A VLA/MERLIN/VLBA FOR INTERMEDIATE SCALE LENSES

AND THE DISCOVERY OF A NEW LENS SYSTEM?

P. AUGUSTO, P.N. WILKINSON AND I.W.A. BROWNE
Nuffield Radio Astronomy Laboratories, Univ. of Manchester Jodrell Bank, Macclesfield, Cheshire, SK11 9DL, U.K.

We are searching for small lens systems (50-250 mas or $\left.10^{8}-10^{9} M_{\odot}\right)$ in a sample of ~ 1800 flat spectrum radio sources. This is the first time a systematic search has been made "between" the VLA and VLBI resolutions. Finding any would indicate the existence of other than the "conventional" spiral/elliptical lenses (only $\sim 0.01 \%$ chance - Turner et al. (1984)). For example, faint galaxies are numerous ($\sim 10^{6}$ gal/ deg^{2} - Lilly (1993), Glazebrook et al. 1995), compact (HST Medium Deep Survey (MDS) - Griffiths et al. 1994) and ideally placed for lensing ($\langle z>\sim 0.6$ - MDS, Smail et al. (1994); c.f. Turner et al. 1984). Early-type dwarf galaxies (dE,N and cE), if extant at intermediate-z as favored by MDS are also obvious lens candidates. If no lenses are found, a limit 400 times better than the current one (Surdej et al. 1993), $\Omega_{L}<0.001$, will be placed on the cosmological density of compact objects (e.g. black holes) for the above mass range.

From the JVAS (Patnaik et al. 1992) and the Cosmic Lens All Sky Survey (CLASS) (Browne et al. this volume) - we selected a parent sample of ~ 1800 objects satisfying $\alpha_{1.4-5}<0.50\left(S_{\nu} \propto \nu^{-\alpha}\right), S_{8.4}^{t o t a l} \geq 100 \mathrm{mJy}$ and $\left|b^{I I}\right| \geq 10^{\circ}$. The 67 "candidates" were selected from the visibility plots (the sources >50 mas) and constitute an interesting population: two thirds of the candidates have $\alpha \sim 0.3-0.4$ whereas the parent sample has $\langle\alpha>$ $=0.0$; in addition, the candidate sample is clearly dominated by empty fields (40%) whereas the parent sample has 60% of QSOs.

Our 67 candidates were mapped with MERLIN "snapshots" at 5 GHz ($4 \times 15 \mathrm{~min}$.). About 20 sources look very interesting for subsequent VLBA follow-up; the great majority of the remaining appear to be "core-jets".

One arcsecond scale source, $2114+022$, looked promising enough for long track MERLIN observations (see Fig.1) and it is a good lens candidate despite its very strange configuration; there will be a multi-frequency VLBA follow-up.

Figure 1. MERLIN map of $2114+022$ at 5 GHz (11hrs. phase-referencing). The noise level is very low ($<0.1 \mathrm{mJy}$) and there are no signs of any extended structure; all the four images are unresolved. The (variable?) fluxes of the components are, starting from the east (left): 20 mJy (21 mJy - snapshot 10 days after), $13 \mathrm{mJy}(10 \mathrm{mJy}$), 50 mJy $(45 \mathrm{mJy}), 66 \mathrm{mJy}(60 \mathrm{mJy})$; the spectral indexes are: $\alpha_{1.6-5}=0.32$ and $\alpha_{5-8.4}=0.95$, $\alpha_{1.6-5}=-0.30$ and $\alpha_{5-8.4}=-0.87, \alpha_{1.6-5}=-0.65$ and $\alpha_{5-8.4}=0.42, \alpha_{1.6-5}=0.03$ and $\alpha_{5-8.4}=0.78$. The optical identification (POSS) -19^{m} elliptical red "blob" (optical counter-parts?) - is only 21° misaligned with the NE-SW radio-alignment.

Acknowledgements: P. Augusto is supported by a grant from JNICT/EC PRAXIS XXI.

References

Glazebrook, K., Ellis, R., Colless, M.M., Broadhurst, T.J., Allington-Smith, J., \& Tanvir, N., 1995, MNRAS, 273, 157

Griffiths, R.E., Ratnatunga, K.U., Neuschaefer, L.W., Casertano, S., et al., 1994, ApJ, 437, 67
Lilly, S.J., 1993, ApJ, 411, 501
Patnaik,A.R., Browne,I.W.A., Wilkinson,P.N., \& Wrobel,J.M., 1992, MNRAS, 254, 655
Smail, I., Ellis, R.S., \& Fitchett, M.J., 1994, MNRAS, 270, 245
Surdej, J., Claeskens, J.F., Crampton, D., Fillipenko, A.V., et al., 1993, AJ, 105, 2064
Turner, E.L., Ostriker, J.P., Gott, J.R., 1984, ApJ, 284, 1

