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Abstract
Zhu and He [(2018). A new closed-form formula for pricing European options under a skew Brownian motion. The
European Journal of Finance 24(12): 1063–1074] provided an innovative closed-form solution by replacing the
standard Brownian motion in the Black–Scholes framework using a particular skew Brownian motion. Their formula
involves numerically integrating the product of the Guassian density and corresponding distribution function. Being
different from their pricing formula, we derive a much simpler formula that only involves the Gaussian distribution
function and Owen’s 𝑇 function.

1. An alternative and a simple pricing formula

For the sake of completeness, we first summarize the modeling framework considered by Zhu and He
[3]. An equivalent martingale measure 𝑄 was constructed with the underlying price following

𝑆(𝑇) = 𝑆(𝑡)𝑒𝜎 (𝑋 (𝑇 )−𝑋 (𝑡))−ℓ ( |𝑊2 (𝑡) |)+(𝑟−0.5𝜎2)𝜏 , (1)

with 𝜏 = 𝑇 − 𝑡. ℓ(𝑦) is defined in Section 3.1 of Zhu and He [3], given by

ℓ(𝑦) = ln
[
𝑁

(
𝑦 + 𝜎𝜖𝜏√

𝜏

)
+ 𝑒−2𝜎𝜖 𝑦𝑁

(−𝑦 + 𝜎𝜖𝜏√
𝜏

)]
,

and

𝑋 (𝑠) = 𝜖 |𝑊2 (𝑠) | +
√

1 − 𝜖2𝑊1 (𝑠), 𝜖 ∈ (−1, 1). (2)

Here, 𝑊1 and 𝑊2 are two Brownian motions independent of each other, with 𝑁 (·) being a standard
normal distribution function. Note that this particular dynamic yields 𝐸𝑄 (𝑒−𝑟 (𝑇 −𝑡)𝑆(𝑇) | F𝑡 ) = 𝑆(𝑡)
[3], and for 𝜖 = 0, it reduces to the standard Black–Scholes framework.

It should be remarked that the formula Zhu and He derived actually involves the integral of the
product combining the Gaussian density with its corresponding distribution function, which is relatively
complicated for numerical implementation. This has prompted us to try to find a simpler one. In fact,
European call option prices have an expression of

𝑃(𝑆, 𝑡) = 𝐸𝑄 ((𝑆(𝑇) − 𝐾)+ |F𝑡 )/𝑒𝑟 𝜏 , (3)

where F𝑡 = 𝜎{(𝑊1(𝑢),𝑊2(𝑢)); 0 ≤ 𝑢 ≤ 𝑡}.
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Let 𝑊1(𝑡) = 𝑥 and 𝑅(𝑡) = |𝑊2 (𝑡) | = 𝑦. Then, 𝑋 (𝑡) =
√

1 − 𝜖2𝑥 + 𝜖 𝑦. Define

𝑀 = 𝑆(𝑡)𝑒−𝜎𝑋 (𝑡)−ℓ (𝑦)+(𝑟−0.5𝜎2)𝜏 ,

so that the call option price has an alternative expression of

𝑃(𝑆, 𝑡) =
∫ ∞

0

∫ ∞

−∞
(𝑀𝑒𝜎𝜖𝑢+𝜎

√
1−𝜖 2𝑣 − 𝐾)+ 𝑓 (𝑢, 𝑣) 𝑑𝑣 𝑑𝑢/𝑒𝑟 𝜏 , (4)

where 𝑓 (𝑎1, 𝑎2) = 𝑓( |𝑊2 (𝑇 ) |,𝑊1 (𝑇 )) | ( |𝑊2 (𝑡) |,𝑊1 (𝑡)) (𝑎1, 𝑎2 | 𝑦, 𝑥) is a conditional probability density
function, which is further given by

𝑓 (𝑎1, 𝑎2) = 𝑓1(𝑎1) × 𝑓2(𝑎2)

with

𝑓1(𝑎1) = 𝑓 |𝑊2 (𝑇 ) | | |𝑊2 (𝑡) | (𝑎1 | 𝑦) = 1√
2𝜋𝜏

(𝑒−(𝑎1−𝑦)2/2𝜏 + 𝑒−(𝑎1+𝑦)2/2𝜏), 0 ≤ 𝑎1 < ∞,

𝑓2(𝑎2) = 𝑓𝑊1 (𝑇 ) |𝑊1 (𝑡) (𝑎2 | 𝑥) = 𝑒−(𝑎2−𝑥)2/2𝜏
√

2𝜋𝜏
, −∞ < 𝑎2 < ∞.

The derivation of our simpler formula requires some fundamental results that need to be derived first,
which are provided below.

Proposition 1.1. If 𝐼 (𝑚, 𝜎) denotes

𝐼 (𝑚, 𝜎) = 1
𝜎
√

2𝜋

∫ ∞

0
𝑒𝑎𝑥𝑁 (𝑎1 + 𝑎2𝑤)𝑒−(𝑥−𝑚)2/2𝜎2

𝑑𝑥

where 𝑎, 𝑎1, 𝑎2, 𝑚, 𝜎 ∈ R, then we have its simplified value shown in the following formula

𝐼 (𝑚, 𝜎) = 𝑒
1
2 (𝑎2𝜎2+2𝑎𝑚)

(
𝑁 (ℎ1) − 𝑁 (ℎ2)

2
− 𝑇 (ℎ1, �̃�1) − 𝑇 (ℎ2, �̃�2)

)
, (5)

where

ℎ1 =
𝑎1 + 𝑎2(𝑚 + 𝑎𝜎2)√

1 + 𝑎2
2𝜎

2
, ℎ2 =

−𝑚 − 𝑎𝜎2

𝜎
, �̃�1 =

ℎ2 − 𝑟ℎ1

ℎ1
√

1 − 𝑟2
,

�̃�2 =
ℎ1 − 𝑟ℎ2

ℎ2
√

1 − 𝑟2
, 𝑟 =

−𝑎2𝜎√
1 + 𝑎2

2𝜎
2
,

with the Owen’s 𝑇 function denoted by 𝑇 (ℎ, 𝑎). The relationship connecting the Owen’s 𝑇 function with
the bivariate normal probability is provided in the Appendix.

Proof. We can re-write

𝐼 (𝑚, 𝜎) = 𝑒
1
2 (𝑎2𝜎2+2𝑎𝑚)

𝜎
√

2𝜋

∫ ∞

0
𝑁 (𝑎1 + 𝑎2𝑥)𝑒−(𝑥−(𝑚+𝑎𝜎2))2/2𝜎2

𝑑𝑥

=
𝑒

1
2 (𝑎2𝜎2+2𝑎𝑚)

𝜎
√

2𝜋

∫ ∞

0

∫ 𝑎1+𝑎2𝑥

−∞
𝑁 (𝑢)𝑒−(𝑥−(𝑚+𝑎𝜎2))2/2𝜎2

𝑑𝑢 𝑑𝑥, (6)
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which implies

𝐼 (𝑚, 𝜎) = 𝑒
1
2 (𝑎2𝜎2+2𝑎𝑚)𝑃(𝑌 ≤ 𝑎1 + 𝑎2𝑋, 𝑋 > 0). (7)

Here, the joint distribution of 𝑋 and 𝑌 gives a bivariate Gaussian one, the covariance matrix of which
is

(
𝜎2 0
0 1

)
along with its mean as (𝑚 + 𝑎𝜎2, 0). By further denoting 𝑍 = 𝑌 − 𝑎1 − 𝑎2𝑋 , one would be

able to obtain 𝐸 (𝑍) = −𝑎1 − 𝑎2 (𝑚 + 𝑎𝜎2), variance Var(𝑍) = 1 + 𝑎2
2𝜎

2 and covariance with 𝑋 being
Cov(𝑍, 𝑋) = −𝑎2𝜎

2. As a result, the unknown probability involved in Eq. (7) can then be simplified
through

𝐼 (𝑚, 𝜎) = 𝑒
1
2 (𝑎2𝜎2+2𝑎𝑚)𝑃(𝑍 ≤ 0, 𝑋 > 0)

= 𝑒
1
2 (𝑎2𝜎2+2𝑎𝑚) (𝑃(𝑋 > 0) − 𝑃(𝑍 > 0, 𝑋 > 0))

= 𝑒
1
2 (𝑎2𝜎2+2𝑎𝑚) 
���𝑃(𝑋 > 0) − 𝑃


���𝑍1 >
𝑎1 + 𝑎2 (𝑚 + 𝑎𝜎2)√

1 + 𝑎2
2𝜎

2
, 𝑍2 >

−𝑚 − 𝑎𝜎2

𝜎


���

��� ,

where both 𝑍1 and 𝑍2 follow a standard normal distribution and their correlation is captured with a
parameter 𝑟 . Thus, considering how the Owen’s 𝑇 function is related to the bivariate normal CDF, one
can obtain

𝐼 (𝑚, 𝜎) = 𝑒
1
2 (𝑎2𝜎2+2𝑎𝑚)

(
𝑁

(
𝑚 + 𝑎𝜎2

𝜎

)
− 𝑃(𝑍1 > ℎ1, 𝑍2 > ℎ2)

)
= 𝑒

1
2 (𝑎2𝜎2+2𝑎𝑚)

(
𝑁 (−ℎ2) −

(
1 − 𝑁 (ℎ1) + 𝑁 (ℎ2)

2
− 𝑇 (ℎ1, �̃�1) − 𝑇 (ℎ2, �̃�2)

))
= 𝑒

1
2 (𝑎2𝜎2+2𝑎𝑚)

(
𝑁 (ℎ1) − 𝑁 (ℎ2)

2
− 𝑇 (ℎ1, �̃�1) − 𝑇 (ℎ2, �̃�2)

)
. (8)

This completes the proof. �

From Equation (4), we obtain

𝑃(𝑆, 𝑡) = 𝑒−𝑟 (𝑇 −𝑡)
∫ ∞

0
𝐼 (𝑢) 𝑓1(𝑢) 𝑑𝑢 (9)

where

𝐼 (𝑢) =
∫ ∞

−∞
(𝑀𝑒𝜎𝜖𝑢+𝜎

√
1−𝜖 2𝑣 − 𝐾)+ 𝑓2(𝑣) 𝑑𝑣. (10)

Using the standard Black–Scholes formula yields

𝐼 (𝑢) = 𝑒ln(𝑀 )+𝜎𝜖𝑢+𝜎
√

1−𝜖 2𝑥+ 1
2 𝜎

2 (1−𝜖 2) (𝑇 −𝑡)𝑁 (𝑑1) − 𝐾𝑁 (𝑑2), (11)

where

𝑑1 = − ln(𝐾) − (ln(𝑀) + 𝜎𝜖𝑢 + 𝜎
√

1 − 𝜖2𝑥 + 𝜎2(1 − 𝜖2)𝜏))
𝜎
√

1 − 𝜖2√𝜏

𝑑2 = 𝑑1 − 𝜎
√

1 − 𝜖2
√
𝜏.

Therefore, Eq. (9) further leads to

𝑃(𝑆, 𝑡) =
∫ ∞

0
(𝑒ln(𝑀 )+𝜎𝜖𝑢+𝜎

√
1−𝜖 2𝑥+ 1

2 𝜎
2 (1−𝜖 2)𝜏𝑁 (𝑐1 + 𝑐2𝑢) − 𝐾𝑁 (𝑐3 + 𝑐2𝑢)) 𝑓1(𝑢) 𝑑𝑢/𝑒𝑟 𝜏 (12)
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where

𝑐1 = − ln(𝐾) − (ln(𝑀) + 𝜎
√

1 − 𝜖2𝑥 + 𝜎2(1 − 𝜖2)𝜏))
𝜎
√

1 − 𝜖2√𝜏
,

𝑐2 = + 𝜖√
1 − 𝜖2√𝜏

,

𝑐3 = 𝑐1 − 𝜎
√

1 − 𝜖2
√
𝜏.

Using Proposition 1.1 leads to

𝑃(𝑆, 𝑡) = (𝑒ln(𝑀 )+𝜎
√

1−𝜖 2𝑥+ 1
2 𝜎

2 (1−𝜖 2)𝜏𝐽1 − 𝐾𝐽2)/𝑒𝑟 𝜏 (13)

with

𝐽1 =
∫ ∞

0
𝑒𝜎𝜖𝑢𝑁 (𝑐1 + 𝑐2𝑢) 𝑓1(𝑢) 𝑑𝑢 = 𝐼1(𝑦, 𝜆, 𝑐1, 𝑐2) + 𝐼1(−𝑦, 𝜆, 𝑐1, 𝑐2)

𝐽2 =
∫ ∞

0
𝑁 (𝑐3 + 𝑐2𝑢) 𝑓1(𝑢) 𝑑𝑢 = 𝐼1(𝑦, 0, 𝑐1, 𝑐2) + 𝐼1(−𝑦, 0, 𝑐1, 𝑐2),

where 𝜆 = 𝜖𝜎 is introduced for notation ease. If we apply Proposition 1.1 once again, we obtain

𝐼1(𝑦, 𝜆, 𝑐1, 𝑐2) =
∫ ∞

0
𝑒𝜆𝑢𝑁 (𝑐1 + 𝑐2𝑢) 𝑒

−(𝑢−𝑦)2/2𝜏
√

2𝜋𝜏
𝑑𝑢

= 𝑒
1
2 (𝜆2𝜏+2𝜆𝑦)

(
𝑁 (𝐻1) − 𝑁 (𝐻2)

2
− 𝑇 (𝐻1, 𝐴1) − 𝑇 (𝐻2, 𝐴2)

)
,

where

𝐻1 =
𝑐1 + 𝑐2(𝑦 + 𝜆𝜏)√

1 + 𝑐2
2𝜏

, 𝐻2 =
−𝑦 − 𝜆𝜏√

𝜏
, 𝐴1 =

𝐻2 − 𝑅1𝐻1

𝐻1

√
1 − 𝑅2

1

,

𝐴2 =
𝐻1 − 𝑅1𝐻2

𝐻2

√
1 − 𝑅2

1

, 𝑅1 =
−𝑐2

√
𝜏√

1 + 𝑐2
2𝜏

.

This clearly shows that the pricing formula presented in Eq. (13) is fully analytical now.

2. Accuracy tests

This section is devoted to checking the correctness of the simple option pricing formula derived in the
above section using the Monte Carlo benchmark. The certain parameter values we select are 𝑟 = 0.1,
𝑆(𝑡) = 110, 𝜎 =

√
0.4. It should be pointed out that at current time 𝑡, we observe the current stock price

𝑆(𝑡) in the market, but are unable to observe the current (starting) values of the Brownian motions,
𝑊𝑖 (𝑡), 𝑖 = 1, 2. Therefore, in practical applications, 𝑊𝑖 (𝑡), 𝑖 = 1, 2 are actually treated as model
parameters and can be calibrated together with other model parameters (e.g., 𝜎 and 𝛿) with real data.
For illustration purposes, we fix 𝑊𝑖 (𝑡), 𝑖 = 1, 2 as 0.02 and −0.01, respectively. We also select 0.25 as
the value of the time to maturity, and the skewness parameter 𝜖 is assumed to be equal to 0.5.

To be sure that we did not make any mistakes when deriving the pricing formula, we need to address
its correctness. We accomplish this task by benchmarking our results using the Monte Carlo simulation,
with the parameters kept as the same. Figure 1(a) displays the comparison results, which obviously
show the point-wise agreement of both prices, and the relative error displayed in Figure 1(b) remains
below 0.24%. These are actually a verification of the formula.
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Figure 1. A demonstration of the accuracy. (a) The two prices. (b) Relative difference.

3. Conclusion

In this article, we price European options with the geometric skew Brownian motion considered in Zhu
and He [3]. A simpler pricing formula is presented using the standard normal distribution function and
Owen’s 𝑇 function. The accuracy of the formula is also numerically verified.
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Appendix

Relationship between the Owen’s 𝑇 function and bivariate normal density [1,2]
Let a pair of bivariate standard normal variables (𝑋1, 𝑋2) be correlated with each other with a parameter
𝑟 . We have the following relation

𝐹 (𝑢1, 𝑢2, 𝑟) = 𝑃(𝑋1 > 𝑢1, 𝑋2 > 𝑢2) = 1 − 𝑁 (𝑢1) + 𝑁 (𝑢2)
2

− 𝑇 (𝑢1, 𝑏1) − 𝑇 (𝑢2, 𝑏2), (A.1)

where
𝑏1 =

𝑢2 − 𝑟𝑢1

𝑢1
√

1 − 𝑟2
, 𝑏2 =

𝑢1 − 𝑟𝑢2

𝑢2
√

1 − 𝑟2
, (A.2)

and 𝑇 (𝑢, 𝑏) is Owen’s 𝑇 function formulated as

𝑇 (𝑢, 𝑏) = 1
2𝜋

∫ 𝑏

0

𝑒−
1
2 𝑢

2 (1+𝑥2)

1 + 𝑥2 𝑑𝑥. (A.3)
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Furthermore, it can be shown that

𝐹 (−𝑢1, 𝑢2, 𝑟) = −𝐹 (𝑢1, 𝑢2,−𝑟) + 𝑁 (−𝑢2),
𝐹 (𝑢1,−𝑢2, 𝑟) = −𝐹 (𝑢1, 𝑢2,−𝑟) + 𝑁 (−𝑢1),

𝐹 (−𝑢1,−𝑢2, 𝑟) = 𝐹 (𝑢1, 𝑢2, 𝑟) + 1 − 𝑁 (−𝑢1) − 𝑁 (−𝑢2).

As a result, is suffices to only cope with 𝑢1 and 𝑢2 when they are not negative.

Cite this article: Pasricha P and He X-J (2023). A simple European option pricing formula with a skew Brownian motion. Probability in the
Engineering and Informational Sciences https://doi.org/10.1017/S0269964822000407
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