INFINITE FAMILIES OF CONGRUENCES MODULO 3 AND 9 FOR BIPARTITIONS WITH 3-CORES

OLIVIA X. M. YAO

(Received 13 June 2014; accepted 23 June 2014; first published online 27 August 2014)

Abstract

Let $A_{3}(n)$ denote the number of bipartitions of n with 3-cores. Recently, Lin ['Some results on bipartitions with 3-core', J. Number Theory 139 (2014), 44-52] established some congruences modulo 4, 5, 7 and 8 for $A_{3}(n)$. In this paper, we prove several infinite families of congruences modulo 3 and 9 for $A_{3}(n)$ by employing two identities due to Ramanujan.

2010 Mathematics subject classification: primary 11P83; secondary 05A17.
Keywords and phrases: bipartitions, t-cores, congruences.

1. Introduction

A partition λ of a positive integer n is any nonincreasing sequence of positive integers whose sum is n. For a positive integer $t \geq 2$, a partition is said to be a t-core partition if its Ferrers graph does not contain a hook whose length is a multiple of t. For any nonnegative integer n, let $a_{t}(n)$ denote the number of t-core partitions of n. From [10], the generating function for $a_{t}(n)$ is given by

$$
\sum_{n=0}^{\infty} a_{t}(n) q^{n}=\frac{f_{t}^{t}}{f_{1}}
$$

Here and throughout this paper, for any positive integer k, f_{k} is defined by

$$
f_{k}:=\prod_{n=1}^{\infty}\left(1-q^{k n}\right) .
$$

Numerous properties of $a_{t}(n)$ have been extensively studied (see, for example, [2, 6, 7, 9-12, 17]).

A bipartition (λ, μ) of n is a pair of partitions (λ, μ) such that the sum of all of the parts is n. Arithmetic properties of the number of bipartitions of n have been established (see, for example, $[1,5,8,16]$). Numerous arithmetic properties have been

[^0]proved for bipartitions with certain restrictions on each partition (see, for example, [4, 13-15, 18]). A bipartition with t-cores is a pair of partitions (λ, μ) such that λ and μ are both t-cores. Let $A_{t}(n)$ denote the number of bipartitions of n with t-cores. It is easy to see that the generating function of $A_{t}(n)$ is
\[

$$
\begin{equation*}
\sum_{n=0}^{\infty} A_{t}(n) q^{n}=\frac{f_{t}^{2 t}}{f_{1}^{2}} \tag{1.1}
\end{equation*}
$$

\]

Very recently, Lin [14] discovered some congruences modulo 4, 5, 7 and 8. For example, he proved that for $n \geq 0$ and $\alpha \geq 0$,

$$
A_{3}\left(4^{\alpha+1} n+\frac{11 \times 4^{\alpha}-2}{3}\right) \equiv 0(\bmod 4)
$$

and

$$
A_{3}\left(16^{\alpha+1} n+\frac{8 \times 16^{\alpha}-2}{3}\right) \equiv 0(\bmod 5) .
$$

The aim of this paper is to prove several infinite families of congruences modulo 3 and 9 for $A_{3}(n)$. Our main result can be stated as follows.

Theorem 1.1. For all $\alpha \geq 0$ and $n \geq 0$,

$$
\begin{align*}
& A_{3}\left(64^{\alpha} n+\frac{2\left(64^{\alpha}-1\right)}{3}\right) \equiv A_{3}(n)(\bmod 3) \tag{1.2}\\
& A_{3}\left(64^{(\alpha+1)} n+\frac{2^{6 \alpha+5}-2}{3}\right) \equiv 0(\bmod 3) \tag{1.3}\\
& A_{3}\left(4^{9 \alpha} n+\frac{2\left(4^{9 \alpha}-1\right)}{3}\right) \equiv A_{3}(n)(\bmod 9) \tag{1.4}\\
& A_{3}\left(4^{9(\alpha+1)} n+\frac{2^{18 \alpha+17}-2}{3}\right) \equiv 0(\bmod 9) \tag{1.5}
\end{align*}
$$

Thanks to (1.4), we can deduce the following corollary.
Corollary 1.2. For all integers $\alpha \geq 0$,

$$
A_{3}\left(r_{i} \times 4^{9 \alpha}+\frac{2\left(4^{9 \alpha}-1\right)}{3}\right) \equiv i(\bmod 9)
$$

where $r_{0}=17, r_{1}=9, r_{2}=1, r_{3}=10, r_{4}=3, r_{5}=2, r_{6}=5, r_{7}=11$ and $r_{8}=4$.

2. Proofs of Theorem 1.1 and Corollary 1.2

In this section, we present a proof of Theorem 1.1. We first present the following lemma.

Lemma 2.1. Let a and b be two integers. If

$$
\begin{equation*}
\sum_{n=0}^{\infty} c(n) q^{n} \equiv a f_{1}^{16}+b q \frac{f_{2}^{24}}{f_{1}^{8}}(\bmod 9) \tag{2.1}
\end{equation*}
$$

then

$$
\begin{equation*}
\sum_{n=0}^{\infty} c(4 n+2) q^{n} \equiv(5 a+8 b) f_{1}^{16}+4 a q \frac{f_{2}^{24}}{f_{1}^{8}}(\bmod 9) \tag{2.2}
\end{equation*}
$$

Proof. The following relations are consequences of dissection formulas of Ramanujan collected in Entry 25 in Berndt's book [3, page 40]:

$$
\begin{equation*}
f_{1}^{4}=\frac{f_{4}^{10}}{f_{2}^{2} f_{8}^{4}}-4 q \frac{f_{2}^{2} f_{8}^{4}}{f_{4}^{2}} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{f_{1}^{4}}=\frac{f_{4}^{14}}{f_{2}^{14} f_{8}^{4}}+4 q \frac{f_{4}^{2} f_{8}^{4}}{f_{2}^{10}} \tag{2.4}
\end{equation*}
$$

Substituting (2.3) and (2.4) into (2.1),

$$
\begin{align*}
\sum_{n=0}^{\infty} c(n) q^{n} \equiv & a\left(\frac{f_{4}^{10}}{f_{2}^{2} f_{8}^{4}}-4 q \frac{f_{2}^{2} f_{8}^{4}}{f_{4}^{2}}\right)^{4}+b q f_{2}^{24}\left(\frac{f_{4}^{14}}{f_{2}^{14} f_{8}^{4}}+4 q \frac{f_{4}^{2} f_{8}^{4}}{f_{2}^{10}}\right)^{2} \\
\equiv & a \frac{f_{4}^{40}}{f_{2}^{8} f_{8}^{16}}+(b-7 a) q \frac{f_{4}^{28}}{f_{2}^{4} f_{8}^{8}}+(6 a+8 b) q^{2} f_{4}^{16} \\
& \quad+(7 b-4 a) q^{3} f_{2}^{4} f_{4}^{4} f_{8}^{8}+4 a q^{4} \frac{f_{2}^{8} f_{8}^{16}}{f_{4}^{8}}(\bmod 9) . \tag{2.5}
\end{align*}
$$

Extracting the terms with even powers of q on both sides of (2.5), then replacing q^{2} by q,

$$
\begin{equation*}
\sum_{n=0}^{\infty} c(2 n) q^{n} \equiv a \frac{f_{2}^{40}}{f_{1}^{8} f_{4}^{16}}+(6 a+8 b) q f_{2}^{16}+4 a q^{2} \frac{f_{1}^{8} f_{4}^{16}}{f_{2}^{8}}(\bmod 9) \tag{2.6}
\end{equation*}
$$

Substituting (2.3) and (2.4) into (2.6),

$$
\begin{align*}
\sum_{n=0}^{\infty} c(2 n) q^{n} \equiv & a \frac{f_{2}^{40}}{f_{4}^{16}}\left(\frac{f_{4}^{14}}{f_{2}^{14} f_{8}^{4}}+4 q \frac{f_{4}^{2} f_{8}^{4}}{f_{2}^{10}}\right)^{2}+(6 a+8 b) q f_{2}^{16} \\
& +4 a q^{2} \frac{f_{4}^{16}}{f_{2}^{8}}\left(\frac{f_{4}^{10}}{f_{2}^{2} f_{8}^{4}}-4 q \frac{f_{2}^{2} f_{8}^{4}}{f_{4}^{2}}\right)^{2} \\
\equiv & a \frac{f_{2}^{12} f_{4}^{12}}{f_{8}^{8}}+(5 a+8 b) q f_{2}^{16}+7 a q^{2} \frac{f_{2}^{20} f_{8}^{8}}{f_{4}^{12}} \\
& +4 a q^{2} \frac{f_{4}^{36}}{f_{2}^{12} f_{8}^{8}}+4 a q^{3} \frac{f_{4}^{24}}{f_{2}^{8}}+a q^{4} \frac{f_{4}^{12} f_{8}^{8}}{f_{2}^{4}}(\bmod 9) . \tag{2.7}
\end{align*}
$$

Congruence (2.2) follows from (2.7). This completes the proof.

We are now ready to prove Theorem 1.1 by using Lemma 2.1.
Proof of Theorem 1.1. Setting $t=3$ in (1.1),

$$
\begin{equation*}
\sum_{n=0}^{\infty} A_{3}(n) q^{n}=\frac{f_{3}^{6}}{f_{1}^{2}} \tag{2.8}
\end{equation*}
$$

By the binomial theorem, it is easy to check that

$$
\begin{equation*}
f_{3}^{6} \equiv f_{1}^{18}(\bmod 9) \tag{2.9}
\end{equation*}
$$

Combining (2.8) and (2.9),

$$
\begin{equation*}
\sum_{n=0}^{\infty} A_{3}(n) q^{n} \equiv f_{1}^{16}(\bmod 9) \tag{2.10}
\end{equation*}
$$

Setting $a=1, b=0$ in (2.1) and using Lemma 2.1 and (2.10), we see that

$$
\begin{equation*}
\sum_{n=0}^{\infty} A_{3}(4 n+2) q^{n} \equiv 5 f_{1}^{16}+4 q \frac{f_{2}^{24}}{f_{1}^{8}}(\bmod 9) \tag{2.11}
\end{equation*}
$$

If we apply Lemma 2.1 repeatedly, starting from (2.11),

$$
\begin{gather*}
\sum_{n=0}^{\infty} A_{3}(16 n+10) q^{n} \equiv 3 f_{1}^{16}+2 q \frac{f_{2}^{24}}{f_{1}^{8}}(\bmod 9), \tag{2.12}\\
\sum_{n=0}^{\infty} A_{3}(64 n+42) q^{n} \equiv 4 f_{1}^{16}+3 q \frac{f_{2}^{24}}{f_{1}^{8}}(\bmod 9), \tag{2.13}\\
\sum_{n=0}^{\infty} A_{3}(256 n+170) q^{n} \equiv 8 f_{1}^{16}+7 q \frac{f_{2}^{24}}{f_{1}^{8}}(\bmod 9), \tag{2.14}\\
\sum_{n=0}^{\infty} A_{3}(1024 n+682) q^{n} \equiv 6 f_{1}^{16}+5 q \frac{f_{2}^{24}}{f_{1}^{8}}(\bmod 9), \tag{2.15}\\
\sum_{n=0}^{\infty} A_{3}(4096 n+2730) q^{n} \equiv 7 f_{1}^{16}+6 q \frac{f_{2}^{24}}{f_{1}^{8}}(\bmod 9), \tag{2.16}\\
\sum_{n=0}^{\infty} A_{3}(16384 n+10922) q^{n} \equiv 2 f_{1}^{16}+q \frac{f_{2}^{24}}{f_{1}^{8}}(\bmod 9), \tag{2.17}\\
\sum_{n=0}^{\infty} A_{3}(65536 n+43690) q^{n} \equiv 8 q \frac{f_{2}^{24}}{f_{1}^{8}}(\bmod 9) \tag{2.18}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} A_{3}(262144 n+174762) q^{n} \equiv f_{1}^{16}(\bmod 9) \tag{2.19}
\end{equation*}
$$

In view of (2.10) and (2.13), we see that for $n \geq 0$,

$$
\begin{equation*}
A_{3}(64 n+42) \equiv A_{3}(n)(\bmod 3) \tag{2.20}
\end{equation*}
$$

Congruence (1.2) follows from (2.20) and mathematical induction.
By (2.12), we see that

$$
\begin{equation*}
\sum_{n=0}^{\infty} A_{3}(16 n+10) q^{n} \equiv 2 q \frac{f_{2}^{24}}{f_{1}^{8}}(\bmod 3) \tag{2.21}
\end{equation*}
$$

Substituting (2.4) into (2.21),

$$
\begin{aligned}
\sum_{n=0}^{\infty} A_{3}(16 n+10) q^{n} & \equiv 2 q f_{2}^{24}\left(\frac{f_{4}^{14}}{f_{2}^{14} f_{8}^{4}}+4 q \frac{f_{4}^{2} f_{8}^{4}}{f_{2}^{10}}\right)^{2} \\
& \equiv 2 q \frac{f_{4}^{28}}{f_{2}^{4} f_{8}^{8}}+q^{2} f_{4}^{16}+2 q^{3} f_{2}^{4} f_{4}^{4} f_{8}^{8}(\bmod 3)
\end{aligned}
$$

which implies that for $n \geq 0$,

$$
\begin{equation*}
A_{3}(64 n+10) \equiv 0(\bmod 3) . \tag{2.22}
\end{equation*}
$$

Replacing n by $64 n+10$ in (1.2) and employing (2.22), we arrive at (1.3).
It follows from (2.10) and (2.19) that for $n \geq 0$,

$$
\begin{equation*}
A_{3}(262144 n+174762) \equiv A_{3}(n)(\bmod 9) \tag{2.23}
\end{equation*}
$$

Congruence (1.4) follows from (2.23) and mathematical induction.
Substituting (2.4) into (2.18),

$$
\begin{aligned}
\sum_{n=0}^{\infty} A_{3}(65536 n+43690) q^{n} & \equiv 8 q f_{2}^{24}\left(\frac{f_{4}^{14}}{f_{2}^{14} f_{8}^{4}}+4 q \frac{f_{4}^{2} f_{8}^{4}}{f_{2}^{10}}\right)^{2} \\
& \equiv 8 q \frac{f_{4}^{28}}{f_{2}^{4} f_{8}^{8}}+q^{2} f_{4}^{16}+2 q^{3} f_{2}^{4} f_{4}^{4} f_{8}^{8}(\bmod 9)
\end{aligned}
$$

which implies that for $n \geq 0$,

$$
A_{3}(262144 n+43690) \equiv 0(\bmod 9)
$$

Replacing n by $262144 n+43690$ in (1.4), we get (1.5).
To conclude this paper, we give a proof of Corollary 1.2.
Proof of Corollary 1.2. Setting $n=r_{i}$ in (1.4) and then employing the facts $A_{3}(1)=2, A_{3}(2)=5, A_{3}(3)=4, A_{3}(4)=8, A_{3}(5)=6, A_{3}(9)=10, A_{3}(10)=21$, $A_{3}(11)=16, A_{3}(17)=18$, we can deduce Corollary 1.2. This completes the proof.

References

[1] A. O. L. Atkin, 'Ramanujan congruences for $p_{-k}(n)$ ', Canad. J. Math. 20 (1968), 67-78; Canad. J. Math. 21 (1968), 256 (corrigendum).
[2] N. D. Baruah and K. Nath, 'Some results on 3-cores', Proc. Amer. Math. Soc. 142 (2014), 441-448.
[3] B. C. Berndt, Ramanujan's Notebooks, Part III (Springer, New York, 1991).
[4] K. Bringmann and J. Lovejoy, 'Rank and congruences for overpartition pairs', Int. J. Number Theory 4 (2008), 303-322.
[5] S. H. Chan and R. Mao, 'Pairs of partitions without repeated odd parts', J. Math. Anal. Appl. 394 (2012), 408-415.
[6] S. Chen, 'Arithmetical properties of the number of t-core partitions', Ramanujan J. 18 (2009), 103-112.
[7] S. C. Chen, 'Congruences for t-core partition functions', J. Number Theory 133 (2013), 4036-4046.
[8] J. M. Gandhi, 'Congruences for $p_{r}(n)$ and Ramanujan's τ-function', Amer. Math. Monthly 70 (1963), 265-274.
[9] F. Garvan, 'Some congruences for partitions that are p-cores', Proc. Lond. Math. Soc. (3) 66 (1993), 449-478.
[10] F. Garvan, D. Kim and D. Stanton, 'Cranks and t-cores', Invent. Math. 101 (1990), 1-17.
[11] A. Granville and K. Ono, 'Defect zero p-blocks for infinite simple groups', Trans. Amer. Math. Soc. 348 (1996), 331-347.
[12] M. D. Hirschhorn and J. A. Sellers, 'Elementary proofs of various facts about 3-cores', Bull. Aust. Math. Soc. 79 (2009), 507-512.
[13] B. L. S. Lin, 'Arithmetic properties of bipartitions with even parts distinct', Ramanujan J. 33 (2014), 269-279.
[14] B. L. S. Lin, 'Some results on bipartitions with 3-core', J. Number Theory 139 (2014), 44-52.
[15] B. L. S. Lin, 'Arithmetic of the 7-regular bipartition function modulo 3', Ramanujan J., to appear; doi:10.1007/s11139-013-9542-7.
[16] K. G. Ramanathan, 'Identities and congruences of the Ramanujan type’, Canad. J. Math. 2 (1950), 168-178.
[17] S. Radu and J. A. Sellers, 'Parity results for broken k-diamond partitions and ($2 k+1$)-cores', Acta Arith. 146 (2011), 43-52.
[18] P. C. Toh, 'Ramanujan type identities and congruences for partition pairs', Discrete Math. 312 (2012), 1244-1250.

OLIVIA X. M. YAO, Department of Mathematics, Jiangsu University, Jiangsu, Zhenjiang 212013, PR China
e-mail: yaoxiangmei@163.com

[^0]: This work was supported by the National Natural Science Foundation of China.
 (c) 2014 Australian Mathematical Publishing Association Inc. 0004-9727/2014 \$16.00

