
Compositio Mathematica115: 37–69, 1999. 37
c 1999Kluwer Academic Publishers. Printed in the Netherlands.

A discriminant and an upper bound for!2 for
hyperelliptic arithmetic surfaces

IVAN KAUSZ ?

Mathematisches Institut der Universität zu K̈oln, Weyertal 86-90, 50931 Cologne, Germany
e-mail: kausz@mi.uni-koeln.de

Received 13 November 1996; accepted in final form 1 September 1997

Abstract. We define a natural discriminant for a hyperelliptic curveX of genusg over a fieldK as a
canonical element of the(8g+ 4)th tensor power of the maximal exterior product of the vectorspace
of global differential forms onX. If v is a discrete valuation onK andX has semistable reduction
at v, we compute the order of vanishing of the discriminant atv in terms of the geometry of the
reduction ofX overv. As an application, we find an upper bound for the Arakelov self-intersection
of the relative dualizing sheaf on a semistable hyperelliptic arithmetic surface.
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0. Introduction

In the present paper we introduce a natural discriminant for hyperelliptic curves of
genusg > 2. It will be defined as a canonical element of the(8g+4)th tensor power
of the maximal exterior product of the vectorspace of global differential forms on
the curve. To fix ideas, let us first consider the analogous case of an elliptic curve
E over a fieldK, given, say, by the Weierstraß equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6:

It is well known that while its discriminant� 2 K depends on the special equation,
the element�E=K = �(dx=(2y + a1x + a3))


12 2 (H0(E;
1
E=K))


12 is a
genuine invariant ofE. Moreover, ifv is a discrete valuation ofK andOv � K
is the associated discrete valuation ring, we may regard�E=K as a rational section
�E=S of the bundle(��!E=S)


12 onS = SpecOv, where�: E ! S is the minimal
regular model ofE over S and!E=S is the relative dualizing sheaf. Assuming
semistable reduction atv, there is a simple geometric interpretation of the order of
vanishing of�E=S atv: It is the number of singular points of the geometric special
fibre ofE ! S. Our main Theorem (3.1) is a generalization of this fact to the case
of hyperelliptic curves. Given a semistable curveX=S with smooth hyperelliptic
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38 IVAN KAUSZ

generic fibreX=K, it gives a formula for the order of vanishing of the discriminant
�X=S 2 (detH0(X;
1

X=K))

(8g+4) of X at v in terms of the geometry of the

special fibre. On the way to this formula we give an explicit construction of a
regular model ofX over a finite extension ofS as the ramified double covering of
a pointed prestable curve of genus zero. As an application, we find an upper bound
for the Arakelov self-intersection!2 of the relative dualizing sheaf on semistable
hyperelliptic arithmetic surfaces (Corollary 7.8). The search for an upper bound for
!2 has been initiated by A. N. Parshin [Par1]. He observed that in the geometric
case such a bound follows from the Bogomolov–Miyaoka–Yau inequality between
Chern-classes of an algebraic surface and that in the arithmetic case it would
lead to the positive answer of various diophantine questions, as for instance the
abc-conjecture. The most naive arithmetic analogue of the Bogomolov–Miyaoka–
Yau inequality seems to be wrong: There are curves of genus two which provide
counterexamples (cf. [BMM]). In [MB], Moret-Bailly therefore formulates as a
hypothesis a shape of an upper bound for!2 which still implies the same arithmetic
consequences as given by Parshin. Our bound has the shape of Moret-Bailly’s
hypothesis. Unfortunately, it has two shortcomings. Firstly, it involves the choice
of a metric on the relative dualizing sheaf of the universal curve over the moduli
space of curves of genusg, which we cannot make explicit. Secondly (and this is
more serious), it is very special to the hyperelliptic situation. In particular it does
not involve the discriminant of the number field.

This work owes most to Chapter 4 of [C-H], where Cornalba and Harris describe
the structure of the boundary of the moduli space of hyperelliptic curves of
genusg and give an expression of the(8g + 4)th power of the Hodge bundle
in terms of the boundary components. The existence of a canonical element in
(detH0(X;
1

X=K))

(8g+4) for a hyperelliptic curve of genusg seems to be well

known (see for example [U] in the case ofg = 2), though I don’t know any ref-
erence in the general case. Our construction of a regular model for a hyperelliptic
curve has been inspired by work of E. Horikawa [Hor] and U. Persson [Per]. An
upper bound for!2 of the form of our Corollary 7.8 had been previously established
in the caseg = 2 and with respect to the Arakelov metric by J.-B. Bost in a letter to
B. Mazur [Bost2], using explicit formulas given in [Bost1]. In fact it was this letter
and Mazur’s answer to it [Maz], which was the starting point of our investigation.

1. Hyperelliptic semistable curves

By a graphwe understand a triple(V; E ; c), whereV andE are disjoint sets (the
set of vertices and the set of edges respectively) andc (the coincidence relation) is
a rule that to each edgeE associates a subsetc(E) � V consisting of one or two
vertices. For example, for everyn 2 N we define thecyclic graph of lengthn

Cn = (fVigi2Z=nZ; fEigi2Z=nZ; c(Ei) = fVi; Vi+1g for i 2 Z=nZ):
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AN UPPER BOUND FOR!2 FOR HYPERELLIPTIC ARITHMETIC SURFACES 39

We adopt the usual notions from graph theory such as finiteness, connectedness,
morphism of graphs, subgraph, quotient of a graph by a group action. A connected
graph that has no cyclic subgraph will be called atree.

DEFINITION 1.1. Amarked graphis a graph together with a distinguished subset
of its set of vertices (the set of ‘marked vertices’). A marked graph is called
semistable(stable), if it is connected and if from every unmarked vertex there start
at least two (three) edges.

For example, the (unmarked) cyclic graphC1 is semistable (the edge which starts
and ends at the unique vertex, is counted twice).

DEFINITION 1.2. Let� = (V; E ; c) be a graph and� an automorphism of�. An
edgeE of � will be calleddirection-reversingwith respect to� , if �(E) = E,
c(E) = fV1; V2g and�(V1) = V2.

For example, the unique edge of the cyclic graphC1 is direction-reversing with
respect to the identity. Let� be a (marked) graph and� an involution (i.e. an
automorphism of order6 2) of �. We denote by�� the (marked) graph that is
obtained from� by omitting all edges which are direction-reversing with respect
to � .

DEFINITION 1.3. An involution� of a marked graph� is calledhyperelliptic, if
it leaves marked vertices fixed and if the quotient��=(�) is a tree. A marked graph
is calledhyperelliptic, if it admits a hyperelliptic involution.

PROPOSITION 1.4.Let � be a finite semistable marked graph which is not an
unmarked cyclic graph. Then there is at most one hyperelliptic involution on�.

Proof. Let � and� 0 be two hyperelliptic involutions on�. LetV be a vertex and
assume first that�(V ) 6= V . It is then easy to see that there exists a cyclic subgraph
C containingV and thatC is mapped onto itself by any hyperelliptic involution.
Now C contains a vertexV0 which is marked or from which there starts an edge
not belonging toC. In both cases it is easy to see that necessarily� 0(V0) = �(V0).
But the action of� (and� 0) onC is completely determined by its action on one
of its vertices, so we have�(V ) = � 0(V ). Now let us assume�(V ) = V . Then
� 0(V ) = V , because otherwise, interchanging the role of� and� 0 in the previous
argument, we would obtain a contradiction. This shows that� and� 0 act identically
on the set of vertices of�. It is now easy to see that� and� 0 act identically also on
the set of edges of�. 2

Recall (cf. [Kn]) that ann-pointed prestable curveof genusg over a scheme
S consists of a proper flat morphism�: X ! S andn sectionssi: S ! X of �
such that for each geometric points of S the following holds:
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40 IVAN KAUSZ

(1) The geometric fibreXs is a reduced curve and has only ordinary double points
as singularities.

(2) The pointsPi = si(s) are distinct regular points ofXs.
(3) dimH1(Xs;OXs) = g:

An n-pointed prestable curve(X; (Pi)i=1;:::;n) over an algebraically closed field
is calledstable (semistable), if it is connected and if on each smooth rational
component ofX the number of points that are double points ofX or are among
thePi is at least three (two). More generally, ann-pointed prestable curve over
an arbitrary scheme is called stable (semistable), if each of its geometric fibres is
stable (semistable).

To every prestable curveX over an algebraically closed field we associate in the
usual way a graph�X, whose vertices correspond to the irreducible components and
whose edges correspond to the double points ofX. We provide�X with a canonical
marking by requiring that a vertex be marked if and only if the corresponding
irreducible component ofX has genus> 1. It is then clear that the marked graph
associated to a semistable (stable) curve is semistable (stable) in the above sense.

Let X be ann-pointed prestable curve over an algebraically closed field. Let
p 2 X be a double point. Let~X ! X be the partial normalization ofX at p and
p1; p2 2 ~X the points of the preimage ofp. Let Z ' P1

k and choose three points
z1; z2; z3 2 Z. The (n + 1)-pointed prestable curve, obtained by taking the union
of ~X andZ, identifying pi with zi (i = 1;2) and taking as marked pointsz3 and
those coming fromX, will be called themodification ofX at p.

Let (Y; (P1; : : : ; Pn)) be ann-pointed prestable curve over an algebraically
closed fieldk of characteristic6= 2. Recall (cf. [H-M], Section 4) that a morphism
�: X ! Y is called anadmissible double covering, if the following holds

(1) X is a prestable curve and� is a finite morphism of degree two.
(2) � is ramified over every pointPi (i = 1; : : : ; n) and étale over any other

smooth point ofY .
(3) If q 2 Y is a double point, then either� is étale overq or ��1(q) = fpg and

there are isomorphisms

dOX;p ' k[[x; y]]=(x � y);
dOY;q ' k[[u; v]]=(u � v);

such that� induces the morphismk[[u; v]]=(u � v) ! k[[x; y]]=(x; y) which
mapsu to x2 andv to y2.

We can now define the central notion of this paper.

DEFINITION 1.5. Letk be a field of characteristic6= 2 and letX=k be a semistable
curve.
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(1) Assume first thatk is algebraically closed. Then we callX=k hyperelliptic, if
the following holds

(a) The associated marked graph�X is hyperelliptic.
(b) Let X 0 be the (pointed) prestable curve that is the modification ofX

at each of its double points which corresponds to an edge of�X which
is direction-reversing with respect to the hyperelliptic involution of�X .
Then there exists an admissible double coveringX 0 ! Y onto a pointed
prestable curveY of genus 0 that carries marked points into marked points.

(2) In general, we callX=k hyperelliptic, if X=k is hyperelliptic in the sense of
1, whereX = X 
kk andk is some algebraic closure ofk.

Let X be a hyperelliptic semistable curve. The hyperelliptic involution� of �X
induces a canonical involution on the set of components and on the set of double
points ofX. A double point ofX is calleddirection-reversing, if the corresponding
edge of�X is direction-reversing with respect to� .

LEMMA 1.6. Letk be an algebraically closed field of characteristic6= 2. LetX=k
be a prestable curve of genusg andY=k a connectedn-pointed prestable curveY
of genus 0. Let� : X ! Y be an admissible double covering. Then all components
of X are smooth andX is connected if and only ifn > 1 in which case we have
n = 2g + 2. If, in addition,X is semistable andg > 2, then it is hyperelliptic
without direction-reversing double points.

Proof. It is clear that the components ofX are smooth, since by definition of
admissible double coverings,X has singular points only when two different com-
ponents meet. Ifn = 0 thenX ! Y is étale and it follows thatX is isomorphic
to Y q Y . Letn > 1. Then, by induction on the number of components ofY , it is
easy to see thatX is connected of genusg with 2g + 2= n. The last statement of
the lemma is clear. 2

Assumek algebraically closed with chark 6= 2 and letX=k be a hyperelliptic
semistable curve of genusg > 2. Denote by� the canonical involution of its set
of double points. Letp be a non-direction-reversing double point. Then the partial
normalization ofX atfp; �(p)g is the disjoint sum of two connected components
X1, X2. Let gi be the genus ofXi (i = 1;2). There are two cases:

� �(p) 6= p. Then g = g1 + g2 + 1 and we callp to be of type�l, where
l := minfg1; g2g 2 f0; : : : ; [(g � 1)=2]g:

� �(p) = p. Theng = g1 + g2 and we callp to be of type�l, wherel :=
minfg1; g2g 2 f1; : : : ; [g=2]g.

Direction-reversing points will also be calledto be of type�00. If k is not algebraical-
ly closed andk an algebraic closure, then all points ofX 
 k lying over a fixed
singular pointp of X are of the same type. We callp to be of the corresponding
type.
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42 IVAN KAUSZ

2. The discriminant of a hyperelliptic curve

Throughout this section, we make the following assumptions:g is an integer> 2.
K is a field of characteristic6= 2 with at least 2g+ 2 elements.XK=K is a smooth
hyperelliptic curve of genusg such that there exists a finite morphism of degree
two fromXK onto the projective lineP1

K.

PROPOSITION 2.1. (1)The function fieldF of XK has generatorsx andy and
defining relationy2 = f(x), wheref(x) 2 K[x] is a separable polynomial of
degree2g + 2.

(2) If F = K(~x; ~y), where~y2 = ~f(~x) and ~f(~x) 2 K[~x] is separable of degree
2g + 2, then there is an invertible matrix 

a b

c d

!
2 Gl2(K)

and an elemente 2 K� such thatx = (a~x+b)=(c~x+d) andy = e=(c~x+d)g+1 � ~y.
Proof. (1) It is well known (cf. [Art1] Ch. 16.7) that the function field ofXK

is K(x)[y]=(y2 � f(x)) for some square-free polynomialf(x) 2 K[x] of degree
2g + 1 or 2g + 2. If degf(x) = 2g + 1, choose an elementa 2 K with f(a) 6= 0
(here we use the assumption that #K > 2g + 2) and make the transformation
x = 1=(~x � a) + a, y = (~x � a)�(g+1)~y, to get an equation~y2 = ~f(~x), where
deg~f(~x) = 2g + 2. Thus we may assume thatf(x) has degree 2g + 2. Let
K be an algebraic closure ofK. SinceXK is smooth by hypothesis, the curve
XK := XK
K is also regular and of genusg and its function field is described by
the same equationy2 = f(x). Therefore, by loc. cit.,f(x) is square-free inK[x]
and thus separable.

(2) It follows from the assumptions thatK(~x) is of index two inF and of genus
zero. By loc. cit. we conclude thatK(~x) = K(x) and therefore thatx = a~x+b

c~x+d for
an invertible matrix 

a b

c d

!
2 Gl2(K):

It is easy to see that then we have necessarilyy = (e=(c~x + d)g+1)~y for some
e 2 K�. 2

Recall that the discriminant�(f) of a nonzero polynomialf(x) 2 K[x] of degree
d is defined as

�(f) = A2d�2 �
Y
i6=j

(ai � aj) 2 K�;

whereA 2 K� is the leading coefficient anda1; : : : ; ad are the zeroes off in
an algebraic closure ofK. Let y2 = f(x) be an equation forXK as in the above
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proposition. Recall further the well-known fact that the differentialsxi dx=y (i =
0; : : : ; g�1) form a basis ofH0(XK ;
XK=K). We define an element� = �XK=K

of the one-dimensional vector-spaceV = (
VgH0(XK ;


1
XK=K))


(8g+4) by set-
ting

� = Dg

 
dx
y
^ � � � ^ xg�1 dx

y

!
(8g+4)

;

whereD := 2�(4g+4) ��(f). (The reason for the power of two in the definition of
D will be given in Section 6.) By the following result,� is a canonical element of
V

PROPOSITION 2.2. (1)� is independent of the special choice of the equation
y2 = f(x).

(2) Let K 0=K be an arbitrary field-extension andXK0 := XK 
 K 0. Then
�0 = �XK0=K0 is the image of� under the canonical mapping

V ! V
O
K

K 0 = (
ĝ

H0(XK0 ;
1
XK0=K0))
(8g+4):

Proof. It is a straightforward calculation to show that� is invariant under trans-
formations as described in Proposition 2.1 (2). This proves the first statement. As to
the behavior under base change: This follows directly from the construction of�.2

3. Statement of the main theorem, first reductions

In this section,R denotes a discrete valuation ring,K its quotient field,v the
induced discrete valuation onK (normalized in the sense thatv(K) = Z), k the
residue field ofR. LetX=R be a prestable curve with smooth generic fibreXK and
let p be a singular point of the special fibreXk of X. Themultiplicity �(p) of p is
defined as the length of theR-module�(X=R)p := OX;p=F1, whereF1 denotes
the first Fitting ideal of theOX;p-module
OX;p=R. The relative dualizing sheaf
!X=R of X=R is the unique invertible subsheaf ofj�
1

XK=K (wherej�: XK ,! X

is the canonical immersion), which coincides with
1
X=R on the smooth part of

X=R.
The behaviour of these invariants under base change is as follows: LetR0=R

be a discrete valuation ring dominatingR and setX 0 = X 
 R0. Then we have
��(pi) = e�(p), where the sum is over the points of the fibre overp of X 0 ! X
ande is the ramification index ofR0=R. The relative dualizing sheaf!X0=R0 is
simply the pull back of!X=R under the projectionX 0 ! X.

Now assumek to be algebraically closed and let~X=R be a second prestable
curve andf : ~X ! X a birational projectiveR-morphism. Then we have��(pi) =
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�(p), where the sum is over the singular points of~Xk mapping ontop. Therefore,
if ~X ! X happens to be the minimal desingularization ofX, then�(p) is simply
the number of double points of~Xk lying abovep (cf. [MB], proof of Theorem 2.4).
On the other hand, we havef�! ~X=R = !X=R. This follows from [Art2], Corol-
lary (3.4)(ii) and the fact thatX has only rational singularities.

Assume chark 6= 2 andk not necessarily algebraically closed and thatXK

is hyperelliptic and satisfies the assumptions made at the beginning of Section 2.
Then we can consider� = �XK=K as a rational section�X=R of the ‘line bundle’
M = (

VgH0(X;!X=R))

(8g+4) on SpecR and denote by ords� the order of

vanishing of� in the closed points 2 SpecR. In other words, we set

ords� = v(a);

wherea 2 K, � = �0 
 a 2M 

R
K and�0 is a generator ofM .

After these preliminaries we can formulate our main theorem

THEOREM 3.1.Let (R;K; k; v) be a discrete valuation ring with2 2 R�. Let
X=R be a semistable curve with smooth hyperelliptic generic fibreXK of genus
g > 2 and assume that there exists a finite morphism of degree two fromXK onto
the projective lineP1

K. If X=R is either the minimal regular or the stable model of
XK overR, then the following holds

(1) The special fibreXk ofX=R is hyperelliptic in the sense of Section1.
(2) Let� be the hyperelliptic involution on the set of double points ofXk. Then in

a given� -orbit all double points have the same multiplicity, which we call the
multiplicity of that� -orbit.

(3) With the notation introduced at the end of Section1, let

A00 = the number of double points of type�00,

Ai = the number of� -orbits of double points of type�i,

Bj = the number of double points of type�j

(i = 0; : : : ; [g � 1=2]; j = 1; : : : ; [g=2]), where we count double points (� -
orbits) with multiplicities. Then we have the equation

ords(�) = g � A00 + 2
P[g�1=2]

i=0 Ai(g � i)(i + 1) + 4
P[g=2]

j=1 Bj(g � j)j:

The proof of the theorem will be given in Section 5. In the present section we
restrict ourselves to prove some first reductions.

LEMMA 3.2. (a) It suffices to show the theorem under the additional assumption
that the residue fieldk is algebraically closed.

(b) Assume thatk is algebraically closed and letX=R be a stableR-curve
satisfying the assumptions of the theorem. Denote by~X=R the minimal regular
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model ofX. Assume that the conclusions of the theorem hold true for~X=R and that
~Xk has no direction-reversing double points. Then the conclusions of the theorem

hold true also forX=R.
(c) Assumek to be algebraically closed. LetR0=R be a finite extension of

discrete valuation rings and letX 0 be the minimal regular model ofX 
R0. If the
conclusions of the theorem hold true forX 0 then also forX.

Proof. Part (a) and (c) of the lemma are easy consequences of Proposition 2.2
and the remarks we made at the beginning of this section. To prove part (b), first
observe that by assumption, there exists an admissible double covering~Xk ! Yk
onto a(2g+2)-pointed genus-0-curveYk. In what follows, aP1-chain (of lengthn)
of ~Xk is a closed connected subschemeZ of ~Xk that is maximal with the property
that all the irreducible components ofZ are isomorphic toP1

k and meet the rest
of ~Xk in exactly two points. The graph ofZ is then linear. It is well known that
Xk arises from~Xk by contracting all theP1

k-chains of ~Xk. LetZ be aP1-chain of
~Xk and letZ1; : : : ; Zn be its successive components andp1; p2 2 ~Xk the points

whereZ meets the rest of~Xk. Denote by� the hyperelliptic involution on the set
of components and double points of~Xk. We distinguish three cases

� Type-0-case:�(p1) = p2. We have then�(Zi) = Zn+1�i for i = 1; : : : ; n
and it follows thatn = 2m + 1 is odd because otherwise the double point
p = Z(1=2)n \Z(1=2)n+1 would be direction-reversing. The middle component
Zm+1 is the only one ofZ which is ramified overYk.

� Type-�-case:�(p1) 62 fp1; p2g. Then there is aP1-chainZ 0 of ~Xk which is
disjoint toZ and has successive componentsZ 01; : : : ; Z

0
n such that�(Zi) = Z 0i.

There exists anl 2 f1; : : : ; [g�1=2]g such that all then+1 � -orbits of double
points of ~Xk contained inZ [ Z 0, are of type�l.

� Type-�-case:�(p1) = p1. Then all components ofZ are fixed by� . There
exists anl 2 f1; : : : ; [g=2]g such that all then+ 1 double points of~Xk lying
onZ, are of type�l.

LetZ be the set of all components of~Xk which are isomorphic toP1 and meet
the rest of~Xk in exactly two points, except those, which are the middle component
of some type-0-chain. LetX 0

k be the pointed prestable curve obtained from~Xk by
contracting all components belonging toZ and marking one ramification point on
each middle component of type-0-chains. On the other hand, letY 0k be the(2g+2)-
pointed prestable genus-0-curve which is obtained fromYk by contracting all
images of components belonging toZ. It is clear that� restricts to a hyperelliptic
involution on�Xk

, thatX 0
k is the modification ofXk in all of its direction-reversing

double points, and that~Xk ! Yk induces an admissible double coveringX 0
k ! Y 0k

carrying marked points into marked points. This proves thatXk is hyperelliptic.
In the type� and type� cases aP1-chainZ is contracted to a (� -orbit of) double

point(s) ofXk, which is of multiplicityn+1 and is of the same type as the (� -orbits
of) double points lying onZ. If Z is of type 0, them+ 1 � -orbits of double points
contained inZ, are contracted to a double point ofXk, which is of multiplicity
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n+1 and of type�00. It follows that statements (2) and (3) of the theorem also hold
for X=R. 2

4. Construction of minimal models

LetR;K; k; v be as in the assumptions at the beginning of the last section. Except
for Lemma 4.1, we assumek to be algebraically closed. Assume furthermore that
2 2 R�.

LEMMA 4.1. LetXK=K be a smooth hyperelliptic curve. There exists a discrete
valuation ringR0 (with quotient fieldK 0, residue fieldk0, and normalized discrete
valuationv0), finite overR and dominatingR, such thatXK0 = XK 
 K 0 is a
regular proper model of the function fieldK 0(x; y) associated to the equation

y2 = f(x) := A �
2g+2Y
i=1

(x� ai);

whereA 2 (R0)�; ai 2 R0 for i = 1; : : : ;2g + 2, ai 6= aj andv0(ai � aj) 2 2N0

for i 6= j and#fai j i = 1; : : : ;2g+ 2g > 3 (ai 2 k0 being the residue class ofai).
Proof. By Proposition 2.1 we may assume (after passing to some finite extension

of K) thatXK belongs to an equationy2 = A ��2g+2
i=1 (x� ai) for someA 2 K�

and pairwise differentai 2 K. After a simple transformation we may even assume
ai 2 R for all i and #fai; : : : ; a2g+2g > 2. If the number of differentai equals 2, we
can write (after some renumbering):a1 = � � � = ar�1 6= ar = � � � = a2g+2, where
r > 3 and wherem := v(a1�a2) is minimal among the valuesv(a1�ai) (1 6 i 6
r�1). Lett 2 R be a local parameter. We may assume thatk has at leastr elements.
Therefore we find an elementb 2 R such thatb�(ai�a1)=t

m is invertible inR for
i = 1; : : : ; r � 1. After the transformationx = tm(b+ 1=~x) + a1; y = (1=~x)g+1~y
we can make the additional assumption that #fa1; : : : ; a2g+2g > 3. Passing to the
extensionK(

p
t)=K we achieve finallyv(A) 2 2Z andv(ai � aj) 2 2N0 for all

i 6= j. After the transformationx = ~x; y = t(1=2)v(A)~y the equation has all the
required properties. 2

For the rest of this section letXK=K be the regular proper model of the function
fieldK(x; y) associated to the equationy2 = f(x) := A ��2g+2

i=1 (x� ai), whereA
and theai satisfy the conditions (with respect tov) listed in the above lemma. Our
purpose is to give a very explicit description of the minimal regular modelX=R of
XK and to show that it is semistable. First we associate a(2g+2)-pointed prestable
curveY to the polynomialf(x) = �2g+2

i=1 (x � ai) as follows: LetY0 := P1
R and

let P1 � Y0 the closure of the point(1 : 0) 2 P1
K in Y0. The principal divisor on

Y0, defined byf(x) 2 K(Y0) is divY0(f(x)) =
�
�2g+2
i=1 Pi

�
� (2g + 2)P1, where
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Pi � Y0 is the closure of(ai : 1) 2 P1
K in Y0 (i = 1; : : : ;2g+ 2). By definition,Y

is obtained fromY0 by successively blowing up closed points of the special fibre,
where thePi meet, until the strict transform of�iPi becomes regular. By abuse of
notation, we denote the strict transform ofPi in Y (i 2 f1; : : : ;2g + 2;1g) by
the same symbolPi. It is then clear that(Y; (P1; : : : ; P2g+2)) is a(2g+2)-pointed
prestable curve of genus zero with generic fibreYK = P1

K.
The graph�Yk associated to the special fibreYk of Y is a finite tree that can

be described directly in terms of the elementsai 2 R: Letm � R be the maximal
ideal of R and for n 2 N0 let rn: fa1; : : : ; a2g+2g ! R=mn be the natural
mapping that associates toai its residue class modulomn. We define a graphT
as follows. The vertices ofT are the elements of the setV(T ) = qn>0Vn, where
Vn = fV 2 R=mn j#r�1

n (V ) > 2g. The set of edges ofT consists of pairs(V; V 0),
whereV 2 Vn, V 0 2 Vn+1 for somen > 0 andV 0 7! V under the canonical map
Vn+1 ! Vn. The coincidence relationc, finally, is defined byc((V; V 0)) = fV; V 0g.
It is easily seen thatT is a finite tree and that it is canonically isomorphic to�Yk .1

T has a canonical vertexV0, the unique element ofV0. It corresponds to the
irreducible component ofYk which is the strict transform of the special fibre ofY0.
We define a canonical partial ordering on the set of vertices ofT by setting

V 6 V 0: , V 2 Vn; V 0 2 Vm; where

m > n; and V 0 7! V underVm ! Vn:
The vertexV0 is the absolute minimum with respect to this partial ordering. It will
be convenient to associate to each vertexV of T the following list of numbers

n(V ) := n; whereV 2 Vn;
'(V ) := #r�1

n (V );

�(V ) := '(V )�
X

V 02Vn+1
V 0>V

'(V 0);

C(V ) :=
�

1 if n and'(V ) are odd
0 otherwise

;

(f)(V ) :=
nX
i=1

'(Vi); whereV0; V1; : : : ; Vn = V

are the vertices of the linear subgraph ofT

that connectsV0 andV;

B(V ) := 1
2(C(V )� (f)(V )):

If V is an irreducible component ofYk, we denote byn(V ),'(V ) etc. the numbers
associated to the corresponding vertex ofT . For example,�(V ) is the number of

1 Quing Liu has brought to my attention that the construction of this tree already appears in
[Bosch].
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sectionsPi (i = 1; : : : ;2g + 2), meeting the irreducible componentV of Yk. The
geometrical meaning ofB(V ),C(V ) and(f)(V ) is revealed by the lemma below.

LEMMA 4.2. (1) Let (f) denote the principal divisor onY defined byf(x) 2
K(Y ). Then we have(f) = �2g+2

i=1 (Pi � P1) + �V�Yk irred:(f)(V )V .
(2) The divisorC := �2g+2

i=1 Pi+�V�Yk irred:C(V )V is regular(as a subscheme
of Y ).

(3) B(V ) is integral for anyV and, denoting byB the divisor(g + 1)P1 +
�VB(V )V onY , we have2B = C � (f). In particular,L := OY (B) is a square
root ofOY (C) in the Picard group ofY .

Proof. The statement for the horizontal part of(f) is obvious. LetV � Yk be
an irreducible component and denote byvV the corresponding valuation ofK(Y ).
It is easy to see (cf. proof of Lemma 5.1) thatvV (x�ai) = min(n(V ); v(a�ai)),
wherea 2 fa1; : : : ; a2g+2g represents the vertex ofT that corresponds toV . From
this, the statement about the vertical part of(f) follows immediately. Parts (2) and
(3) of the lemma are now easy to verify. 2

The proposition below describes a well-known construction of ramified double
coverings and lists some of its properties.

PROPOSITION 4.3.LetY be a regular integral Noetherian separated scheme,C
an effective divisor onY , L an invertibleOY -module andF a global section of
L2, whose divisor isC. F induces a morphismL�1 
 L�1 �! OY (�C) ,! OY ,
which on the sheafA := OY � L�1 induces the structure of anOY -algebra. Let
X := SpecA. Then the following holds

(1) The structure morphism�: X ! Y is flat and finite of degree2.
(2) If C is regular and all residue fields ofY have characteristic6= 2, thenX is

regular.
(3) LetC be regular andV a connected component ofC. Then��V = 2W for a

prime divisorW onX, which as a scheme is mapped isomorphically ontoV
by�.

(4) LetY 0 be another regular integral Noetherian separated scheme andf : Y 0 !
Y a morphism transversal toC (i.e.f(Y 0) 6� C). LetC 0 := f�C,L0 := f�L.
As above, the sectionF 0 := f�F ofL02 induces anOY 0-algebra structure on
A0 := OY 0 �L0�1. We haveSpecA0 = X �

Y
Y 0.

Proof. One can restrict to the affine case where the verification is straight-
forward. 2

Returning to our special situation, letY , C, L be as in Lemma 4.2 and define
F 2 �(Y;L2) to be the image of the canonical section ofOY (C) under the iso-
morphismOY (C)! L
2 = OY (2B) induced by the relationC = 2B+(f). The
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construction in the proposition gives us a schemeX 0 := Spec(OY �L�1) together
with a finite flat morphism�: X 0 ! Y of degree two.

PROPOSITION 4.4.X 0 is regular andX 0=R is a proper flatR-curve whose spe-
cial fibre is a normal crossing divisor and whose generic fibre is isomorphic to the
hyperelliptic curveXK . LetV be an irreducible component of the special fibreYk
of Y . We setWV := ��V andgV := 1=2(C:V )�1. ThengV is integral and> �2
and

(1) gV = �2 if and only if C(V ) = 1. In this case,WV = 2 � W 0
V for an

exceptional divisorW 0
V ofX 0 that meets the rest of the special fibreX 0

k ofX 0

in exactly two points.

(2) If gV = �1, thenWV = WV;1 qWV;2, where theWV;i are prime divisors
isomorphic(as schemes) to P1

k meeting the rest ofX 0
k in at least two points.

(3) If gV > 0, thenWV is a prime divisor that(as a scheme) is a regulark-curve
of genusgV . If gV = 0, thenWV meets the rest ofX 0

k in at least two points.

Proof. It follows from Lemma 4.2 and Proposition 4.3, thatX 0 is a regular
proper flatR-curve. Using the local description ofX 0 coming from the construc-
tion as a double covering ofX, it is easy to see that the special fibre is a normal
crossing divisor. By 4.3.4. the generic fibre ofX 0 is integral with function field
K(x)[y]=(y2 � f(x)) and is therefore isomorphic toXK . Now let V be an irre-
ducible component ofYk.

If C(V ) = 1 thenn(V ) is odd and from the description of the treeT it follows
easily thatV cuts the rest ofYk in exactly two points. ThereforegV = 1

2(V:V )�1=
�2. By Proposition 4.3.3,WV = 2W 0

V for a prime divisorW 0
V which as a scheme

is isomorphic toV �= P1
k and meets the rest ofX 0

k in exactly two points. It follows
that(W 0

V :W
0
V ) = �1. By Castelnuovo’s criterion,W 0

V is exceptional.
If C(V ) = 0, then by Proposition 4.3,WV

�= X 0 �Y V (as a scheme) and
WV ! V is finite of order two, ramified over exactly(C:V ) points of V . If
(C:V ) > 0, then by Hurwitz’ formula(C:V ) = 2�(genus ofWV )+2. In particular,
gV is integral.

One checks easily that ifV corresponds to an extremal vertex ofT ,�(V ) is at
least two. Thus, if(C:V ) = 0, thenV does not correspond to an extremal vertex
and cuts the rest ofYk in at least two points. 2

The above proposition shows in particular that the exceptional divisors ofX 0

are exactly the components ofX 0
k which dominate a componentV of Yk with

C(V ) = 1. LetX 0 ! X be the blow-down of all exceptional divisors ofX 0. It is
clear now that X is the minimal regular model ofXK and is semistable.

LetZk denote the(2g+2)-pointed curve that is obtained fromYk by contracting
all componentsV of Yk with C(V ) = 1 (observe that theseV do not carry marked
points).
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COROLLARY 4.5.The morphismXk ! Zk induced byX 0
k ! Yk is an admissible

double covering andXk is hyperelliptic without direction-reversing double points.
Proof. By Lemma 1.6, it suffices to show the first part of the corollary. It is clear

thatXk ! Zk has properties (1) and (2) of an admissible covering. Letq 2 Zk
be a double point andV1; V2 � Zk the two components meeting inq. If q is the
image of a componentV of Yk under the blow-down mapYk ! Zk, then both
the preimage ofV1 underXk ! Zk and that ofV2 is ramified overq. Otherwise,
Xk ! Zk is étale overq. ThereforeXk ! Zk satisfies also condition (3) of
admissible coverings. 2

5. Proof of Theorem 3.1

By the Lemmas 3.2 and 4.1, we may assume thatk is algebraically closed and that
X=R is the minimal regular model of the hyperelliptic curveXK associated to an
equation

y2 = f(x) := A �
2g+2Y
i=1

(x� ai);

whereA and theai satisfy the conditions listed in Lemma 4.1. We have already
seen in Corollary 4.5 that the special fibreXk is hyperelliptic. SinceX is regular,
all the double points ofXk have multiplicity one, so the second statement of the
theorem is trivially fulfilled and the formula for ords(�) is all that remains to be
shown. For this, some preparation is necessary.

We keep the notation of the previous section. Thus the objectsXK ,Y ,T ,X 0,X
etc., associated with the above equation, are defined. We will employ some abuse of
notation to describe vertical divisors onY ,X 0 andX: If V 2 V(T ) is a vertex ofT ,
we denote by the same symbol the corresponding prime divisor onY . Its pull-back
under the projection�: X 0 ! Y will be denotedWV , as in Proposition 4.4. If
C(V ) 6= 1, the image ofWV under the blow-down mapX 0 ! X will again be
denoted byWV . Finally, we will not distinguish between vertical divisors onY
and elements ofZV(T ).

LEMMA 5.1. For F 2 V(T ) let DF 2 ZV(T ) be defined byDF (V ) :=
n(inf(F; V )).

(1) For any b 2 R there exists anF 2 V(T ) such that the vertical part of the
principal divisor of(x� b) 2 R[x] � K(Y ) is preciselyDF . If, on the other
hand,F 2 Vn(F ) � R=mn(F ) is represented byb 2 fa1; : : : ; a2g+2g, then
divvert(x� b) > DF .

(2) For any primitive polynomialh 2 R[x] of degreer there existb1; : : : ; br 2
fa1; : : : a2g+2g with
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divvert(h) 6 divvert

 
rY
i=1

(x� bi)

!
:

Proof. First we will introduce some notation. For a vertexV of T we let vV
be the valuation onK(Y ) that corresponds to the vertical prime divisor onY
associated toV . So we have divvert(h) = �V 2V(T )vV (h) � V for anyh 2 K(Y ).
If V = V0, we will omit the indexV from vV . There will be no confusion arising
from this, since for a polynomialh(x) = �i>0cix

i 2 K[x] � K(Y ) we have
vV0(h(x)) = mini>0 v(ci).

From the construction ofY it follows that if V is an irreducible component of
Yk, a smooth point ofV has an open affine neighborhoodU that isR-isomorphic
to some open part ofR[�] such that overU we have the equationx = tn� + a,
wheret 2 R is a local parameter,n = n(V ), anda 2 fa1; : : : ; a2g+2g represents
V as a vertex ofT . Therefore for anyh(X) 2 R[x] the equationvV (h(x)) =
v(h(tnx+ a)) holds.

We prove the first statement of the lemma. Givenb 2 R, we let n > 0 be
maximal such that the imageF of b under the mappingR ! R=mn lies in Vn.
We have to show thatvV (x � b) = n(inf(F; V )) for any vertexV of T . For this,
let a 2 fa1; : : : ; a2g+2g be a representative ofV . By the above remark, we have
vV (x�b) = v(tn(V )x+a�b) = min(n(V ); v(a�b)). Therefore the claim follows
from the fact that inf(F; V ) = maxfV 0 6 V jV 0 is represented bybg.

On the other hand, given a vertexF of T let b 2 fa1; : : : ; a2g+2g be a represen-
tative. Clearly, for any vertexV with representativea 2 fa1; : : : ; a2g+2g, we have
n(inf(F; V )) 6 min(n(V ); v(a � b)). ThereforeDF 6 divvert(x� b).

The proof of the second statement of the lemma is more involved. We need to
introduce further notation.

If V andV 0 are two vertices ofT with n(V ) = n(V 0)�1 andV < V 0, then we
will say thatV is apredecessorof V 0 and thatV 0 is asuccessorof V . Each vertex
exceptV0 has exactly one predecessor. The set of successors ofV0 is precisely
V1. Let h 2 K(Y ) andV 6= V0 a vertex ofT . Then we denote by�vV (h) the
differencevV (h) � vV 0(h), whereV 0 is the predecessor ofV .

I claim that for any primitive polynomialh 2 R[x] and any vertexV of T we
have

X
V 02S(V )

�vV 0(h) 6

(
deg(h) if V = V0

�vV (h) otherwise;
(�)

whereS(V ) denotes the set of successors ofV .
Admitting the claim for a moment, we conclude that given a primitiveh 2 R[x]

of degreer, there exists a family(IV )V 2V(T ) of subsetsIV � f1; : : : ; rg with

(i) IV0 = f1; : : : ; rg.
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(ii) IV � IV 0 for V 6 V 0.

(iii) IV =
�[V 02S(V ) IV 0 for all V 2 V(T ) with S(V ) 6= ;.

(iv) #IV > �vV (h) for all V > V0.

From properties (i)–(iii) it follows that

�[
V 2V(T )
V maximal

IV = f1; : : : ; rg:

We choose a representativeaV 2 fa1; : : : ; a2g+2g and setbi = aV for all maximal
verticesV of T and alli 2 IV .

It is easy to see then that for arbitraryV > V0 we have�vV (�r
i=1(x� bi)) =

#IV > �vV (h). SincevV = �n
j=1�vVj , whereV0 < V1 < � � � < Vn = V are

successive vertices of the linear subgraph ofT connectingV0 andV , it follows that

vV

 
rY
i=1

(x� bi)

!
> vV (h):

This proves the second statement of the lemma.
It remains the task to prove the claim(�). Assume first thatV 6= V0. Let a 2

fa1; : : : ; a2g+2g a representative forV andn = n(V ). Let V 0 be the predecessor
of V and set for abbreviationm := vV (h), m0 := vV 0(h). By the remark we made
at the beginning of the proof, there are primitive polynomialshV 0 , hV 2 R[x] such
that

h(tn�1x+ a) = tm
0

hV 0(x);

h(tnx+ a) = tmhV (x):

Since obviouslytm
0

h(tx) = tmhV (x), we have�vV (h) = m�m0 = v(hV 0(tx)).
Let� > 0 be maximal such thathV 0(x) 2 (t; x)�. ThenhV 0(x) =��

i=0ki(x)t
ix��i

for some polynomialski(x) 2 R[x] such thatki0(x) 62 (x; t) for at least onei0 2
f0; : : : ; �g. It follows thathV 0(tx) = t���

i=0ki(tx)x
��i and that��

i=0ki(tx)x
��i

is primitive. Therefore�vV (h) = � andhv(x) = ��
i=0ki(tx)x

��i. In particular,
we have

deghV (x) 6 �vV (h); (a)

whereh(x) 2 k[x] denotes the residue class ofhV (x) modulotR[x].
Now letV be an arbitrary vertex ofT and letV1; : : : ; Vs be the successors ofV .

For i = 1; : : : ; s we choose elementsbi 2 fa1; : : : ; a2g+2g representingVi and set
ci := (bi � a)=tn. Thenci 2 R andci 6= cj modm for i 6= j. Similarly as above,
we have fori = 1; : : : ; s the equations�i := �vVi(h(x)) = v(hV (tx + ci)) and
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hV (x) = ��i
q=0u

(i)
q tq(x � ci)

�i�q for certainu(i)q 2 R[x]. Therefore the residue

classci of ci in k is an at least�i-fold zero ofhV (x) and it follows

sX
i=1

�vVi(h) 6 deghV (x): (b)

Clearly, (a) and (b) together imply the claim.

LEMMA 5.2. DefineK 2 ZV(T ) by K(V ) := B(V ) + n(V ). We consider the
global differentialdx=y onXK as a rational section of the dualizing sheaf!X=R.
Its divisor onX is

div
�

dx
y

�
= (g � 1)��P1 +

X
V 2V(T )

C(V ) 6=1

K(V ) �WV :

Proof. Let t 2 R be a local parameter. LetV 2 Vn be a vertex ofT with
C(V ) 6= 1 and leta 2 fa1; : : : ; a2g+2g be a representative forV . Let q be a
smooth point ofYk that lies on the irreducible component which corresponds to
V . By construction ofY , there is an open affine neighborhoodU of q which is
R-isomorphic to an open part of SpecR[�] such that inA = �(U;OY ) we have
the equationx = tn� + a. By construction ofX 0, we have

�(��1U;OX0) = �(U;OY �L�1) ' A[�]=(�2 � h);

whereh 2 R[�] is the primitive polynomialt�(f)(V )f(tn� + a) and where over
U 0 = ��1(U) we have the equationy = t�B(V )�. It follows that dx=y =
tB(V )+n(V ) d�=�. By choosingU small enough we may assume thatA is gen-
erated byh andh0 and we conclude (similarly as in the proof of Proposition 6.2 of
Section 6) that d�=� is an invertible section of!X0=RjU 0 = 
1

U 0=R. The statement
for the vertical part of div(dx=y) follows. For the horizontal part it is enough to
look at the restriction of dx=y to the generic fibre ofX=R. But there the result is
classical (and easy to see). 2

Lemmas 5.3 and 5.4 below are of purely combinatorial nature. Nevertheless,
Lemma 5.4 is the key to our proof of the theorem.

LEMMA 5.3. LetI be a finite index-set. For anyi 2 I letfi: N0 ! Zbe increasing
mappings.

(1) There is a sequence(xn)n2N0 of I-tupels(xni )i2N 2 NI0 with the properties

(a) for anyi 2 I and anyn 2 N0; x
n
i 6 xn+1

i ;

(b) for anyn 2 N0 we have�i2Ix
n
i = n;
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(c) min
i2I

fi(x
n
i ) = max

(
min
i2I

fi(yi) j yi 2 N0;
X
i2I

yi = n

)
:

(2) If the fi are strictly increasing and a sequence((xni )i2I)n2N0 in NI0 satisfies
the properties(a)–(c)of (1), then for anyn 2 N0 we have

fin(x
n
in) = min

i2I
fi(x

n
i );

wherein 2 I is the unique index withxn+1
in

= xnin + 1.

The proof of Lemma 5.3 is straightforward, so we omit it. In the next lemma,
for D 2 ZV(T ), we denote byw(D) the number minV 2V(T )D(V ).

LEMMA 5.4. There exists a sequence(Fi)i>1 in V(T ) with the following pro-
perties

(1) For anym 2 N0; w(K + �m
i=1DFi) is maximal among the numbersw(K +

�m
i=1DGi

), whereG1; : : : ; Gm runs through allm-tupels of elements ofV(T ).
(2) For V 2 V(T ) set

(V ) :=

(
'(V )=2� 1; if '(V ) is even,

('(V )� 1)=2; otherwise.

Then for allV 6= V0; (V ) is the number of indicesm with Fm > V . For
i > (V0) we haveFi = V0.

(3) Let m 2 N. The mappingK + �m�1
i=1 DFi 2 ZV(T ) takes its minimal value

w(K +�m�1
i=1 DFi) at the vertexFm.

(4) For anym 2 N, the numbern(Fm) is even.

Proof. By induction onN = maxfv(ai � aj) j i 6= jg. The caseN = 0 is
trivial. Let V1; : : : ; Vr be the elements ofV2. Fori = 1; : : : ; r we denote byT i the
full subtree ofT , whose vertices are greater or equal toVi. T i is isomorphic to the
tree associated to the polynomial�j(x � (aj � bi)=t

2) 2 R[x], wheret is a local
parameter,bi 2 fa1; : : : ; a2g+2g representsVi 2 R=t2R and where the indexj
runs through all values for whichaj � bi modt2. Letni, 'i,Ki etc. be the objects
associated toT i, analogous ton, ',K etc. For example, we have

ni(V ) = n(V )� 2;

Ki(V ) = K(V ) + '(Vi)� 2;

Di
F (V ) = DF (V )� 2

for V; F 2 V(T i) � V(T ).
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By induction hypothesis, there are sequences(F i
j )j2N in V(T i) that have the

properties 1–4 of the lemma. We define functionsfi: N0 ! Z by setting

fi(x) = wi

0@K +
xX
j=1

DF i
j

1A = min
V 2V(T i)

0@K(V ) + xX
j=1

DF i
j
(V )

1A :

Thefi are strictly increasing (fi(x+1) > fi(x)+2) and we can apply Lemma 5.3
to obtain a sequence(im)m2N0 of elements inI := f1; : : : ; rg with

fim(x
m
im) = min

i2I
fi(x

m
i ) for all m 2 N0;

wherexmi = #f0 6 k 6m� 1 j ik = ig. Now we define form > 0

Fm+1 :=

8<: F im
xmim+1; if fim(x

im
m ) < 0;

V0; otherwise:

I contend that this sequence has the required properties.
For abbreviation, setDm := K + �m

j=1DFj andn0 = �i2I(Vi). Let V 0i be
the unique element betweenV0 andVi. It is not difficult to see that the following
statements hold true:

(i) Fm = V0 if and only ifm > n0 + 1.
(ii) For all m 6 n0 andi = 1; : : : ; r; we havexmi = #f1 6 j 6 m jFj > Vig.
(iii) For all i = 1; : : : ; r we have(Vi) = #fm 2 N0 jFm > Vig.
(iv) If m 6 n0 � 1, we haveDm(V

0
i ) > wi(Dm) for all i and 0> Dm(V

0
i ) >

wi(Dm) for at least onei.
(v) If m > n0 then for alli we have 06 Dm(V

0
i ) 6 wi(Dm).

Using these statements, properties (1)–(4) for the sequence(Fm) are easy to
derive. 2

With the help of theFi we can now construct a basis ofH0(X;!W=R).

PROPOSITION 5.5.Let (Fi)i>1 be a sequence inV(T ) satisfying the properties
listed in Lemma5:4. For everyi 2 N let bi 2 fa1; : : : ; a2g+2g be an element
representing the classFi 2 Vn(Fi) � R=mn(Fi). Lett 2 m denote a prime element
ofR and set for0 6 i 6 g � 1

!i := tei �
0@ iY
j=1

(x� bj)

1A dx
y
2 H0(XK ;
XK=K);

whereei := �w(K +�i
j=1DFj ) andw is defined as before Lemma5:4. Then
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(1) !0; : : : ; !g�1 is anR-basis ofH0(X;!X=R)

(2)
g�1X
i=0

ei =
1
2

X
V >V0

'(V ) even

(V )((V ) + 1) +
1
2

X
V >V0

'(V ) odd

(V )2;

where(V ) is defined as in Lemma5:4.

Proof. (1) By Lemmas 5.1 and 5.2 we have div(!i) > 0 and therefore!i 2
H0(X;!X=R) for i = 0; : : : ; g � 1. Since the!i form a K-Basis ofH0(XK ;


1
XK=K

), they are linearly independent. We show that they spanH0(X;!X=R). For
this let! = teh(x)(dx=y) (whereh(x) 2 R[x] is primitive of degreed 6 g � 1)
be an arbitrary element ofH0(X;!X=R). By Lemma 5.1 and by construction of
theFi, we havew(K+ divvert(h)) 6 �ed. Since div(!) > 0, it follows ed 6 e and
therefore there exists an elementc 2 R, such that! � c � !d = h1(x) � dx=y for a
polynomialh(x) 2 R[x] of degree at mostd� 1. We proceed by induction ond.

(2) By property 3 of theFi, we have

ei = �K(Fi+1)�
iX

j=1

DFi(Fi+1):

Since furthermoreFi = V0 for i > (V0) = g andK(V0) = DFj (V0) = 0, it
follows

g�1X
i=0

ei =
X
i>1

K(Fi)�
X
i>1

i�1X
j=1

DFj (Fi): (�)

For the first term of this equation, we haveX
i>1

K(Fi) =
X

V 2V(T )

n(V )22N

(V )(2� '(V )):

This follows from the definition ofK and property 2 of theFi. SinceDFi(Fj) =
DFj (Fi) = 2 � #fV 2 V(T ) jn(V ) 2 2N; V 6 Fi; V 6 Fjg, we have for the
second term

X
i>1

i�1X
j=1

DFj (Fi) =
X

V 2V(T )

n(V )22N

(V )((V )� 1);

where we have again made use of property 2 of theFi. Plugging in these expres-
sions into(�), we get the required formula. 2

comp4166.tex; 8/08/1998; 8:53; v.7; p.20

https://doi.org/10.1023/A:1000580901251 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000580901251


AN UPPER BOUND FOR!2 FOR HYPERELLIPTIC ARITHMETIC SURFACES 57

Let D := 2�(4g+4) � A(4g+2) � �i6=j(ai � aj) and!0; : : : ; !g�1 as in the above
proposition. Then obviously

�X=R = Dg � (t�e(!0 ^ � � � ^ !g�1))
(8g+4);

wheret 2 R is a prime element ande = �g�1
i=0ei. Therefore we have

ords �X=R = g � v(D)� (8g + 4) �
g�1X
i=0

ei: (1)

It is easily seen that

v(D) =
X
V >V0

'(V ) even

(2(V ) + 2)(2(V ) + 1) +
X
V >V0

'(V ) odd

(2(V ) + 1)2(V ):

Plugging in this and the formula of Proposition 5.5.2 into (1), we get

ords �X=R = 2
X
V >V0

'(V ) even

((V ) + 1)(g � (V ))

+2
X
V >V0

'(V ) odd

(V )(g � (V )): (2)

There is an obvious one-to-one correspondence between vertices> V0 of T
and its edges (toV 2 Vn (n > 1) there corresponds the edge that connectsV 0

andV , whereV 0 is characterized byV < V 0; V 2 Vn�1), and therefore also a
bijectionV 7! pV from V(T ) � fV0g to the set of double points ofYk. We set
'(pV ) := '(V ) and(pV ) := (V ). Let Zk be the(2g + 2)-pointed prestable
genus-0 curve obtained fromYk by contracting all componentsV with C(V ) = 1
of Yk (cf. end of Section 4) and letr: Yk ! Zk be the contraction map. Observe
that for two double pointsp1, p2 of Yk with r(p1) = r(p2), we have'(p1) = '(p2),
so that' and are defined on the set of double points ofZk. Observe furthermore
that for a double pointq of Zk the number of double points ofYk lying aboveq is
one, if'(q) is even and it is two, if'(q) is odd. So we can reformulate (2) as

ords(�X=R) = 2
X

q2Zk double point
'(q) even

((q) + 1)(g � (q))

+4
X

q2Zk double point
'(q) odd

(q)(g � (q)): (3)
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Let q be a double point ofZk and letZ1; Z2 � Zk be the closed subsets of
Zk whose union isZk and which intersect precisely infqg. Then one of these
two subsets carries exactly'(q) marked points ofZk, while the other carries
(2g + 2) � '(q) of these. The admissible double coveringXk ! Zk is ramified
overq if and only if '(q) is odd. It follows from Lemma 1.6 that in this case the
double points ofXk lying aboveq are of type�l, wherel = minf(q); g � (q)g,
whereas if'(q) is even, they are of type�l, wherel = minf(q); g � 1� (q)g.
After these considerations it is clear that (3) implies the formula of the theorem.

Remark. From the above proof it is easy to see that there are hyperelliptic
curvesX=K, such that ords(dx=y ^ � � � ^ xg�1 dx=y) < 0 for any choice of
equationy2 = f(x). This is in opposition to the case of elliptic curves, where
ords(dx=y) = 0 if and only if the corresponding equation is minimal. Still one
could think of calling an equationy2 = f(x) minimal, if ords�(f) is minimal –
or, what is the same, if ords(dx=y^� � �^xg�1 dx=y) is maximal (cf. [Lock], where
such an attempt has been made). But unlike in the case of elliptic curves, we will
in general have ords�min > (1=g)ords �X=K , where�min = �(f) for a minimal
equationy2 = f(x) for the hyperelliptic curveX=K.

6. Good reduction and characteristic two

There should be an analogue of Theorem 3.1 in characteristic two. In this section,
we prove this analogue only in the case of good reduction and generic characteristic
6= 2. More precisely, let(R;K; k; v) be a discrete valuation ring where charK 6=
2 andk is perfect and letX=R be a smooth properR-curve of genusg with
hyperelliptic generic fibreXK . Let� 2MK := (^gH0(XK ;


1
XK=K))


(8g+4) be

defined as in Section 2. As in Section 3,M := (^gH0(X;
1
X=R))


(8g+4) defines
an integral structure onMK and it makes sense to speak of the order of vanishing
ords� of � at the closed points 2 SpecR. Our objective is to prove that regardless
of chark we have ords� = 0, thereby justifying the power of 2 involved in the
definition of�. It is clear that it is enough to show this after a base extensionR0=R,
whereR0=R is a discrete valuation ring dominatingR. So the statement will follow
from Lemma 6.1 and Propositions 6.2 and 6.3 below.

LEMMA 6.1. After some base-change with a discrete valuation ring dominating
R, there exists an open affine subsetU � X which is isomorphic to theSpecof

B = A[y]=(y2 + ay + b);

for somea; b 2 A := R[x] such that the polynomialf(x) = a(x)2�4b(x) 2 K[x]
is separable and of degree2g+2and such thatdega(x) 6 g+1, degb(x) 6 2g+2.
For the reduced polynomialsa(x); b(x) 2 k[x] we havedega(x) = g + 1 or
degb(x) > 2g + 1.
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Proof. By [L-K] (cf. proof of their Proposition 5.14 and Theorem 4.12), there
exists a faithfully flat finiteR = morphismX �! Y of degree two onto a twisted
P1 over SpecR. Passing, if necessary, to anétale surjective extensionR0=R, we
may assume thatY is isomorphic toP1

R ([L-K] Corollary 3.4). We may choose this
isomorphism such thatXK ! P1

K is unramified over the point at infinityP1;K of
P1
K. Let U 0 := P1

R � P1 = SpecR[x], whereP1 is the closure ofP1;K in P1
R.

ThenU := ��1(U 0) = SpecB for a finite flatR[x]-algebraB of degree two. By
[Sesh],B is free as anR[x]-module and it follows

B �= A[y]=(y2 + ay + b); (�)
for somea; b 2 A := R[x]. We chose a representation(�) such thata has minimal
degree. Then it is easy to see that deg(a) 6 g + 1 and deg(b) 6 2g + 2. Regarding
y as an element ofk(Xk), we have div(y) > minfdega; 1

2 degbg � ��p1, where
p1 is the place at infinity ofYk = P1

k. Since, by Riemann–Roch, for anyn 6 g the
k-vectorspace of functions' 2 k(Xk) with div' > �n � ��p1 is contained in the
span of 1; : : : ; xg, the last statement of the lemma follows. 2

PROPOSITION 6.2.In the situation of Lemma6:1, the differentialdx=(2y+ a) is
nowhere vanishing onU and the differentialsxi dx=(2y + a) (i = 0; : : : ; g � 1)
extend to regular global sections of
1

X=R.

Proof. It is easy to see that the morphism': 
1
B=R = (B dx�B dy)=(Fx dx+

Fy dy) ! B, defined by'(dx) = Fy, '(dy) = �Fx, is an isomorphism ofB-
modules This proves the first part of the proposition. As to the second part, it suffices
to check that the restrictions of the differentialsxi dx=(2y+a) on the generic fibre
UK extend to regular global sections of
1

XK=K
. But this is well-known. 2

PROPOSITION 6.3.Let f(x) 2 R[x] as in Lemma6:1 and setD := 2�(4g+4) �
�(f), where�(f) is the discriminant off (cf. Section2). ThenD is a unit inR.

Proof. If char(k) 6= 2, this is clear. So assume char(k) = 2. In what follows,
if C is any ring andP = �n

i=0uiT
i, Q = �m

i=0viT
i are two polynomials inC[T ],

we denote byRn;m
T (P;Q) 2 C the resultant ofP andQ (c.f. [vdW] Sections 34,

35). LetF (x; y) := y2 + a(x)y + b(x), Q := R2;1
y (F; Fx), P := R2;1

y (F; Fy) and
A 2 R the leading coefficient ofP . Then we have

R2g+2;4g+2
x (P;Q) = (A �D)2:

We can read this equation as a formal identity between polynomials in the coef-
ficients ofa(x) andb(x) and conclude thatD 2 R andA2 jR2g+2;4g+2

x (P;Q).
Let R[x] ! k[x], h 7! h be the residue homomorphism. IfA 6= 0, then we have

degP = 2g+ 2 andD
2
= A

�2 �R2g+2;4g+2
x (P ;Q). If to the contraryA = 0, then

it is easy to see that we may assume degP 6 2g and degQ = 4g and that we have
D

2
= R2g;4g

x (P ;Q). Thus in any caseD
2 6= 0 by smoothness ofXk. 2
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7. Asymptotic of metrics

LetR be the ring of integers in a number field and letX=R be a semistable curve
with smooth hyperelliptic generic fibre of genusg > 2. Assume thatX=R is the
minimal regular model of its generic fibre. Letsbe a closed point of SpecR. Denote
by �s(X=R) the number of singular points in the geometric fibre ofX=R overs.
By an elementary estimate of the coefficients ofA00; Ai; Bj in the expression for
ords(�X=R) in 3.1, we deduce the inequality

ords(�X=R) 6 g2 � �s(X=R): (1)

The purpose of this section is to globalize this inequality in the sense of Arakelov-
geometry (Theorem 7.7) and to deduce from this an upper bound for the self-
intersection of the relative dualizing sheaf onX=R (Corollary 7.8). To this end, we
will establish an analogue of (1) at the infinite place (Theorem 7.1). We start with
some definitions and notations.

Let g > 2 be an integer. Let�: X ! S be an analytic stable curve of genus
g. Then we denote by!X=S (or by !�) the relative dualizing sheaf ofX=S.
If �: X ! S is generically smooth and hyperelliptic, we denote by�X=S the
canonical section of(det��!X=S)


(8g+4), defined as in Section 2.
A C1-metric jj jjMod on !X g=Mg

is a rule that to each analytic stable curve
X=S of genusg over a complex manifoldS associates a continuous metricjj jj
on the line bundle!X=S , such that the rule is compatible with any basechange and
such thatjj jj is C1, if X=S happens to be the universal local deformation of a
stable curve. It is easy to see thatC1-metrics on!X g=Mg

exist (cf. [Bost3], 4.2.4,
p. 249). It would be desirable to have acanonicalchoice of such a metric, but I do
not know of any such construction. Because of its bad behavior in the neighborhood
of degenerate fibres (cf. [Jor], [Wen]), the Arakelov-metric (cf. [Ara2], p. 1178 or
[Sou], p. 338) unfortunately cannot be extended to give aC1-metric on!X g=Mg

.
Let C=C be a smooth proper curve of genusg over C . The hermitian scalar

producths1; s2i = (i=2)
R
C(C ) s1 ^ s2. induces a metricjj jj0 on H0(X;
1

C=C ),
which we will call thenatural metric. We will call natural metricand will denote
by the same symbol also the metric induced byjj jj0 on�C=C = detH0(X;
1

C=C ),
and on tensor powers of this vectorspace.

Let L be a line bundle onC and letjj jj andjj jjL be metrics on
1
C=C andL,

respectively. For two globalC1-sectionss1; s2 of L (of L 
 
0;1
C ) theirL2 scalar

product is defined by

hs1; s2iL2 :=
1
�
�
Z
C
hs1(x); s2(x)id�(x):

Here the scalar product under the integral is induced by the metricjj jjL (by
the metricsjj jjL and jj jj), and d� is the volume form onC locally defined by
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d� = (i=2)(� ^ �=jj�jj2), where� is an invertible local section of
1
C=C . The

vectorspaceH0(C;L) can be identified with the kernel of the Dolbeault-complex

C1(C;L) �! C1(C;L 
 
0;1)

and we have canonicallyH1(C;L) = coker� = (im �)? = ker�
�
. Restriction of

theL2-norms ofC1(C;L) andC1(C;L 
 
0;1) gives metrics onH0(C;L) and
H1(C;L) and by this we get a norm on�(L) := detH0(X;L)
(detH1(X;L))�1,
which we denote by the symboljj jjL;L2. TheQuillen-metricjj jjQ = jj jjQ;L;jj jj;jjkjL
on�(L) is defined as

jj jjQ := (det0��)
�(1=2) � jj jjL;L2;

where(det0��)
�(1=2) is the regularized determinant of the Laplace-Operator�� =

�
�
� (cf. [S-A-B-K], Ch. V, for the definition of det0).
Let jj jj still denote a smooth hermitian metric on the line bundle
1

C=C . The
delta invariantof C with respect to the metricjj jj is defined as the real number

�(C) := 12 � log
� jj jjQ
jj jj0

�
;

wherejj jj0 is the natural metric on�C=C andjj jjQ is the Quillen-metric on�C=C
associated tojj jj.

Now we have all necessary definitions at hand, to be able to formulate the
analogue of inequality (1) ‘at infinity’.

THEOREM 7.1.Letg > 2 be an integer and fix aC1-metricjj jjMod on!X g=Mgb
.

Let " > 0. There exists a constantc 2 R such that for all smooth hyperelliptic
curvesC=C we have the inequality

� log jj�C=C jj0 6 (g2 + ") � �(C) + c;

where�(C) is the delta-invariant ofC with respect to the metric induced byjj jjMod

onC.

The proof of the theorem will be given after Propositions 7.3–7.6 below.

DEFINITION 7.2. (a) LetY=C be a(2g + 2)-pointed stable genus-zero curve and
let p 2 Y be a singular point. The partial normalization ofY is the disjoint sum of
two connected pointed curves. Letk be the number of marked points on one of its
components and putm := min(k;2g + 2� k). The following cases are possible

(1) m = 2i+ 2 for somei 2 f0; : : : ; [g � 1=2]g.
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Then we callp to beof type�i.
(2) m = 2j + 1 for somej 2 f1; : : : ; [g=2]g.

Then we callp to beof type�j .

(b) LetX=C be a stable curve of genusg > 2 and letp 2 X be a singular point.
Let ~X be the partial normalization ofX atp. The following cases are possible

(1) ~X is connected. Then we callp to beof type�0.
(2) ~X is the disjoint union of two prestable curves. Letj 2 f1; : : : ; [g=2]g be the

minimum of their respective geni. Then we callp to beof type�j .

LetX0 be a hyperelliptic stable curve of genusg > 2 overC . In what follows,
we review the construction of the universal local deformationXhsc! Uhsc of X0

as a hyperelliptic stable curve (cf. [H-M], Section 4, [C-H], Section 4). LetX 0
0

be the modification ofX0 in its direction-reversing double points. By definition,
there exists ann-pointed prestable genus-zero curveY0 and an admissible double
coveringX 0

0 ! Y0. By Lemma 1.6 we haven = 2g + 2, and it is easy to see that
stability ofX0 implies thatY0 is in fact a stable pointed curve. LetYspc! Uspcbe the
universal local deformation ofY0 as a stable pointed curve. The locus�spc� Uspc

of singular curves is a normal-crossing divisor whose branches correspond to the
singular points ofY0. We may assume thatUspc is an open neighborhood ofC 2g�1

and thatt1 : : : td = 0 is an equation of�spc, wheret1; : : : ; t2g�1 are the standard
coordinates onC 2g�1 andd is the number of double points ofY0. Let Ii (resp.
Jj) be the subset of indicesk 2 f1; : : : ; dg, such thatftk = 0g is the branch
of �spc, which corresponds to a double point of type�i (resp. of type�j) of Y0

(i = 0; : : : ; [g � 1=2], j = 1; : : : ; [g=2]). Choose some small neighborhoodUadc

of the origin ofC 2g�1 and letz1; : : : ; z2g�1 be the standard coordinates onUadc.
Consider the morphism fromUadc to Uspc, given by the equations

ti = z2
i for i 2 J;

ti = zi else:

LetYadc! Uadcbe the pull-back ofYspcbyUadc! Uspc. There exists a admissible
double coveringXadc! Yadcwhich is unique up to isomorphism. The fibre ofXadc

over the center ofUadc is isomorphic toX 0
0. The curveXadc! Uadc is semistable.

It is the blow-up of a hyperelliptic stable curveX 00 ! Uadc along the closed
subvarietyD � X 00 of direction-reversing double points.X 00 ! Uadc is unique
up to isomorphism. The special fibreX 00

0 is isomorphic toX0. Now consider the
morphism ofUadc to C 2g�1 defined by

ui = z2
i (i 2 I);

ui = zi else;

u1; : : : ; u2g�1 being the standard coordinates onC 2g�1. The curveX 00 ! Uadc

descends to a hyperelliptic stable curve�: Xhsc! Uhsc over a neighborhoodUhsc
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of the origin ofC 2g�1 and�: Xhsc! Uhsc is the universal local deformation ofX0
as a hyperelliptic stable curve. In the following diagram, which gives an overview
of the construction, the two extreme squares are cartesian

Xhsc� X 00 �blow-up Xadc
admiss:double

covering
- Yadc - Yspc

Uhsc

�

?

�
ramified
covering Uadc

?

======= Uadc

?

========= Uadc

?
ramified
covering

- Uspc

?

:

For i 2 f0; : : : ; [(g � 1)=2]g (resp. forj 2 f1; : : : ; [g=2]g), let ��i
hsc � Uhsc

(resp.��j
hsc� Uhsc) be the locus of curves carrying a double point of type�i (resp.

of type�j). It is the normal-crossing divisor given by the equation�k2Iiuk = 0
(resp. by�k2Jjuk = 0).

PROPOSITION 7.3.Let �� be the canonical section of the line bundle
(det��!�)
(8g+4). Then we have the following equality of divisors onUhsc

div(��) = g ���0
hsc+

[g�1=2]X
i=1

2(i+ 1)(g � i)��i
hsc+

[g=2]X
j=1

4j(g � j)�
�j
hsc:

Proof. Let D be the unit disc inC . It suffices to prove that the stated equality
holds for the pull-back of the divisors under any morphismD ! Uhsc. But this can
be shown analogously to the proof of Theorem 3.1. Alternatively, one may derive
the equality from Proposition 4.7 of [C-H] and the fact that over the moduli space
of smooth hyperelliptic curves, our canonical section� provides a trivialization of
the(8g + 4)th power of the Hodge-bundle. 2

Now let �: Xsc ! Usc be the universal deformation ofX0 as a stable curve (cf.
[Bi-Bo] pp. 19–21). Forj = 0; : : : ; [g=2], the locus��j

sc � Usc of curves carrying
a double point of type�j is a normal crossing divisor. We may identifyUsc with

an open neighborhood of 02 C 3g�3 such that the divisor�sc := �
[g=2]
j=0 �

�j
sc is

given byf = 0, wheref := �d
i=1tj (the functionst1; : : : t3g�3 being the standard

coordinates onC 3g�3 andd the number of singular points ofX0). By the universal
property ofXsc ! Usc, we have a canonical morphism� from (a neighborhood
of 0 in) Uhsc to Usc, such thatXhsc is the pull-back ofXsc via this morphism. The
following proposition follows from the above construction ofXsc! Usc.

PROPOSITION 7.4.We have the following equalities between divisors onUhsc
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����0
sc = ��0

hsc+ 2
g�1=2X
i=1

��i
hsc;

���
�j
sc = �

�j
hsc for j = 1; : : : ; [g=2]:

A special case of Theorem 4.1 in [Fa-Wü], p. 17 is the following

PROPOSITION 7.5.Let� be an invertible section ofdet(��!�). Then there exist
constantsC1; C2 > 0, and a neighborhoodU of 0 2 Usc such that onU ��sc we
have the inequalities

C�1
1

�
log

1
jf j
��C2

6 jj�jj0 6 C1

�
log

1
jf j
�C2

:

Remark. Using results of Y. Namikawa, we have shown in [Ka] the following
more precise statement: Let� be an invertible section of det(��!�) and leth: Usc�
�sc! R�+ be defined by

h := max
i=1;:::;d

log
1
jtij :

Then there are constants 0< C 0 < C 00 and a neighborhoodU of 0 2 Usc such that
onU ��sc we have the inequalities

C 0h 6 jj�jj20 6 C 00h ;

where is the rank of the first homology group of the graph associated to the stable
curveX0. In what follows, however, we only need the statement of Proposition 7.5
above.

One of the hardest ingredients of our proof of Theorem 7.1 is the following
consequence of a result of Bismut and Bost ([Bi-Bo], Theorem 2.2) that describes
the asymptotic of the Quillen-metric (observe that the bundle denoted by�(!) in
[Bi-Bo] is inverse to our determinant bundle det��!).

PROPOSITION 7.6.Let � be an invertible section ofdet(��!�). There exists a
continuous functionh1 onUsc, such that onUsc��sc we have the equality

12 � log jj�U jjQ = �
dX
i=1

log jtij+ h1:

Proof of Theorem 7.1. Let Ig be the (coarse) moduli space of smooth hyperel-
liptic curves of genusg overC . It is a closed subset of the moduli spaceMg of all
smooth curves. LetIg be the Zariski-closure ofIg in the moduli spaceMg of stable
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curves. The maps[C] 7! jj�C=C jj and[C] 7! �(C) from Ig to R are continuous.
SinceIg is compact, it suffices to show that for each point ofIg � Ig there exists
a neighborhoodV � Ig such that� log jj�C=C jj < (g + ") � �(C) overV \ Ig.
Such a point is represented by a hyperelliptic stable curveX0. Let�: Xhsc! Uhsc

be the universal local deformation ofX0 as a hyperelliptic stable curve. Adopting
the above notation for the various divisors onUhsc, let

ai 2 �(Uhsc;OUhsc) an equation for��i
hsc; i = 0; : : : ; [g � 1=2];

bj 2 �(Uhsc;OUhsc) an equation for��j
hsc; j = 1; : : : ; [g=2];

� 2 �(Uhsc;det��!�) an invertible section:

By definition of the delta invariant, Proposition 7.4 and Proposition 7.6, there exists
a continuous function'1 onUhsc, such that

�(Xhsc=Uhsc) = � log ja0j � 2
[g�1=2]X
i=1

log jaij �
[g=2]X
j=1

log jbj j � 12 logjj�jj0 + '1:

On the other hand, from Proposition 7.3 we have

log jj�Xhsc=Uhsc
jj0 = g � log ja0j+

[g�1=2]X
i=1

2(i+ 1)(g � i) log jaij

+

[g=2]X
j=1

4j(g � j) log jbj j+ (8g + 4) log jj�jj0 + '2;

for some continuous function'2 onUhsc. From Proposition 7.5 it follows that in
the neighborhood of�hsc := �i�

�i
hsc+�j�

�j
hsc the function logjj�jj0 is negligible

compared with logjaij and logjbj j. Therefore an elementary comparison of the
coefficients of logjaij and logjbj j in the above expressions for�(Xhsc=Uhsc) and
log jj�Xhsc=Uhsc

jj0 proves the existence of an open neighborhoodU � Uhsc of �hsc

such that overU \ (Uhsc��hsc) the inequality

� log jj�Xhsc=Uhsc
jj0 < (g2 + ")�(Xhsc=Uhsc)

holds. The canonical mapUhsc! Ig identifies an open neighborhood of[X0] 2 Ig
with the quotient ofUhsc by the natural action of the finite group Aut(X0). In
particular it is open, so we may takeV as the image ofU under this morphism.2

In what follows, we assume that the reader is familiar with the basic notions of
(low-dimensional) Arakelov-theory, as presented for instance in Soulé’s Bourbaki
talk [Sou]. Thus, in particular, ifK be a number field,S := Spec(OK) andX=S
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an arithmetic surface, we have the notion of the degree of metrized line bundles on
S and the intersection pairing between metrized line bundles onX.

THEOREM 7.7.Fix a C1-metric jj jjMod on!Xg=Mg
and an" > 0. LetK be a

number field. Let�: X ! S = Spec(OK) be a minimal regular arithmetic surface
with smooth hyperelliptic generic fibre of genusg > 2. Assume good reduction at
all places dividing(2) and semistable reduction at all other places. Letjj jj0 be the
natural metric ondet��!X=S . For each embedding�: K ,! C let �(X�) be the
delta-invariant of the Riemann-surfaceX� with respect to the metricjj jjMod. Then
there exists a constantc(jj jjMod; "), depending only on the metricjj jjMod and on
", such that the following inequality holds

deg(det��!X=S ; jj jj0) 6
g2 + "

8g + 4

 X
p

�p logNp+
X
�

�(X�)

!

+ c(jj jjMod; ") � [K : Q]:

Proof. This is an immediate consequence of inequality (1), Theorem 6 and
Theorem 7.1. 2

COROLLARY 7.8.Assume the conditions of the above theorem. Then there exists
a constantc0(jj jjMod; "), depending only onjj jjMod and", such that the following
inequality holds

(!X=S :!X=S) 6

 
3
g2 + "

2g + 1
� 1

!0@X
p2jSj

�p logNp+
X

�:K,!C

�(X�)

1A
+ c0(jj jjMod; ") � [K : Q];

where the intersection number(!X=S :!X=S) and the delta-invariants�(X�) are
understood with respect to the metric induced byjj jjMod on!X=S .

Proof. By a theorem of Deligne ([Del], Theorem11.4, cf. also [Sou], Théor̀eme 4),
we have

(!X=S :!X=S) = 12 � deg(det��!X=S ; jj jjQ)�
X
p2S

�p logN(p)� [K : Q] � a(g);

for some constanta(g), which depends only on the genus. With this, the corollary
follows immediately from Theorem 7.7. 2

It was first observed by A. N. Parshin that a certain upper bound for the self-
intersection!2 of the relative dualizing sheaf on arithmetic surfaces would have
interesting number-theoretical consequences as, for example, theabc-conjecture
(cf. [Par1], [Par2], [Par3]).
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The shape of the upper bound as proposed by Parshin was suggested by the
analogous geometric situation of a surface fibred over a curve, where it follows
from the so-called Bogomolov–Miyaoka–Yauinequality between the Chern classes
of the surface. In the sequel, L. Moret-Bailly formulated as a hypothesis (cf. [MB]
‘Hypothèse BM’ (3.1.2)) a more general shape of an upper bound of!2 which
he showed would still imply e.g. theabc-conjecture. Observe that Corollary 7.8
gives an upper bound which has the form required in [MB]. One might object
that in Moret-Bailly’s hypothesis the self-intersection!2 and the delta-invariant
�(X�) are defined with respect to the Arakelov-metric. But it is easy to see that
in the hypothesis one could take!2 and�(X�) with respect to anyC1-metric on
!Xg=Mg

, and draw the same conclusions. Only the constants which appear in the
estimates, would depend on the choice of the metric.

Nevertheless our result does not suffice to draw arithmetic consequences at
least not along the lines of [MB]. In fact, recall the crucial argument in [MB]
which shows that Hypoth̀ese BM implies a version of Mordell’s conjecture: Let
B be a smooth proper curve over a number fieldK. After replacingK by some
finite extension andB by a finite étale covering, we may assume, by Kodaira’s
construction, that over the baseB there exists a non-isotrivial smooth family of
curvesV ! B. One gets an upper bound on the height of rational points of
B by applying Hypoth̀ese BM to models of the fibres of the family. In view of
Corollary 7.8, it is therefore natural to ask whether there exists a proper smooth
curve which parametrizes a non-isotrivial family of smooth hyperelliptic curves.
Unfortunately, the answer to this question is negative. This fact seems to be well-
known, but for sake of completeness we give a short proof: Let�: V ! B be a
smooth family of hyperelliptic curves. By Theorem 3.1, the degree of det��!V=B
vanishes. As has been shown by Arakelov, this implies the isotriviality ofV=B
([Ara1], Lemma 1.4 and Corollary 1 to Theorem 1.1).
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