Preoperative mental illness and postoperative atrial fibrillation in cardiac surgery patients: Identifying a vulnerable population

Natalie Kolba, BS, Byungho Lee, MS, Henry J. Tannous, MD, Thomas Bilfinger, MD, Annie Laurie W. Shroyer, PhD

1Department of Surgery, Stony Brook University, 11794, USA.
2Division of Cardiothoracic Surgery, Stony Brook University, 11794, USA.

Correspondence to: A. Laurie Shroyer PhD, Professor and Vice Chair for Research, Department of Surgery, Stony Brook Renaissance School of Medicine, Health Science Center 19-080, 100 Nicolls Road, Stony Brook, New York, 11733-8191. Phone – 631-444-1820. Fax – 631-444-8963. AnnieLaurie.Shroyer@stonybrookmedicine.edu

Co-Authors’ E-mail addresses: Natalie.Kolba@stonybrookmedicine.edu; leebuil9@msu.edu; Henry.Tannous@stonybrookmedicine.edu; Thomas.Bilfinger@stonybrookmedicine.edu; AnnieLaurie.Shroyer@stonybrookmedicine.edu

*NOTE: Drs. Tannous, Bilfinger, and Shroyer should be considered jointly as co-senior authors.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
According to the American Psychiatric Association, mental illnesses represent conditions where the emotions, thinking, or behavior of patients are altered. Given the close association between mental illness and stress, an imbalance of neurotransmitters is often a driver for the pathophysiologic changes observed \(^{(2022)}\). For example, patients with mental illnesses have been reported to have a higher prevalence of cardiovascular disease, which may be partially due to lifestyle-based risk factors\(^ {\ref{2,3}}\). It has been found that both mental illnesses and their associated risk factors, including delays in care and medications, contribute to other postoperative outcomes such as a higher readmission rate, more non-fatal cardiac events, repeat cardiac procedures, and overall higher mortality rates\(^ {\ref{4,5}}\). When mentally ill patients are considered for surgery, their cardiac status is difficult to optimize because of the additional complications. Additionally, patients with cardiovascular disease often have concomitant conditions such as renal failure and diabetes \(^{\ref{6}}\). Because of these comorbidities, it is difficult to attribute any post-surgical complications purely to a mental illness diagnosis without additional statistical analysis. However, publications reporting pre-operative risk factors have passed over the influence of mental illness diagnoses on clinical outcomes and resource utilization.

Given the paucity of articles identified using traditional literature search techniques, a very broad MEDLINE (PubMed) database search combined with manual screening of all articles preliminarily identified was undertaken. For the 81 relevant articles found with multivariable risk models predicting new-onset atrial fibrillation, a wide variety of patient risk factors were reported, however only 2 even considered the potential influence of mental illness. Katznelson et al\(^ {\ref{7}}\) prospectively observed 107 CABG patients to identify if preoperative depression was associated with new postoperative arrhythmias. Arrhythmias were assessed based on post-operative Holter monitoring. Comparing depressed versus non-depressed CABG patients, the new postoperative arrhythmias rates were not different (37.9% vs 35.9%; \(p = 0.50\)). Upon multivariable analysis, older age -- but not depression -- was identified as the most important risk factor impacting new onset of arrhythmias \(^{\ref{7}}\).

In Australia, Tully et al\(^ {\ref{8}}\) studied 226 CABG patients. By the fifth day post-surgery, 56 (24.8%) of the CABG patients developed new-onset POAF. Arrhythmias were detected via Holter monitor and daily ECGs. Psychological assessments were based upon the three Depression Anxiety Stress Scales (DASS) where clinically relevant symptoms were identified for depression, anxiety, and stress. Although baseline psychological assessments did not predict
POAF, patients’ postoperative DASS-identified anxiety had increased POAF odds (OR, 1.09; 95% CI, 1.00 - 1.18; P < 0.05)\cite{8}.

To summarize the correlation of preoperative and postoperative mental illness with postoperative atrial fibrillation, odds ratios were identified through a forest plot (Figure 1). The forest plot supports that patients who developed atrial fibrillation were more likely to have mental illness compared to the non-atrial fibrillation group.

In general, mentally ill patients have been under-represented in research but are overall shown to receive less medical care and suffer from more complications\cite{9}. In fact, cardiovascular disease is the leading cause of death in patients with severe mental illnesses. One of the major reasons for this is related to the higher prevalence of smoking, obesity, lack of exercise, and alcohol consumption in these patients\cite{10}. Patients with less medical care are also less likely to undertake testing such as cholesterol screening, which is related to higher rates of undiagnosed cardiovascular disease\cite{9}. Gender and ethnicity may also play a role. Studies showed females are more likely to be diagnosed with a mental illness and cardiac conditions are associated with anxiety and depression among groups such as Caribbean Blacks\cite{11,12}. Unfortunately, even taking antidepressant and antipsychotic medications can have cardiovascular side effects and symptoms that need to be considered while prescribing\cite{13}. These medications can alter signaling pathways and lead to arrhythmias, especially in patients with other risk factors\cite{14}.

Given the potential for a mental illness impact, it is disconcerting that large, [e.g., the Society of Thoracic Surgeons (STS)] adult cardiac surgical databases do not gather enough data regarding cardiac surgery patients’ pre-operative mental illness. Further, there is little known about how to manage cardiac surgical patients’ psychiatric medications peri- and postoperatively. Of note, medications such as anti-depressants are potent cytochrome inhibitors, risking postoperative drug-drug interactions\cite{15,16}. Thus, “at risk” mentally ill cardiac surgical patients provide a unique challenge to cardiac treatment selection, perioperative care management, as well as to cardiac research enrollment decisions. Finding innovative, patient-centered approaches to engaging more actively mentally ill patients with concomitant cardiac disease to participate in future research investigations now appears warranted to improve this vulnerable patient population’s overall cardiovascular health and quality of life.
Summary of Postoperative AF

<table>
<thead>
<tr>
<th>Study</th>
<th>OR</th>
<th>Lower CI</th>
<th>Upper CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assoc. w/ Suspected Depression</td>
<td>1.09</td>
<td>0.45</td>
<td>2.63</td>
</tr>
<tr>
<td>Assoc. w/ Suspected Depression, time > 3min</td>
<td>1.9</td>
<td>0.99</td>
<td>5.22</td>
</tr>
<tr>
<td>Assoc. w/ Stress</td>
<td>3.67</td>
<td>1.41</td>
<td>9.51</td>
</tr>
<tr>
<td>Assoc. w/ Depression</td>
<td>3.04</td>
<td>0.9</td>
<td>10.33</td>
</tr>
<tr>
<td>Assoc. w/ Anxiety</td>
<td>3.21</td>
<td>1.02</td>
<td>10.03</td>
</tr>
<tr>
<td>Assoc. w/ Stress</td>
<td>4.09</td>
<td>1.29</td>
<td>13.02</td>
</tr>
<tr>
<td>Assoc. w/ Depression</td>
<td>4.09</td>
<td>1.29</td>
<td>13.02</td>
</tr>
<tr>
<td>Assoc. w/ Anxiety</td>
<td>3.52</td>
<td>1.33</td>
<td>9.33</td>
</tr>
<tr>
<td>Overall</td>
<td>3.16</td>
<td>1.85</td>
<td>5.4</td>
</tr>
<tr>
<td>Postoperative Mental Health</td>
<td>5.34</td>
<td>2.67</td>
<td>10.67</td>
</tr>
</tbody>
</table>

Figure 1. Forest Plot Summary of Postoperative AF
Citations

