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Abstract

Let A3(n) denote the number of bipartitions of n with 3-cores. Recently, Lin [‘Some results on bipartitions
with 3-core’, J. Number Theory 139 (2014), 44–52] established some congruences modulo 4, 5, 7 and 8
for A3(n). In this paper, we prove several infinite families of congruences modulo 3 and 9 for A3(n) by
employing two identities due to Ramanujan.
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1. Introduction

A partition λ of a positive integer n is any nonincreasing sequence of positive integers
whose sum is n. For a positive integer t ≥ 2, a partition is said to be a t-core partition
if its Ferrers graph does not contain a hook whose length is a multiple of t. For any
nonnegative integer n, let at(n) denote the number of t-core partitions of n. From [10],
the generating function for at(n) is given by

∞∑
n=0

at(n)qn =
f t
t

f1
.

Here and throughout this paper, for any positive integer k, fk is defined by

fk :=
∞∏

n=1

(1 − qkn).

Numerous properties of at(n) have been extensively studied (see, for example, [2, 6, 7,
9–12, 17]).

A bipartition (λ, µ) of n is a pair of partitions (λ, µ) such that the sum of all of
the parts is n. Arithmetic properties of the number of bipartitions of n have been
established (see, for example, [1, 5, 8, 16]). Numerous arithmetic properties have been
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proved for bipartitions with certain restrictions on each partition (see, for example,
[4, 13–15, 18]). A bipartition with t-cores is a pair of partitions (λ, µ) such that λ and
µ are both t-cores. Let At(n) denote the number of bipartitions of n with t-cores. It is
easy to see that the generating function of At(n) is

∞∑
n=0

At(n)qn =
f 2t
t

f 2
1

. (1.1)

Very recently, Lin [14] discovered some congruences modulo 4, 5, 7 and 8. For
example, he proved that for n ≥ 0 and α ≥ 0,

A3

(
4α+1n +

11 × 4α − 2
3

)
≡ 0 (mod 4)

and

A3

(
16α+1n +

8 × 16α − 2
3

)
≡ 0 (mod 5).

The aim of this paper is to prove several infinite families of congruences modulo 3
and 9 for A3(n). Our main result can be stated as follows.

Theorem 1.1. For all α ≥ 0 and n ≥ 0,

A3

(
64αn +

2(64α − 1)
3

)
≡ A3(n) (mod 3), (1.2)

A3

(
64(α+1)n +

26α+5 − 2
3

)
≡ 0 (mod 3), (1.3)

A3

(
49αn +

2(49α − 1)
3

)
≡ A3(n) (mod 9), (1.4)

A3

(
49(α+1)n +

218α+17 − 2
3

)
≡ 0 (mod 9). (1.5)

Thanks to (1.4), we can deduce the following corollary.

Corollary 1.2. For all integers α ≥ 0,

A3

(
ri × 49α +

2(49α − 1)
3

)
≡ i (mod 9),

where r0 = 17, r1 = 9, r2 = 1, r3 = 10, r4 = 3, r5 = 2, r6 = 5, r7 = 11 and r8 = 4.

2. Proofs of Theorem 1.1 and Corollary 1.2

In this section, we present a proof of Theorem 1.1. We first present the following
lemma.
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Lemma 2.1. Let a and b be two integers. If
∞∑

n=0

c(n)qn ≡ a f 16
1 + bq

f 24
2

f 8
1

(mod 9), (2.1)

then
∞∑

n=0

c(4n + 2)qn ≡ (5a + 8b) f 16
1 + 4aq

f 24
2

f 8
1

(mod 9). (2.2)

Proof. The following relations are consequences of dissection formulas of Ramanujan
collected in Entry 25 in Berndt’s book [3, page 40]:

f 4
1 =

f 10
4

f 2
2 f 4

8

− 4q
f 2
2 f 4

8

f 2
4

(2.3)

and
1
f 4
1

=
f 14
4

f 14
2 f 4

8

+ 4q
f 2
4 f 4

8

f 10
2

. (2.4)

Substituting (2.3) and (2.4) into (2.1),
∞∑

n=0

c(n)qn ≡ a
( f 10

4

f 2
2 f 4

8

− 4q
f 2
2 f 4

8

f 2
4

)4
+ bq f 24

2

( f 14
4

f 14
2 f 4

8

+ 4q
f 2
4 f 4

8

f 10
2

)2

≡ a
f 40
4

f 8
2 f 16

8

+ (b − 7a)q
f 28
4

f 4
2 f 8

8

+ (6a + 8b)q2 f 16
4

+ (7b − 4a)q3 f 4
2 f 4

4 f 8
8 + 4aq4 f 8

2 f 16
8

f 8
4

(mod 9). (2.5)

Extracting the terms with even powers of q on both sides of (2.5), then replacing q2

by q,
∞∑

n=0

c(2n)qn ≡ a
f 40
2

f 8
1 f 16

4

+ (6a + 8b)q f 16
2 + 4aq2 f 8

1 f 16
4

f 8
2

(mod 9). (2.6)

Substituting (2.3) and (2.4) into (2.6),
∞∑

n=0

c(2n)qn ≡ a
f 40
2

f 16
4

( f 14
4

f 14
2 f 4

8

+ 4q
f 2
4 f 4

8

f 10
2

)2
+ (6a + 8b)q f 16

2

+ 4aq2 f 16
4

f 8
2

( f 10
4

f 2
2 f 4

8

− 4q
f 2
2 f 4

8

f 2
4

)2

≡ a
f 12
2 f 12

4

f 8
8

+ (5a + 8b)q f 16
2 + 7aq2 f 20

2 f 8
8

f 12
4

+ 4aq2 f 36
4

f 12
2 f 8

8

+ 4aq3 f 24
4

f 8
2

+ aq4 f 12
4 f 8

8

f 4
2

(mod 9). (2.7)

Congruence (2.2) follows from (2.7). This completes the proof. �
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We are now ready to prove Theorem 1.1 by using Lemma 2.1.

Proof of Theorem 1.1. Setting t = 3 in (1.1),
∞∑

n=0

A3(n)qn =
f 6
3

f 2
1

. (2.8)

By the binomial theorem, it is easy to check that

f 6
3 ≡ f 18

1 (mod 9). (2.9)

Combining (2.8) and (2.9),
∞∑

n=0

A3(n)qn ≡ f 16
1 (mod 9). (2.10)

Setting a = 1, b = 0 in (2.1) and using Lemma 2.1 and (2.10), we see that
∞∑

n=0

A3(4n + 2)qn ≡ 5 f 16
1 + 4q

f 24
2

f 8
1

(mod 9). (2.11)

If we apply Lemma 2.1 repeatedly, starting from (2.11),
∞∑

n=0

A3(16n + 10)qn ≡ 3 f 16
1 + 2q

f 24
2

f 8
1

(mod 9), (2.12)

∞∑
n=0

A3(64n + 42)qn ≡ 4 f 16
1 + 3q

f 24
2

f 8
1

(mod 9), (2.13)

∞∑
n=0

A3(256n + 170)qn ≡ 8 f 16
1 + 7q

f 24
2

f 8
1

(mod 9), (2.14)

∞∑
n=0

A3(1024n + 682)qn ≡ 6 f 16
1 + 5q

f 24
2

f 8
1

(mod 9), (2.15)

∞∑
n=0

A3(4096n + 2730)qn ≡ 7 f 16
1 + 6q

f 24
2

f 8
1

(mod 9), (2.16)

∞∑
n=0

A3(16384n + 10922)qn ≡ 2 f 16
1 + q

f 24
2

f 8
1

(mod 9), (2.17)

∞∑
n=0

A3(65536n + 43690)qn ≡ 8q
f 24
2

f 8
1

(mod 9) (2.18)

and
∞∑

n=0

A3(262144n + 174762)qn ≡ f 16
1 (mod 9). (2.19)
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In view of (2.10) and (2.13), we see that for n ≥ 0,

A3(64n + 42) ≡ A3(n) (mod 3). (2.20)

Congruence (1.2) follows from (2.20) and mathematical induction.
By (2.12), we see that

∞∑
n=0

A3(16n + 10)qn ≡ 2q
f 24
2

f 8
1

(mod 3). (2.21)

Substituting (2.4) into (2.21),

∞∑
n=0

A3(16n + 10)qn ≡ 2q f 24
2

( f 14
4

f 14
2 f 4

8

+ 4q
f 2
4 f 4

8

f 10
2

)2

≡ 2q
f 28
4

f 4
2 f 8

8

+ q2 f 16
4 + 2q3 f 4

2 f 4
4 f 8

8 (mod 3),

which implies that for n ≥ 0,

A3(64n + 10) ≡ 0 (mod 3). (2.22)

Replacing n by 64n + 10 in (1.2) and employing (2.22), we arrive at (1.3).
It follows from (2.10) and (2.19) that for n ≥ 0,

A3(262144n + 174762) ≡ A3(n) (mod 9). (2.23)

Congruence (1.4) follows from (2.23) and mathematical induction.
Substituting (2.4) into (2.18),

∞∑
n=0

A3(65536n + 43690)qn ≡ 8q f 24
2

( f 14
4

f 14
2 f 4

8

+ 4q
f 2
4 f 4

8

f 10
2

)2

≡ 8q
f 28
4

f 4
2 f 8

8

+ q2 f 16
4 + 2q3 f 4

2 f 4
4 f 8

8 (mod 9),

which implies that for n ≥ 0,

A3(262144n + 43690) ≡ 0 (mod 9).

Replacing n by 262144n + 43690 in (1.4), we get (1.5).

To conclude this paper, we give a proof of Corollary 1.2.

Proof of Corollary 1.2. Setting n = ri in (1.4) and then employing the facts
A3(1) = 2, A3(2) = 5, A3(3) = 4, A3(4) = 8, A3(5) = 6, A3(9) = 10, A3(10) = 21,
A3(11) = 16, A3(17) = 18, we can deduce Corollary 1.2. This completes the proof. �
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