is to prove that regardless

of chark we have ordA = 0, thereby justifying the power of 2 involved in the
definition of A. Itis clear that it is enough to show this after a base exterBigR,
whereR’/R is a discrete valuation ring dominatidg So the statement will follow

from Lemma 6.1 and Propositions 6.2 and 6.3 below.

LEMMA 6.1. After some base-change with a discrete valuation ring dominating
R, there exists an open affine sub&etC X which is isomorphic to th&pecof

B = Alyl/(y* + ay +b),
for someu, b € A := R[x] such that the polynomidl(z) = a(z)? <4b(z) € K|z
is separable and of degr@e + 2 and such thatlega(z) < g+1,degb(z) < 2g+2.

For the reduced polynomialg(z), b(z) € k[z] we havedega(z) = g + 1 or
degb(z) > 29 + 1.
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Proof. By [L-K] (cf. proof of their Proposition 5.14 and Theorem 4.12), there
exists a faithfully flat finiteR = morphismX = Y of degree two onto a twisted
P! over Spe@. Passing, if necessary, to atale surjective extensioR' /R, we
may assume thaf is isomorphic ta%, ([L-K] Corollary 3.4). We may choose this
isomorphism such that ; — P3- is unramified over the point at infiniti., ;- of
Pi. LetU’ := P} & P, = SpecR[z], wherePy is the closure o k in P},
ThenU := n~1(U’) = SpecB for a finite flat R[z]-algebraB of degree two. By
[Sesh],B is free as amR[z]-module and it follows

B = Alyl/(y* + ay +b), (+)

for somea, b € A := R[x]. We chose a representatior) such that: has minimal
degree. Then it is easy to see that@@a< g + 1 and de¢) < 2g + 2. Regarding
y as an element of(X}), we have diyy) > min{dega, % degb} - T poo, Where
poo is the place at infinity of}, = Pi. Since, by Riemann-Roch, for anyg g the
k-vectorspace of functions € k(Xj) with divy > ©n - 7*ps is contained in the
spanof 1...,z9, the last statement of the lemma follows. O

PROPOSITION 6.2In the situation of Lemmé.1, the differentialdz/(2y + a) is
nowhere vanishing ofV and the differentials dz:/(2y +a) (i = 0,...,g 1)
extend to regular global sections ﬁf;‘(/R.

Proof. It is easy to see that the morphist]B/R = (Bdr® Bdy)/(F, dz +
F,dy) — B, defined byy(dz) = F,, ¢(dy) = ©F}, is an isomorphism of3-
modules This proves the first part of the proposition. As to the second part, it suffices
to check that the restrictions of the differentialsiz /(2y + a) on the generic fibre
Ui extend to regular global sections@i‘,}{/K. But this is well-known. ]

PROPOSITION 6.3Let f(z) € R[x] as in Lemma5.1 and setD := 2~ (4+4) .
A(f), whereA(f) is the discriminant of (cf. Sectior?). ThenD is a unit in R.

Proof. If char(k) # 2, this is clear. So assume ctiay = 2. In what follows,
if C'is any ring andP = $7 qu;T%, Q = S qu; " are two polynomials irC[17],
we denote by (P, Q) € C the resultant of” and@ (c.f. [vdW] Sections 34,
35). LetF(z,y) = y* + a(x)y + b(z), Q := RZY(F, F,), P := R>'(F, F,) and
A € R the leading coefficient oP. Then we have

R¥+2%+2(p ) = (A- D)2

We can read this equation as a formal identity between polynomials in the coef-
ficients ofa(z) andb(x) and conclude thaD € R and A?| R29+2%+2(P, ).

Let R[z] — k[z], h — h be the residue homomorphism.Af # 0, then we have
degP = 2¢ + 2 andD> = A~ R%+24+2(P Q). If to the contrary4 = 0, then

it is easy to see that we may assume Heg 2¢ and ded) = 4¢g and that we have

D’ = R29%9(P, Q). Thus in any cas®” # 0 by smoothness of}. O
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7. Asymptotic of metrics

Let R be the ring of integers in a number field and }tR be a semistable curve
with smooth hyperelliptic generic fibre of gengs> 2. Assume thafX /R is the
minimal regular model of its generic fibre. Lebe a closed point of Spge. Denote
by §5(X/R) the number of singular points in the geometric fiboreXofR over s.
By an elementary estimate of the coefficients4gf A;, B; in the expression for
ords(Ax/r) in 3.1, we deduce the inequality

ordy(Ax/x) < ¢ - 05(X/R). 1)

The purpose of this section is to globalize this inequality in the sense of Arakelov-
geometry (Theorem 7.7) and to deduce from this an upper bound for the self-
intersection of the relative dualizing sheaf &i R (Corollary 7.8). To this end, we
will establish an analogue of (1) at the infinite place (Theorem 7.1). We start with
some definitions and notations.

Letg > 2 be an integer. Let: X — S be an analytic stable curve of genus
g. Then we denote bwy,s (or by w;) the relative dualizing sheaf ok/S.
If = X — S is generically smooth and hyperelliptic, we denote by, s the

canonical section dfdetr,wy,s)*®*4, defined as in Section 2.
A C>®-metric || ||mod ON Wy, /M, is a rule that to each analytic stable curve

X/S of genusg over a complex manifold’ associates a continuous metfjd|

on the line bundlevx 5, such that the rule is compatible with any basechange and
such that| || is C*°, if X/S happens to be the universal local deformation of a
stable curve. It is easy to see tl#&t-metrics vy /1, exist (cf. [Bost3], 4.2.4,

p. 249). It would be desirable to haveanonicalchoice of such a metric, but | do

not know of any such construction. Because of its bad behavior in the neighborhood
of degenerate fibres (cf. [Jor], [Wen]), the Arakelov-metric (cf. [Ara2], p. 1178 or
[Sou], p. 338) unfortunately cannot be extended to gigé’ametric onw /3,

Let C'/C be a smooth proper curve of geng®ver C. The hermitian scalar
product(s1, s2) = (i/2) [o(c) 51 A 52. induces a metrid| [lo on H°(X, Q¢ ),
which we will call thenatural metric We will call natural metricand will denote
by the same symbol also the metric induced|bljo onA¢c = detH°(X, Q¢ ),
and on tensor powers of this vectorspace.

Let £ be a line bundle o’ and let|| || and|| ||z be metrics orﬂlc/(c and.z,

respectively. For two globdl*°-sectionssy, s of £ (of L ® Q%l) their L2 scalar
product is defined by

(51, 50) 2 = ~ /C (51(x), 5(x)) dv(z).

™

Here the scalar product under the integral is induced by the mietiie (by
the metrics|| ||z and|| ||), and d- is the volume form orC' locally defined by
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dv = (i/2)(a A @/||a]|?), wherea is an invertible local section lec/c- The
vectorspacéZ®(C, £) can be identified with the kernel of the Dolbeault-complex

c=(C, L) % c®(C, £ ® Q%Y

and we have canonicallf*(C, £) = cokerd = (im¥)L = kerd". Restriction of
the L?-norms ofC>®(C, £) andC>=(C, £ ® Q%1) gives metrics o %(C, £) and
H'(C, £) and by thiswe getanorm o L) := detH°(X, £)®@(detH(X, £)) 1,

which we denote by the symbiol | - ;2. TheQuillen-metrid|| || = || ||,/ 11,11l

on\(L) is defined as

g = (detAg) "2 || iz Lo,

where(detAz)~(1/2) is the regularized determinant of the Laplace-Operator
56 (cf. [S-A-B-K], Ch. V, for the definition of déj.

Let || || still denote a smooth hermitian metric on the line burﬂ}ge/c. The
delta invariantof C' with respect to the metrig || is defined as the real number

i(C) =12. Iog(%) ,

where|| ||o is the natural metric on¢ ¢ and|| || is the Quillen-metric on\¢ /¢
associated tq ||.

Now we have all necessary definitions at hand, to be able to formulate the
analogue of inequality (1) ‘at infinity’.

THEOREM 7.1.Letg > 2 be aninteger and fix &°-metric|| ||moq ON W,/ Mb*
Lete > 0. There exists a constante R such that for all smooth hyperelliptic
curvesC'/C we have the inequality

slog||Acscllo < (9% +¢) - 6(C) + ¢,

whered(C) is the delta-invariant of” with respect to the metric induced By |mod
onC.

The proof of the theorem will be given after Propositions 7.3—7.6 below.
DEFINITION 7.2. (a) LetY’/C be a(2¢g + 2)-pointed stable genus-zero curve and
letp € Y be a singular point. The partial normalization}ois the disjoint sum of

two connected pointed curves. Lebe the number of marked points on one of its
components and put := min(k, 2g + 2 <k). The following cases are possible

(1) m = 2i + 2 forsomei € {0,...,[g ©1/2]}.
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Then we calp to beof typeq;.
(2) m=2j+ 1forsomej € {1,...,[g/2]}.
Then we calp to beof typeg;.

(b) LetX/C be astable curve of gengs> 2 and lefp € X be a singular point.
Let X be the partial normalization of atp. The following cases are possible

Q) ):( is connected. Then we callto beof typedo.
(2) X is the disjoint union of two prestable curves. et {1,...,[g/2]} be the
minimum of their respective geni. Then we galio beof typed;.

Let X be a hyperelliptic stable curve of gengus: 2 overC. In what follows,
we review the construction of the universal local deformatiyg. — Uhsc Of Xo
as a hyperelliptic stable curve (cf. [H-M], Section 4, [C-H], Section 4). Kgt
be the modification ofXy in its direction-reversing double points. By definition,
there exists am-pointed prestable genus-zero cuigeand an admissible double
coveringXy — Yp. By Lemma 1.6 we have = 2g + 2, and it is easy to see that
stability of X implies thatp is in fact a stable pointed curve. LBty — Uspcbe the
universal local deformation dfy as a stable pointed curve. The loaNg, C Uspc
of singular curves is a normal-crossing divisor whose branches correspond to the
singular points ofp. We may assume thak is an open neighborhood afs—1
and thatt; ...tq = O is an equation ofAgpe, Wherety, . .., to,—1 are the standard
coordinates ort? ! andd is the number of double points . Let I; (resp.
J;) be the subset of indices € {1,...,d}, such that{t, = O} is the branch
of Aspe Which corresponds to a double point of typge(resp. of types;) of Yo
(t=0,...,[g=1/2],j =1,...,[9/2]). Choose some small neighborhddgl
of the origin of (¥~ and letz, ... , 229—1 be the standard coordinates Gy
Consider the morphism frotaqc to Uspe, given by the equations

t; =22 forieJ
t; =z else

Let Vadc — Uadc be the pull-back oYspc by Uage — Uspe There exists a admissible
double coveringtagc — YadcWhich is unique up to isomorphism. The fibreXify.
over the center aifaqc is isomorphic taX. The curveXage — Uage IS semistable.
It is the blow-up of a hyperelliptic stable cun®&” — U,qc along the closed
subvarietyD C X" of direction-reversing double point&” — Uaqc IS unique
up to isomorphism. The special fibAg is isomorphic toX,. Now consider the
morphism offaqcto €29~ defined by

u; =22 (i €1),

(2
u; = z; else

u1,. .., up,—1 being the standard coordinates @ff~1. The curveX” — Uagc
descends to a hyperelliptic stable cumeXhsc — Unsc Over a neighborhootsc
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of the origin ofC% ! andz: Xhsc — Unscis the universal local deformation &fg
as a hyperelliptic stable curve. In the following diagram, which gives an overview
of the construction, the two extreme squares are cartesian

blow-up admissdouble
"
Ahsc X Xadc covering > Vadc > yspc

ramified

ramified U
adc ~covering

-
Uhsc covering

Uadc Uadc uspc

Fori € {0,...,[(g ©1)/2]} (resp. forj € {1,...,[g/2]}), let Api. C Unsc

(resp.Aﬁgc C Unso) be the locus of curves carrying a double point of typdresp.
of type 3;). It is the normal-crossing divisor given by the equatidp:;,ur, = 0
(resp. byllke s, ur = 0).

PROPOSITION 7.3.Let A, be the canonical section of the line bundle
(detr,w,)®®+4 Then we have the following equality of divisorsig.

[9—1/2] l9/2]
div(A,) = g- AR+ 3 20+ 1) (g 2D)AR+ 3 4i(g <f) A,
i=1 j=1

Proof. Let D be the unit disc irC. It suffices to prove that the stated equality
holds for the pull-back of the divisors under any morphigm: Uhse But this can
be shown analogously to the proof of Theorem 3.1. Alternatively, one may derive
the equality from Proposition 4.7 of [C-H] and the fact that over the moduli space
of smooth hyperelliptic curves, our canonical sectloprovides a trivialization of
the (8¢ + 4)th power of the Hodge-bundle. O

Now let ¢: Xsc — Usc be the universal deformation dfy as a stable curve (cf.

[Bi-Bo] pp. 19-21). Forj =0,...,[g/2], the IocusAié C Usc Of curves carrying
a double point of typd, is a normal crossing divisor. We may identifi. with

an open neighborhood of @ C3—2 such that the divisoNgc := ZBQZS]A?(; is

given by f = 0, wheref := I1¢_;¢, (the functiong, . . . t3,—3 being the standard
coordinates ot 2 andd the number of singular points df). By the universal
property of ¥sc — Use, we have a canonical morphissiifrom (a neighborhood
of 0 in) Unsc to Use, such thatthscis the pull-back ofYyc via this morphism. The

following proposition follows from the above constructiontif; — Usc.

PROPOSITION 7.4We have the following equalities between divisoré/pn

comp4166.tex; 8/08/1998; 8:53; v.7; p.27

https://doi.org/10.1023/A:1000580901251 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000580901251

64 IVAN KAUSZ

9—-1/2
L*Ag% hsc+2 Z Ahsc

*ASC_AhSC fOf]Zl,,[g/Z]

A special case of Theorem 4.1 in [FaiNVp. 17 is the following

PROPOSITION 7.5Leto be an invertible section afet(¢.wy). Then there exist
constants’y, C> > 0, and a neighborhood of 0 € U such that orlV < Agcwe
have the inequalities

Cr (Iog|f|> - < lloflo < Cl<|09|f|>cz-

Remark Using results of Y. Namikawa, we have shown in [Ka] the following
more precise statement: Lebe an invertible section of dgt.wy) and leth: Usc<
Asc — Ry be defined by

h = max log —

Izl

Then there are constants<0C’ < C” and a neighborhootl of 0 € U such that
onU & Agcwe have the inequalities

C'hY < ||ol§ < C"R7,

wherey is the rank of the first homology group of the graph associated to the stable
curveXy. In what follows, however, we only need the statement of Proposition 7.5
above.

One of the hardest ingredients of our proof of Theorem 7.1 is the following
consequence of a result of Bismut and Bost ([Bi-Bo], Theorem 2.2) that describes
the asymptotic of the Quillen-metric (observe that the bundle denoteddayin
[Bi-Bo] is inverse to our determinant bundle dgtv).

PROPOSITION 7.6Let o be an invertible section adet(¢.wy). There exists a
continuous functioth; onlfsc, such that orifsc < Asc We have the equality

d

12-logllou|lq = <) _log|ti| + ha.
=1

Proof of Theorem 7.1Let Z, be the (coarse) moduli space of smooth hyperel-
liptic curves of genug overC. It is a closed subset of the moduli spatet;, of all
smooth curves. L&k, be the Zariski-closure o, in the moduli spacé, of stable
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curves. The mapg’] — [|A¢/c|| and[C] — ¢(C) from Z, to R are continuous.
SinceZ, is compact, it suffices to show that for each poinfpf=7, there exists
a neighborhood” C 7, such thatslog|[Ac/c|| < (9 +¢) - 6(C) overV NZ,.
Such a point is represented by a hyperelliptic stable cifyd_etm: Xhsc — Unhsc
be the universal local deformation &f, as a hyperelliptic stable curve. Adopting
the above notation for the various divisorsigg let

a; € I'(Unse, Ou,,.) anequation fopi, ¢=0,...,[g<1/2)],
bj € D(Unso Ouee) @N equation foﬁﬁga i=1...,[9/2,

o € I'(Unse, detm,.w,) an invertible section

By definition of the delta invariant, Proposition 7.4 and Proposition 7.6, there exists
a continuous functiop, onls such that

l9-1/2] l9/2]
8(Xnse/Unse) = <loglagl 2 Y logla;| <) log|b;| <12log]|o||o + 1.
i—1 =1

On the other hand, from Proposition 7.3 we have

l9-1/2]

109 [|A v /tnecllo = 9+ 10Glao| + > 2(i + 1)(g <) log ;]
=1

l9/2]
+ Y 4j(g j)log|b;| + (89 + 4) log||ollo + 2,
j=1

for some continuous functiop, onUnhse. From Proposition 7.5 it follows that in
the neighborhood af\pgc := X; AR+ ZjAﬁgcthe function log|o||o is negligible

hsc
compared with loge;| and log|b;|. Therefore an elementary comparison of the
coefficients of loga;| and log|b;| in the above expressions f6(Xhsc/Uhsc) and
log| |Athc/uhsc| lo proves the existence of an open neighborhbod Unsc Of Ansc

such that ovet/' N (Unsc < Ansc) the inequality
S10g [|Axe/tmscll0 < (9% + €)0(Xhse/Unsd)
holds. The canonical mdghsc — Z, identifies an open neighborhood(ofo] € Z,
with the quotient ofthsc by the natural action of the finite group Auip). In
particular it is open, so we may takeas the image o/ under this morphismg
In what follows, we assume that the reader is familiar with the basic notions of

(low-dimensional) Arakelov-theory, as presented for instance iné&oBburbaki
talk [Sou]. Thus, in particular, if¢ be a number field$ := Spe¢Ox) and X/S
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an arithmetic surface, we have the notion of the degree of metrized line bundles on
S and the intersection pairing between metrized line bundleX on

THEOREM 7.7.Fix a C*°-metric|| ||mod ON W, /M, and ane > 0. LetK be a

number field. Let: X — S = Spe¢Ox) be a minimal regular arithmetic surface
with smooth hyperelliptic generic fibre of genus: 2. Assume good reduction at
all places dividing(2) and semistable reduction at all other places. ||dto be the
natural metric ondetr.wx, 5. For each embedding: K — C let 6(X,) be the
delta-invariant of the Riemann-surfadg, with respect to the metri¢ ||moq. Then
¢), depending only on the metrjc||moq and on
e, such that the following inequality holds

& +4<Zélong+Zd )

+¢(|| |Imods€) - [K : Q).

Proof. This is an immediate consequence of inequality (1), Theorem 6 and
Theorem 7.1. |

deddetr.wx/s, || llo) <

COROLLARY 7.8.Assume the conditions of the above theorem. Then there exists
aconstant’(|| ||mod, €), depending only ofj ||med @nde, such that the following
inequality holds

2
(wx/s-wx/s) < (339 ) (Z §ylogNp+ Y §(X )

p€|S| o K—C

+ (|| [Imod; €) - [K = @,

where the intersection numbéry,s.wx,s) and the delta-invariants(X, ) are
understood with respect to the metric induced |bjyvod ONwx/s-

Proof. By atheorem of Deligne ([Del], Theorem 11.4, cf. also [Sougdigme 4),
we have

(wx/s-wxys) = 12 deddetm,wys, || llq) <) 6, I0gN (p) <[K = Q- alg),
peS

for some constant(g), which depends only on the genus. With this, the corollary
follows immediately from Theorem 7.7. O

It was first observed by A. N. Parshin that a certain upper bound for the self-
intersectionw? of the relative dualizing sheaf on arithmetic surfaces would have

interesting number-theoretical consequences as, for examplebdtoenjecture
(cf. [Par1], [Par2], [Par3]).
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The shape of the upper bound as proposed by Parshin was suggested by the
analogous geometric situation of a surface fibred over a curve, where it follows
from the so-called Bogomolov—Miyaoka—Yauinequality betweenthe Chern classes
of the surface. In the sequel, L. Moret-Bailly formulated as a hypothesis (cf. [MB]
‘Hypothése BM’ (3.1.2)) a more general shape of an upper bound?ofhich
he showed would still imply e.g. thébc-conjecture. Observe that Corollary 7.8
gives an upper bound which has the form required in [MB]. One might object
that in Moret-Bailly’s hypothesis the self-intersectiof and the delta-invariant
d(X,) are defined with respect to the Arakelov-metric. But it is easy to see that
in the hypothesis one could take andé(X,,) with respect to ang>°-metric on
W, /M, and draw the same conclusions. Only the constants which appear in the
estimates, would depend on the choice of the metric.

Nevertheless our result does not suffice to draw arithmetic consequences at
least not along the lines of [MB]. In fact, recall the crucial argument in [MB]
which shows that Hypo#tse BM implies a version of Mordell's conjecture: Let
B be a smooth proper curve over a number figldAfter replacingK by some
finite extension and3 by a finite étale covering, we may assume, by Kodaira’s
construction, that over the baggethere exists a non-isotrivial smooth family of
curvesV — B. One gets an upper bound on the height of rational points of
B by applying Hypotiese BM to models of the fibres of the family. In view of
Corollary 7.8, it is therefore natural to ask whether there exists a proper smooth
curve which parametrizes a non-isotrivial family of smooth hyperelliptic curves.
Unfortunately, the answer to this question is negative. This fact seems to be well-
known, but for sake of completeness we give a short proofrLéf — B be a
smooth family of hyperelliptic curves. By Theorem 3.1, the degree of.det, s
vanishes. As has been shown by Arakelov, this implies the isotriviality /d?
([Aral], Lemma 1.4 and Corollary 1 to Theorem 1.1).
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