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INFINITARY HARMONIC NUMBERS

PETER HAGIS JrR. AND GRAEME L. COHEN

The infinitary divisors of a natural number n are the products of its divisors of the

o . . . .
form p¥*?" | where p¥ is an exact prime-power divisor of n and Y yo2% (where
) -4

Yo = 0 or 1) is the binary representation of y. Infinitary harmonic numbers
are those for which the infinitary divisors have integer harmonic mean. One of
the results in this paper is that the number of infinitary harmonic nuinbers not
exceeding  is less than 2.2g'/2 2('+e)les=/loglog = for any ¢ > 0 and z > nofe).
A corollary is that the set of infinitary perfect numbers (numbers n whose proper
infinitary divisors suin to n) has density zero.

1. INTRODUCTION

Unless otherwise noted, in what follows lower-case letters will be used to denote
natural numbers, with p and g always representing primes. If 7(n) and o(n) denote,
respectively, the number and sum of the positive divisors of n, Ore [5] showed that the
harmonic mean of the positive divisors of n is given by H(n) = nr(n)/c(n). We say
that n is a harmonic number if H(n) is an integer. It is easy to see that every perfect
nwmber is a harmonic number.

The unitary analogue of H(n) was studied by Hagis and Lord [3]. Thus, if
7"(n) and o"(n) denote, respectively, the number and sum of the unitary divisors
of n (see Definition 1, below), then the unitary harmonic mean of n is given by
H*(n) = nr*(n)/o"(n), and n is said to be a unitary harmonic number if H*(n)
is an integer. )

In {1}, Cohen initiated the study of the infinitary divisors of a natural number. In
the present paper we invesiigate Ho,(n), the harmonic mean of the infinitary divisors
of n. Particular attention is paid to I, the set of natural numbers n for which H(n)

is an integer.
2. INFINITARY DIVISORS

The following three definitions may be found in [1].

DEeFINITION 1: If d | n, d is said to be a 0-ary divisor of n. A divisor d of n_is
called a l-ary (or unitary) divisor of n if the greatest conmeon divisor of d and n/d is
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1. In general, if k > 1 then d is called a k-ary divisor of n (and we write d|xn) if
d | n and the greatest comnmon (k — 1)-ary divisor of d and n/d is 1.

It is immediate that for any n and &k, 1|gn and n|yn. Also, p® [ p¥ if and only
if p7%|ep¥. U d|; n, we shall write d || n.

DEFINITION 2: We say p® is an infinitary divisor of p¥ (and we write p* | p¥ ) if
o Iy—l pY.

In [1] it is proved that if p® |,_{ p¥ then p® |y p¥ for k 2y —1.

DEFINITION 3: Suppose that d | n. We say that d is an infinitary divisor of n
(and we write d|oo ) if p® || d implies that if p? || n then p® | p¥. The only infinitary

divisor of 1 is 1.

Now let P be the set of all primes and let
I={p* |peP & aecNy}.

From the fundamental theorem of arithmelic and the fact that the binary representation
of a natural number is unique, it follows that if n > 1 then n can be writien in exactly
one way (except for the order of the factors) as the product of distinct elements from I.
We shall call each element of I in this product an I-component of n.

Let the number of I-components of n be denoted by J(n). Then J(1) = 0 and,
if y = § y;i2® where y; = 0 or 1, J(p¥) = X_y:. It is obvious that J is an additive

1=(
[unctio; s)o that, if n = |] p¥, then J(n)= 3 J(p¥).
pYln p¥lIn

We shall say that d is an I-divisor of n if every I-component of d is also an
I-component of n. (Thus, if n = 233%5% =2.22.3%.52.5% then 2252 is an I-divisor of
n while 325* is not.) If o;(n) is the sum of the I-divisors of n, we see thal or(1) =1

and or(p?) = [f (1 + pzx) if y = > y:2°. It is obvious that oy is a multiplicative
yi=1

function so that,if n = [] p¥ then oy(n)= [] I (1 +p2i) . It follows that if 7/(n)
p¥lin pYlinyi=t

is the number of I-divisors of n then 7i{n) = |] 2J(P¥) = 9J(n}
pY(ln

It is proved (implicitly) in the first four sections of [1] that the set of infinitary
divisors of n is equal to the set of I-divisors of n. Therefore, if T5(n) and o (n)
denote the number and sumn, respectively, of the infinitary divisors of n, we have (see
Theorem 13 in [1]):

PROPOSITION 1. Ifn= [] p? and y = Y y:2, then

pYlin

) = J] 20 =27,

pYin
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where J(n) = >, J(p¥)= ). > v, and

pYlin rYln

coo(n) = [ TI(+7%)

pYlinyi=1

It is easy Lo show that the infinitary harmonic mean of n (the harmonic mean of

the infinitary divisors of n) is given by

(1) Hoo(n) = 2222 nL) 27 T H

p¥iinyi=1

+p2'.

We shall say that n is an infinitary harmonic number if Ho,(n) is an integer and shall
denote by IH the set of these nuimbers. A computer search was made for the elements
of IH in the interval [1,10%] and 38 were found. They are listed in Table 1 below.

Cohen [1] has defined n to be au infinitary perfect number if go(n) = 2n and
has found fourteen such numbers. Since J(n) > 1 if n > 1, the following result is

immediate from (1).

PrROPOSITION 2. The set of infinitary perfect numbers is a subset of 11l .
3. SOME ELEMENTARY RESULTS CONCERNING H,(n) AND IH

LEMMA 1. Let J(n)=J. Then,if n>1,

2J+1 7
: < Hy, .
(2) ) Hoo(n) <2

PROOF: Since z/(z + 1) is monotonic increasing and bounded above by 1 for pos-

itive values of z, it follows from (1) that

1

NoTg. We have equality on theleft in (2)ifandonlyif n =20rn=2-3 or n =23.3
or n=2%.3.5. Also, using (2) it is clear that Hoo(n) =1 if and only if n = 1.

LEMMA 2. Suppose that there are s zeros in the binary representation of y. Then

(') 241
Teo(P¥) 7 9 7
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¢ .
ProOOF: Set y= 3 y:2" where y, = 1. Since s values of y; are 0,
i=0
y2Ll42+22 4. 420yt =204 200 1
Therefore, T(p?) y+1 _ 2642t 204
Teo(p¥) 28w T TgtkI-e T g

0

THEOREM 1. Forall n, H*(n) < Heo(n) < H(n). For n > 1, equality holds on
the left if and only if p¥ || n implies y = 2%, and on the right if and only if p¥ || n
implies y = 27 — 1.

PROOF: Since H*(1) = H(1) = H(1), we may suppose that n > 1.

If p¥ || n implies that y = 2% then, since H* (pza) = 2p20/(1 + pza) = Hy (pza)
and since " and H,, are each multiplicative, it {follows that H*(n) = Heo(n).

Now suppose that p? || n and y # 2%. Then y = 2% 4-2%2 ... 4 2%+ where
a; >a; >--->a, 20 and v > 2. 1t follows that

2¢1 20u
H*([)y)_ 2pY ‘(1+p )...(1+P )< 1 'py-l-py_1+-'-+p+1
Hoo(p¥)  14pY 2upy 2u-! pY

e (el Ly <ifivlily =1
2u-1 P P 2 2 227 )7

Therefore, H*(p¥) < Hoo(p¥), so that H*(n) < Heo(n).
If p¥ || n implies that y = 28 —1 then, since H(pza_l) = pzﬂ_1 28(p—1)/ (1)2‘a - 1)

= Ho, (pzﬁ"l) and since H and I, are each multiplicative, it follows that Ho(n) =
H(n).
Now suppose that p? || n and y # 2° — 1. We consider several cases.

Suppose first that, in Lemma 2, s > 2. Then

H(p*) _ (%) . Too(p?) S 5 P+ )p-1) . +'3py+l —5pY +5p—3
Hoo(p¥) ~ 7eo(p¥) o(p*) ~ 2 p* -1 2(p* - 1)

>1,

since p > 2. v
Now suppose that y is odd. From Theorem 3 in [1], p|eo p¥ and hence p?~! |, p¥.

Therefore, using Lemma 2 with s 2 1,

H(pY)

Too(P?) P+ Y- 1) P —3pv 4 3p—1
I (p?)

3
o) T2 prH -1 B 2(pr+i - 1)

> 1,

3
2

since p 2 2.
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One possibility remains: s = | and y is even. Then the binary representation of
y has the form 11...110, so that y = 2¥ — 2, where v > 2.
If v = 2, then

Hpvy  H(E’) 3 p*+1 14 (p-1)° o1
Hoo(p¥) ~ Hoo(®?) ~ 2 p2+p+1 = 2(p2+p+1) 7~ "~

since p 2 2.
If ¥ 2 3, then

H(pY) H(pY-?) 271 ' Q+p)(1+p*)(1+9%)... (1 +p27#l)(p —-1)

Heo(p¥) — Hoo(p*'—2) 2771 pi -1
27 -1 (14‘172+P4+P6+“'+P27‘2)(1’—1)
= o p -1 1

,
27 —1 ‘(P2 ~1)(17—1) -1 p 21
B VR RN T R

[SCR N )

Therefore, H(p¥) > Hoo(p¥), and it follows that Hoo(n) < H(n). This completes

the proof of Theorem 1. 0

Since 2% =27 — 1 if and only if @ = 0 and 8 = 1, it follows from Theorem 1 that
H'(n) = Heo(n) = H(n) if and only if n is square-free (or n = 1). Ore [5] proved that
6 is the only square-free harinonic number (he did not count 1 in this context; nor shall

we), so the following result is immediate.

CoROLLARY 1.1. The only square-free infinitary harmonic number is 6.

Since 2 | (1 -l-pzi) il p is odd, and since 4 | (1 4+ p) if p = 4m + 3, the next two
results follow from (1) and the fact that p|e p? if and only if y is odd (Theorem 3
in [1]).

PROPOSITION 3. Ifn is odd and n € [H , then H(n) is odd.

PROPOSITION 4. Ifnisodd, n € JH, p¥ | n and p=4m+3, then y is even.

ProPosITION 5. H n € IH, (p,n) = 1 and 0eo(p?) | Too(p¥}Hoo(n), then
p'ne lH.
This follows from (1) and the fact that I, is multiplicative.

As an example of Proposition 5, 409500 € IH and H(409500) = 30; since
(29,409500) = 1 and (1 4 29) | 2- 30, it follows that 29 - 409500 € IH . Other results’
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like Proposition 5, but where p | n, are easily obtained. For example, it may be shown
that if n € TH, 3| Hoo(n) and 22% || n, then 2n € JTH.

4. T'WO CARDINALITY THEOREMS

THEOREM 2. If S. is the set of natural numbers n such that Ho(n) = ¢, then

S is finite (or empty) for every real number c.

PROOF: Since 2/t1/(J +2) > J, it follows from Lemma 1 that if He(n) = ¢
then the number of I-components of n is bounded above by ¢. Assume that S, is
infinite. Then S. must contain an infinite subset, say S.n, each of whose elements
has exactly m [-components. 1t follows that an infinite sequence n;, ny, nz, ... of
distinct integers exists with the following properties.

(i) 7ni € Sem,sothat Heo(ni)=cfori=1,2,3,....

m
. ay Gg—1 Qi Aim a5 ay
(i) ni=pi" P T PL i =P [1p57, where pit <. <

ij
j=s
pft’fl <ph¥ << pf::m fori=1,2,... . (The ps are primes which
are not necessarily distinct; P may be an empty product, but s —1 # m.)
(ii1) pf(-lu — 00 ast— oo for =3, ..., m.

(That is, each n; is composed of a fixed constant block of elements from I and a
variable block of elements fromm I arranged monotonically within the block and such
that each element of this variable block goes to infinity with z.)

I'rom (i) and (ii) and (1) and the fact that He, is multiplicative, we see that

m m 29ij
C a;; p
_ = 1 ( 2° J) — gm—skl Y gm-stl
i=s j=s i

m a::
Therefore, tliere exists a fixed positive number v such that [| He (p?j "') = 2m-atl _
j=s
v. Bui, from (iii), it follows that lim H, (pf;ij) =2for j =3, ..., m. Therefore,
11—+ 00
for large 1,

Iml H., (p?;ij) > gm-stl _
j=s

This contradiction completes the proof. 1]

THEOREM 3. There exist at most finitely many infinitary harmonic nummbers with

a specified number of I-components.

Proor: Consider the elements of [H with precisely X I-components. There are
only finitely many integers between 2+ /(K 42) and 2. From Theorem 2, if [ is
one of these integers then 5 is finite (or empty). 0
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COROLLARY 3.1. Thereis at most a finite number of infinitary perfect numbers
with a specified number of I-components.

5. THE DISTRIBUTION OF THE INFINITARY HARMONIC NUMBERS

For each positive number z, we shall denote by A(z) the number of integers n
such that n < ¢ and ne IH.

THEOREM 4. Ior any € > 0 and for all sufficiently large values of z,

A(:l:) < 2.2:31/2 2(1+¢)logz/loglogz_

PRrROOF: A positive integer m is powerful if p | m implies that p? | m. Every
postlive integer can be written uniquely as a product NpNp, where (Np,Np) =1,
Np is powerful and Ny is square-free. (We consider 1 to be both powerful and square-
free.) If P(z) denotes the number of powerful numbers not exceeding z, it is proved in
(2] that P(z) ~ cz'/?, where ¢ = ((3/2)/{(3) = 2.173.... Therefore, P(z) < 2.2z'/?
for all large values of z.

If Np is a (fixed) powerful number, let g(Np,z) denote the number of square-free
numbers Np such that (Np,Ng) = 1, NpNp € z and NpNp € TH. If G(z) =
max{g(Np,z)} for Np < z, it follows that

(3) A(z) < 2.22' % G(z) for large z.

We now investigate the magnitude of G(z). Let Np be a powerful number for
which distinct square-free numbers m;, my, ..., mg(s) exist such that (Np,m;) =1,
Npm; < z and Npm; € IH fori=1,2, ..., G(z). Then H(Npm;) = Hoo(Np) -
Hoo(mni) = Z;, where Z; is an iuteger, for 1=1,2, ..., G(z). Suppose that Z; = Z;
where j # k. 1f (mj,mg) = d then, of course, Hoo(M;) = Hoo(M}) where M; = m;/d
and My = m/d. Since M; # M;, we cannot have M; = 1, so we may suppose that
2« My <M. UM;=p;...p,and My =¢q;...q;, where p1 < -+ < p,, q1 <--- < gy
and p, # ¢y, then from (1) it follows that

Z’pl.p,(l-l-ql)(l-!-qt):chlqt(l—{—p])(l'*‘Pa)

Then g¢ | (1 + ¢-) for some r, 1 < r < t. This implies that ¢ =3 and ¢, = ¢; = 2,
which is a contradiction since we require 1 < M; < M. Hence Z; # Zj, unless 7 = k.
Therefore, without loss of generality, Z, < Z; < -+ < Zg(z) so that G(z) < Zg(;) =
]1°°(NPTYLG(=)) < Too (Npmg(,)). Since T(n) < 7(n), and since Npmg(z) < =, and
since it follows from Theorem 317 in [4] that T(n) g 2(1+e)les=/loglogz if 5 < g and

z > ny(e), we conclude that

1) G(z) < 21+e)iogz/loglog= for all large z.
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Theorein 4 follows from (3) and (4).

COROLLARY 4.1.

COROLLARY 4.2.

P. Hagis Jr. and G.L. Cohen (8]

I has density zero.

The set of infinitary perfect numbers has density zero.

TABLE 1. The infinitary harmonic numbers in [1,10°%]

n Hoo(n) n Heo(n)
1 95550 = 2.3 -527%13 14
6=2-3 2 136500 = 223 - 5%7 - 13 25
45 = 325 3 163800 = 2332527. 13 24
60 = 223.5 4 172900 = 22527 .13 .19 19
90 = 2-3%5 4 204750 = 2 - 325%7-13 25
270 =2- 3% 6 232470 = 2-3%*5-7-41 15
420 =2%3.5.7 7 245700 = 2233527 .13 27
630 =2-3%5-7 7 257040 = 2*3%5 - 717 28
2970 =2-3%5-11 11 409500 = 22325%7.13 30
5460 = 223.5.7-13 13 464940 = 223*5.7.41 18
8190 =2-3%5.7-13 13 491400 = 233352713 36
9100 = 2%527.13 10 646425 = 325213217 13
15925 = 527213 7 716625 = 32537213 21
27300 = 223 .5%27-13 15 790398 = 2.3%7.17-41 17
36720 = 24335 .17 16 791700 = 223.527.13-29 29
40950 = 2 - 32527.13 15 819000 = 2%32537.13 40
46494 = 2-37 - 41 9 900900 = 2232527 .11 -13 33
54600 = 233 - 527 .13 20 929880 = 2%3%5.7.41 24
81900 = 2232527 .13 18 955500 = 223 . 537213 28
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