# NORMAL, LOCALLY COMPACT, BOUNDEDLY METACOMPACT SPACES ARE PARACOMPACT: AN APPLICATION OF PIXLEY-ROY SPACES 

PEG DANIELS


#### Abstract

1. Introduction. Let $P R(X)$ denote the Pixley-Roy topology on the collection of all nonempty, finite subsets of a space $X$. For each cardinal $\kappa$, let $\kappa^{*}$ be the cardinal $\kappa$ with the co-finite topology. We use $P R\left(\kappa^{*}\right)$ to obtain a partial solution in ZFC to F . Tall's question whether every normal, locally compact, metacompact space is paracompact [6]. W.S. Watson has answered this question affirmatively assuming $V=L$ [7]. The question also has an affirmative answer if we assume either that the space is perfectly normal [1] or that it is locally connected [4].

A space $X$ is said to be boundedly metacompact (boundedly paracompact) provided that for each open cover $\mathscr{U}$ of $X$ there is a positive integer $n$ such that $\mathscr{U}$ has a point finite (locally finite) open refinement of order $n$. As the main result of this paper, we show every normal, locally compact, boundedly metacompact space is paracompact. Thus, by a theorem of P . Fletcher, R.A. McCoy and R. Slover, such spaces are boundedly paracompact [3]. We also show that if there is a normal, zero-dimensional, locally compact, metacompact space that is not paracompact, then there is a cardinal $\kappa$, and a subspace of $P R\left(\kappa^{*}\right)$ with the same properties. More generally, we show that if there is a normal, locally compact, metacompact space that is not paracompact, then there is a cardinal $\kappa$ and a subspace $Y$ of $P R\left(\kappa^{*}\right)$ with the following two properties: (1) any two disjoint subsets of $\{\{\alpha\}: \alpha \in \kappa\}$ can be separated by disjoint open subsets of $Y$, and (2) $\{\{\alpha\}: \alpha \in \kappa\}$ is a discrete closed subset of $Y$, the points of which cannot be separated by disjoint open subsets of $Y$. Finally, we show every zero-dimensional, normal, locally compact, metacompact space is subparacompact.


2. Pixley-Roy spaces on $\kappa^{*}$. First let us recall the definition of the Pixley-Roy topology on the collection of all nonempty, finite subsets of a space $X$. Given a space $X$, let $\mathscr{P}(X)$ be the collection of all nonempty, finite subsets of $X$. For each $A \in \mathscr{P}(X)$ and each open set $U$ of $X$, let

[^0]$$
[A, U]=\{B \in \mathscr{P}(x): A \subseteq B \subseteq U\}
$$

Then $\{[A, U]: A \in \mathscr{P}(X)$ and $U$ is an open set in $X\}$ forms a basis for a topology on $\mathscr{P}(X)$, called the Pixley-Roy topology on $\mathscr{P}(X)$. Let $P R(X)$ denote $\mathscr{P}(X)$ with this topology. It is well known that if $X$ is a $T_{1}$-space, then each element of this basis is clopen, and hence $P R(X)$ is completely regular and zero-dimensional. Also, if $X$ is a $T_{1}$-space, then $\operatorname{PR}(X)$ is hereditarily metacompact [2].

As an aid in notation, given a cardinal $\kappa$, a set $A \in P R\left(\kappa^{*}\right)$, and a finite subset $F$ of $\kappa-A$, we let $\mathscr{U}(A, F)=[A, \kappa-F]$. Also, for each positive integer $n$, let $P R_{\leqq n}\left(\kappa^{*}\right)$ denote the subspace of $P R\left(\kappa^{*}\right)$ consisting of all subsets of $\kappa^{*}$ of cardinality less than or equal to $n$. Finally, we consider $\kappa$ to be a subspace of $P R\left(\kappa^{*}\right)$, that is, we identify $\{\alpha\}$ with $\alpha$ for each $\alpha \in \kappa$. Note that since $\kappa^{*}$ is $T_{1}, P R\left(\kappa^{*}\right)$ is completely regular, zero-dimensional, and hereditarily metacompact.

To help visualize these spaces, let us recall that $P R_{\leqq 2}(\mathbf{R})$ is homeomorphic to $R$. Heath's tangent- $V$ space, where $\mathbf{R}$ is the set of real numbers with the usual topology. The tangent- $V$ space is not locally compact, but if we extend each edge of a tangent $V$ infinitely far and give it the topology of the one-point compactification of an infinite discrete space, we get a locally compact space. More precisely, for $p=(x, 0)$, let

$$
\mathscr{U}(p)=\{p\} \cup\left\{\left(x^{\prime}, y^{\prime}\right): y^{\prime}=x^{\prime}-x \text { or } y^{\prime}=x-x^{\prime}\right\} .
$$

Then a basic open set containing $p$ is $\mathscr{U}(p)-F$ where $F$ is a finite subset of $\mathscr{U}(p)-\{p\}$. This space is locally compact and metacompact, but not collectionwise-Hausdorff (since the tangent- $V$ space isn't collectionwiseHausdorff), and hence, it is not paracompact. It turns out that this space also is homeomorphic to a Pixley-Roy space, namely $P R \leqq_{2}\left(\mathbf{R}^{*}\right)$, where $\mathbf{R}^{*}$ is the set of all real numbers with the co-finite topology. In fact, the only property of the real numbers affecting the space $P R\left(\mathbf{R}^{*}\right)$ is their cardinality, i.e., $P R\left(\mathbf{R}^{*}\right)$ is homomorphic to $P R\left(c^{*}\right)$, where $c^{*}$ is $c=2^{\omega}$ with the co-finite topology. This led us to consider Pixley-Roy spaces of the form $P R\left(\kappa^{*}\right)$ where $\kappa^{*}$ is some cardinal $\kappa$ with the co-finite topology. We begin with a few more simple facts about $P R\left(\kappa^{*}\right)$.

THEOREM 1. For each positive integer $n$ and each cardinal $\kappa, P R_{\leqq n}\left(\kappa^{*}\right)$ is locally compact. If $n \geqq 2$ and $\kappa>\omega$, then $P R_{\leqq n}\left(\kappa^{*}\right)$ is not collectionwiseHausdorff, and hence, not paracompact. In fact, $\kappa$ is a closed discrete subset of $P R_{\leqq n}\left(\kappa^{*}\right)$ that cannot be separated in $P R_{\leqq n}\left(\kappa^{*}\right)$ by disjoint open sets.

Proof. Suppose $\kappa$ is a cardinal and $n \in \omega$. Suppose $A \in P R_{\leqq n}\left(\kappa^{*}\right)$. We show that $\mathscr{U}(A, \emptyset)$ is compact. Since $\mathscr{U}(A, \emptyset)$ is metacompact, is suffices to show that $\mathscr{U}(A, \emptyset)$ is countably compact. Suppose that

$$
\left\{X_{m}: m \in \omega\right\} \subseteq \mathscr{U}(A, \emptyset) .
$$

Without loss of generality, we may assume that all the elements of this set have the same cardinality, and hence form a $\Delta$-system with root $B$. It is easy to check that $B$ is a limit point of this set in $\mathscr{U}(A, \emptyset)$, and so $P R_{\leqq n}\left(\kappa^{*}\right)$ is locally compact.

Now let us suppose that $n \geqq 2$ and $\kappa>\omega$. Suppose that

$$
\left\{\mathscr{U}\left(\alpha, F_{\alpha}\right) \cap P R_{\leqq n}\left(\kappa^{*}\right): \alpha<\kappa\right\}
$$

is a collection of pairwise disjoint open subsets of $P R_{\leqq n}\left(\kappa^{*}\right)$. For each pair of points $\alpha$ and $\beta$, it must be the case that either $\beta \in F_{\alpha}$ or $\alpha \in F_{\beta}$. For each natural number $m, F_{m}$ is finite, so for each $\beta \notin F_{m}, m \in F_{\beta}$. Since $\kappa$ $>\omega$,

$$
\kappa-\underset{m \in \omega}{\cup} F_{m} \neq \emptyset
$$

Let

$$
\beta \in \kappa-\bigcup_{m \in \omega} F_{m} .
$$

But then for each $m \in \omega, m \in F_{\beta}$, a contradiction. So $\kappa$ cannot be separated in $P R_{\leqq n}\left(\kappa^{*}\right)$ by disjoint open sets.

Let us say that given a space $X$ and a pairwise disjoint collection $\mathscr{A} \subseteq$ $\mathscr{P}(X), \mathscr{A}$ can be separated in $X$ provided that there exists a collection $\left\{U_{A}: A\right.$ $\in \mathscr{A}\}$ of pairwise disjoint open sets in $X$ such that for each $A \in \mathscr{A}, A \subseteq$ $U_{A}$. Also, $\mathscr{A}$ is normalized in $X$ provided that for each $\mathscr{B} \subseteq \mathscr{A}$ there exist disjoint open sets $U$ and $V$ in $X$ such that $\cup \mathscr{B} \subseteq U$ and $\cup(\mathscr{A}-\mathscr{B}) \subseteq$ $V$.

Now we begin to relate the study of Pixley-Roy spaces to F. Tall's question. The next theorem illustrates the close relationship between normal, locally compact, metacompact spaces and subspaces of PixleyRoy spaces of the form $P R\left(\kappa^{*}\right)$ for various cardinals $\kappa$, particularly if the original spaces are zero-dimensional. This theorem is proved using techniques that are very useful in proving the main result.

THEOREM 2. If there is a normal, locally compact, metacompact space $Y$ that is not paracompact, then there is a cardinal $\kappa$ and a subspace $Z$ of $P R\left(\kappa^{*}\right)$ with the following properties:
(1) $\kappa$ is normalized in $Z$,
(2) $\kappa$ is a closed discrete subset of $Z$ that cannot be separated in $Z$. Furthermore, if $Y$ is also zero-dimensional, then there is such a subspace $Z$ which is a perfect image of $Y$, hence also normal, locally compact, metacompact; $Z$ is not paracompact.

Before proving Theorem 2, we state and prove a lemma useful in proving this theorem and the main result.

Lemma 3. Suppose $X$ is normal, locally compact, and (boundedly) metacompact, and $D=\left\{d_{\alpha}: \alpha<\kappa\right\}$ is a discrete closed subset of $X$. Then there exists a collection $\mathscr{U}=\left\{U_{\alpha}: \alpha<\kappa\right\}$ of open sets with compact closures such that
(1) For each $\alpha<\kappa, d_{\alpha} \in U_{\alpha}$, and if $\beta \neq \alpha$, then $d_{\alpha} \notin \bar{U}_{\beta}$, and
(2) Each point of $X$ belongs to only finitely many (at most $n$, for some integer $n$ ) elements of $\mathscr{U}$.

Proof of Lemma 3. Suppose $X$ is normal, locally compact, and metacompact, and $D=\left\{d_{\alpha}: \alpha<\kappa\right\}$ is a discrete closed subset of $X$. For each $x \in X$, let $U_{x}$ be an open set with compact closure containing $x$ such that $\bar{U}_{x} \cap D \subseteq\{x\}$. Since $\left\{U_{x}: x \in X\right\}$ covers $X$, let $\left\{V_{x}: x \in X\right\}$ be a precise point-finite open refinement of $\left\{U_{x}: x \in X\right\}$. (If $X$ is boundedly metacompact, we may assume each point of $X$ is in at most $n$ elements of the refinement, for some positive integer $n$.) If $\alpha$ and $\beta$ are two elements of $\kappa$, then $d_{\beta} \in V_{d_{\beta}}$, and since $\bar{V}_{d_{\beta}} \subseteq \bar{U}_{d_{\beta}}, d_{\alpha} \notin \bar{V}_{d_{\beta}}$. So $\left\{V_{x}: x \in X\right\}$ has the desired properties.

Proof of Theorem 2. Suppose that every normal, locally compact, metacompact space is collectionwise-Hausdorff. We show that a normal, locally compact, metacompact space $X$ is collectionwise-normal with respect to compact sets and, hence, is paracompact. Take a discrete collection of compact subsets of $X$, say $\left\{H_{\alpha}: \alpha \in \Lambda\right\}$ and collapse each $H_{\alpha}$ to a point. This new quotient space, call it $Y$, is normal, locally compact, metacompact (using a result of J. Worrell [8]) and, by supposition, collectionwise-Hausdorff. The points of $\left\{H_{\alpha}: \alpha \in \Lambda\right\}$ can thus be separated in $Y$, and therefore the elements of $\left\{H_{\alpha}: \alpha \in \Lambda\right\}$ can be separated in $X$.

Suppose there is a normal, locally compact, metacompact space, say $Y$, that is not collectionwise-Hausdorff. Let $D=\left\{d_{\alpha}: \alpha<\kappa\right\}$ be a discrete closed subset of $Y$ that cannot be separated in $Y$. Let $\mathscr{U}=\left\{U_{\alpha}: \alpha<\kappa\right\}$ be as in Lemma 3. Let $X^{\prime}$ be an open set in $Y$ such that

$$
D \subseteq X^{\prime} \subseteq \bar{X}^{\prime} \subseteq \bigcup_{\alpha<\kappa} U_{\alpha}
$$

and let $\bar{X}^{\prime}=X$. Let $f: X \rightarrow P R\left(\kappa^{*}\right)$ be the function defined by

$$
f(x)=\left\{\alpha: x \in U_{\alpha}\right\} \quad \text { for each } x \in X
$$

We claim that $f(X)$ is a subspace of $P R\left(\kappa^{*}\right)$ with the required properties.

First we prove that $\kappa$ is normalized in $f(X)$. Suppose $H \subseteq \kappa$ and $K=\kappa$ $-H$. Now $f^{-1}(H)$ and $f^{-1}(K)$ are disjoint closed subsets of $X$; so by normality, let $U$ be an open set in $X$ such that

$$
f^{-1}(H) \subseteq U \quad \text { and } \quad \bar{U} \cap f^{-1}(K)=\emptyset
$$

We claim that $\overline{f(\bar{U})} \cap K=\emptyset$. Suppose that, on the contrary, $\alpha \in$ $\overline{f(\bar{U})} \cap K$. Since $\left(\bar{U}_{\alpha}-U_{\alpha}\right) \cap X$ is compact, let $G$ be a finite subset of $\kappa$ $-\{\alpha\}$ such that $\left(\bar{U}_{\alpha}-U_{\alpha}\right) \cap X$ is covered by $\left\{U_{\beta}: \beta \in G\right\}$. For each finite subset $F$ of $\kappa-\{\alpha\}$, let $u_{F} \in \bar{U}$ such that

$$
f\left(u_{F}\right) \in \mathscr{U}(\alpha, F \cup G)
$$

note that $u_{F}$ is an element of $U_{\alpha}$ and

$$
u_{F} \notin \underset{\beta \in F \cup G}{\cup} U_{\beta} .
$$

Let

$$
A=\overline{\left\{u_{F}: F \text { is a finite subset of } \kappa-\{\alpha\}\right\}}
$$

$A$ is a compact subset of $\bar{U}_{\alpha}$. In fact, $A \subseteq U_{\alpha}$ : suppose

$$
x \in A \cap\left(\bar{U}_{\alpha}-U_{\alpha}\right)
$$

and let $\beta \in G$ such that $x \in U_{\beta}$. Then there is a finite subset $F$ of $\kappa-\{\alpha\}$ such that $u_{F} \in U_{\beta}$, a contradiction. So we must have $A \subseteq U_{\alpha}$. Also, for each $x \in A$, there is a $\beta_{x} \neq \alpha$ such that $x \in U_{\beta}$, since otherwise $f(x)=\alpha$ and so

$$
x \in f^{-1}(K) \subseteq X-\bar{U}
$$

contradicting the fact that $x \in A$ implies that $x \in \bar{U}$. Since $A$ is compact, let $F$ be a finite subset of $\left\{\beta_{x}: x \in A\right\}$ such that $\left\{U_{\beta}: \beta \in F\right\}$ covers $A$. But $u_{F}$ cannot be in any element of $\left\{U_{\beta}: \beta \in F\right\}$, a contradiction. So $\overline{f(\bar{U})}$ $\cap K$ must be empty.

Similarly,

$$
\overline{f(\overline{X-\bar{U}})} \cap H=\emptyset
$$

So

$$
H \subseteq f(X)-\overline{f(\overline{X-\bar{U}}}) \quad \text { and } \quad K \subseteq f(X)-\overline{f(\bar{U})}
$$

and since

$$
f(X)=\overline{f(X-\bar{U})} \cup f(\bar{U})
$$

these sets are disjoint open sets separating $H$ and $K$.
Now let us show that $f$ is continuous on $D$. Suppose $\alpha<\kappa$ and $U$ is an open set in $f(X)$ containing $\alpha$. Let $F$ be a finite subset of $\kappa-\{\alpha\}$ such that $\mathscr{U}(\alpha, F) \cap f(X)$ is contained in $U$. Then $U_{\alpha}-\cup_{\beta \in F} \bar{U}_{\beta}$ is an open set containing $d_{\alpha}$ whose $f$-image is contained in $\mathscr{U}(\alpha, F) \cap f(X)$, and therefore in $U$. So $f$ is continuous on $D$.

Now suppose that $\kappa$ can be separated in $f(X)$. By the continuity of $f$ on $D$, the points of $D$ can be separated in $X$, and thus in $X^{\prime}$ and in $Y$, which is a contradiction.

Now let us further assume that $Y$ is zero-dimensional. Assume without loss of generality that each $U_{\alpha}$ is clopen. In this case, $f$ is a perfect map from $X$ onto $f(X)$. We can check that $f$ is continuous by an argument similar to the proof that $f$ is continuous on $D$. The proof that $f$ is closed goes through like the proof that $\overline{f(\bar{U})} \cap K=\emptyset$ : replace $\bar{U}$ by any closed set $H$ of $X$ and replace $K$ by $f(X)-f(H)$. Finally, for each $y \in f(X)$,

$$
f^{-1}(y)=\cap_{\alpha \in y} U_{\alpha}-\bigcup_{\alpha \notin y} U_{\alpha}
$$

a compact set. Thus $f$ is a perfect mapping from $X$ into $P R\left(\kappa^{*}\right)$. So $f(X)$ is normal, locally compact, metacompact, and zero-dimensional. Since paracompactness is invariant under perfect mappings and under their inverse images, $X$ is paracompact if, and only if, $f(X)$ is paracompact.

We now begin with the details leading up to the proof of the main resuit.

Lemma 4. Let $n \geqq 2$, $\kappa$ be a cardinal, and $Y$ a subspace of $P R_{\leqq n}\left(\kappa^{*}\right)$ which contains $\kappa$, such that whenever $\alpha<\beta<\kappa,\{\gamma$ : there is a $y \in Y$ such that $\{\alpha, \beta, \gamma\} \subseteq y\}$ is finite. If $\kappa$ is normalized in $Y$, then $\kappa$ is separated in $Y$.

Proof. Let $n \geqq 2$, and suppose $\kappa$ is the least cardinal for which the lemma fails. To simplify notation, if $\alpha$ and $\beta$ are two elements of $\kappa$ and $\delta$ $\in\{\gamma$ : there is a $y \in Y$ with $\{\alpha, \beta, \gamma\} \subseteq y\}$, we will say that " $\delta$ occurs with $\alpha, \beta$ in $Y^{\prime \prime}$.

We first prove that if $Z \subseteq \kappa$ and $|Z|=\lambda<\kappa$, then $Z$ can be separated in $Y$. For each pair of points $\gamma, \beta$ of $Z$, let

$$
F_{\beta \gamma}=\{\delta: \delta \text { occurs with } \beta, \gamma \text { in } Y\} .
$$

By supposition, each such $F_{\beta \gamma}$ is finite. Let

$$
B=Z \cup \cup\left\{F_{\beta \gamma}: \beta, \gamma \in Z\right\} .
$$

Let $Y^{\prime}=\{x \in Y: x \subseteq B\}$. Since $Y^{\prime} \subseteq Y$, we have that any two disjoint subsets of $B$ can be separated in $Y^{\prime}$, and that if $\alpha$ and $\beta$ are any two elements of $B,\left\{\gamma \in B: \gamma\right.$ occurs with $\alpha, \beta$ in $\left.Y^{\prime}\right\}$ is finite. Note that $Y^{\prime}$ can be considered to be a subspace of $P R_{\leqq n}\left(\lambda^{*}\right)$, where the elements of $B$ are identified with the elements of $\lambda$, since if $X$ is any space of cardinality $\lambda$ with the co-finite topology, $P R(X)$ is homeomorphic to $P R\left(\lambda^{*}\right)$. By the minimality of $\kappa, B$ can be separated in $Y$. For each $\alpha \in B$, let $F$ be a finite subset of $\kappa-\{\alpha\}$ such that if $\alpha$ and $\beta$ are two elements of $B$, then

$$
\mathscr{U}\left(\alpha, F_{\alpha}\right) \cap \mathscr{U}\left(\beta, F_{\beta}\right) \cap Y^{\prime}=\emptyset ;
$$

now if $y \in \mathscr{U}\left(\alpha, F_{\alpha}\right) \cap \mathscr{U}\left(\beta, F_{\beta}\right)$, then $y \subseteq F_{\alpha \beta}$ and therefore, $y \in Y^{\prime}$. Thus the $\mathscr{U}\left(\alpha, F_{\alpha}\right)$ 's separate $B$ in $Y$, and therefore $Z$ can be separated in $Y$.

We now prove that $\kappa$ can be separated in $Y$.
First suppose that $\kappa$ is a regular cardinal. For each $\beta<\kappa$, let

$$
A_{\beta}=\{\alpha<\beta: \text { there is a } y \in Y \text { such that }\{\alpha, \beta\} \subseteq y\}
$$

Let

$$
\Gamma=\left\{\alpha: \text { there is a } \beta \geqq \alpha \text { such that } A_{\beta} \cap \alpha \text { is infinite }\right\} .
$$

We claim that $\Gamma$ is not stationary. Suppose that it is stationary. For each $\alpha$ $\in \Gamma$, let $\beta_{\alpha} \geqq \alpha$ be such that $A_{\beta_{\alpha}} \cap \alpha$ is infinite. Let $g$ be the function from $\Gamma$ into $\kappa$ such that for each $\alpha \in \Gamma, g(\alpha)=\beta_{\alpha}$. The set of all $\alpha<\kappa$ such that $g[\alpha] \subseteq \alpha$ is a closed unbounded set $K[5]$, and so $K \cap \Gamma$ is a stationary set on which $g$ is one to one. So without loss of generality, we may assume $g$ is one to one on $\Gamma$.

Let $\left\{\gamma_{\beta}: \beta<\kappa\right\}$ be an increasing enumeration of $g(\Gamma)$. We define disjoint sets $A$ and $B$ inductively as follows: let $\gamma_{0} \in A$; suppose $\beta<\kappa$ and $\gamma_{\alpha}$ has been assigned to either $A$ or $B$ for each $\alpha<\beta$. If $A_{\gamma_{\beta}} \cap g^{-1}\left(\gamma_{\beta}\right)$ $\cap A$ is infinite, let $\gamma_{\beta} \in B$; otherwise, let $\gamma_{\beta} \in A$.

Either $g^{-1}(A)$ or $g^{-1}(B)$ is stationary. Without loss of generality, suppose $g^{-1}(A)$ is stationary. We show that $A$ and $\kappa-A$ cannot be separated. Let $U$ be open in $Y$ such that $A \subseteq U$. For each $x \in A$, let $R_{x}$ be a finite subset of $\kappa-\{x\}$ such that

$$
\mathscr{U}\left(x, R_{x}\right) \cap Y \subseteq U
$$

For each $a \in g^{-1}(A), A_{g(a)} \cap a \cap A$ must be finite. By definition, $A_{g(a)}$ $\cap a$ is infinite, so $A_{g(a)} \cap a \cap(\kappa-A)$ is infinite. Let $\left\{\delta_{m}: m \in \omega\right\}$ be a denumerable subset of

$$
A_{g(a)} \cap a \cap\left(\kappa-\left(A \cup R_{g(a)}\right)\right)
$$

and for each $m \in \omega$, let $x_{m} \in Y$ such that $\left\{\delta_{m}, g(a)\right\} \subseteq x_{m}$, since $\delta_{m} \in$ $A_{g(a)}$. We wish to choose some $x_{m}$ in $U$. We do this by showing there is an $m \in \omega$ such that

$$
x_{m} \cap R_{g(a)}=\emptyset
$$

(so $\left.x_{m} \in U\left(g(a), R_{g(a)}\right)\right)$. If not, there is a $\gamma \in R_{g(a)}$ and an infinite subset $J$ of $\omega$ such that for each $m \in J, \gamma \in x_{m}$. By property (2), $\{\phi: \phi$ occurs with $\gamma, g(a)$ in $Y\}$ is finite, but $\left\{\delta_{m}: m \in J\right\}$ is a subset of this set. Hence

$$
x_{m} \in \mathscr{U}\left(g(a), R_{g(a)}\right) \subseteq U \quad \text { for some } m \in \omega
$$

So for each $a \in g^{-1}(A)$, we may let

$$
\delta_{a} \in A_{g(a)} \cap a \cap(\kappa-A)
$$

and $x_{a} \in Y$ such that

$$
\left\{\delta_{a}, g(a)\right\} \subseteq x_{a} \quad \text { and } \quad x_{a} \in U
$$

Let $h: g^{-1}(A) \rightarrow \kappa$ be defined by $h(a)=\delta_{a}$ for each $a \in g^{-1}(A)$. Since $h$ presses down, we may let $\delta \in \kappa$ such that $\left\{a \in g^{-1}(A): \delta_{a}=\delta\right\}$ is stationary.
$\delta$ is our candidate for a point of $\kappa-A$ which is a limit point of $U$. Suppose that $F$ is a finite subset of $\kappa-\{\delta\}$. Let $\beta \in \kappa$ such that if $a \in$ $g^{-1}(A)$ and $a \geqq \beta$, then $g(a) \notin F$. By an argument similar to the one presented above, there is an $a \geqq \beta$ such that $\delta_{a}=\delta$ and $x_{a} \cap F=\emptyset$. Thus $\delta$ is a limit point of $\left\{x_{a}: a \in g^{-1}(A)\right.$ and $\left.\delta_{a}=\delta\right\}$ and hence of $U$. Thus $A$ and $\kappa-A$ cannot be separated. So the original assumption must be false, i.e., $\Gamma$ is not stationary.

By definition then, there is a closed unbounded subset of $\kappa$, call it $C$, which misses $\Gamma$. We will use $C$ to partition $\kappa$ into sets that can be separated from each other in $Y$. Let $\left\{c_{\alpha}: \alpha<\kappa\right\}$ be an increasing enumeration of $C$.

Note

$$
\kappa=\left[0, c_{0}\right) \cup \underset{\alpha<\kappa}{\cup}\left[c_{\alpha}, c_{\alpha+1}\right)
$$

Also notice that $\beta \in\left[c_{\alpha}, c_{\alpha+1}\right)$ implies that $A_{\beta} \cap c_{\alpha}$ is finite since $c_{\alpha} \notin \Gamma$ for any $\alpha<\kappa$. For each $\alpha<\kappa$ and each $\beta \in\left[c_{\alpha}, c_{\alpha+1}\right)$, let $D_{\beta}=A_{\beta} \cap$ $c_{\alpha}$.

We claim that if $\alpha<\delta<\kappa, \beta \in\left[c_{\alpha}, c_{\alpha+1}\right)$, and $\gamma \in\left[c_{\delta}, c_{\delta+1}\right)$, then

$$
\mathscr{U}\left(\beta, D_{\beta}\right) \cap \mathscr{U}\left(\gamma, D_{\gamma}\right) \cap Y=\emptyset .
$$

To see this, suppose we have chosen such $\alpha, \beta, \gamma$, and $\delta$, and

$$
y \in \mathscr{U}\left(\beta, D_{\beta}\right) \cap \mathscr{U}\left(\gamma, D_{\gamma}\right) \cap Y .
$$

Then since $\beta \notin D_{\gamma}, \beta \notin A_{\gamma}$. By definition of $A_{\gamma}$, there is no $y \in Y$ with $\{\beta, \gamma\} \subseteq y$, a contradiction. Hence

$$
\mathscr{U}\left(\beta, D_{\beta}\right) \cap \mathscr{U}\left(\gamma, D_{\gamma}\right) \cap Y=\emptyset .
$$

By property (1) we may also separate $\left[0, c_{0}\right.$ ) from $\left[c_{0}, \kappa\right.$ ).
Furthermore, since $\left|\left[0, c_{0}\right)\right|<\kappa$ and for each $\alpha<\kappa$,

$$
\left|\left[c_{\alpha}, c_{\alpha+1}\right)\right|<\kappa,
$$

the points of $\left[c_{\alpha}, c_{\alpha+1}\right)$ can be separated in $Y$, and the points of $\left[0, c_{0}\right)$ can be separated in $Y$. Thus, $\kappa$ can be separated in $Y$.

Now let us consider the case where $\kappa$ is singular and cf $\kappa>\omega$. Let $\kappa=$ $\sup \left\{\gamma_{\beta}: \beta<\alpha\right\}$ where $\operatorname{cf} \kappa=\alpha$ and for each $\beta<\alpha, \gamma_{\beta}$ is regular and $\gamma_{\beta} \geqq$ $\beta$, and if $\delta<\beta$, then $\gamma_{\delta}<\gamma_{\beta}$.

By the inductive step, we may do the following: for each $\gamma<\kappa$ and each $\beta<\alpha$ such that $\gamma<\gamma_{\beta}$, assign a finite set $F_{\gamma \beta}$ such that if $\delta$ is another element of $\kappa$ less than $\gamma_{\beta}$, then

$$
\mathscr{U}\left(\gamma, F_{\gamma \beta}\right) \cap \mathscr{U}\left(\delta, F_{\delta \beta}\right) \cap Y \cap P R\left(\gamma_{\beta}^{*}\right)=\emptyset .
$$

For each $\gamma<\kappa$, let

$$
P_{\gamma}=U\left\{F_{\gamma \beta}: \gamma<\gamma_{\beta} \text { and } \beta<\alpha\right\} .
$$

We wish to partition $\kappa$ into sets that can be easily separated from each other.

Let $B_{00}=\gamma_{0}$. For each $m \in \omega$, let $B_{0 m+1}=\left(\left\{\phi:\right.\right.$ there are two elements $\beta$ and $\gamma$ of $B_{0 m}$ such that $\phi$ occurs with $\beta, \gamma$ in $Y$ \}

$$
\left.\cup \underset{\gamma \in B_{0 m}}{\cup}\left(P_{\gamma}\right) \cup B_{0 m}\right) .
$$

Let

$$
B_{0}=\underset{m \in \omega}{\cup} B_{0 m} .
$$

Note $\left|B_{0}\right| \leqq \gamma_{0} \cdot \alpha<\kappa$. For each $\theta<\alpha$, let $B_{\theta 0}=\gamma_{\theta}$. For each $m \in \omega$, let

$$
B_{\theta m+1}=\left(\left\{\phi: \text { there are two elements } \beta \text { and } \gamma \text { of } B_{\theta m}\right.\right.
$$

such that $\phi$ occurs with $\beta, \gamma$ in $Y$ \}

$$
\left.\cup \underset{\gamma \in B_{\theta m}}{\cup}\left(P_{\gamma}\right) \cup B_{\theta m}\right) .
$$

Let

$$
B_{\theta}=\underset{m \in \omega}{\cup} B_{\theta m}-\underset{\delta<\theta}{\cup} B_{\delta} .
$$

Note that $\left|B_{\theta}\right| \leqq \gamma_{\theta} \cdot \alpha<\kappa$.
Since for each $\theta<\alpha,\left|B_{\theta}\right|<\kappa$, the points of each $B_{\theta}$ can be separated in $Y$. Now we show that these sets can be separated from each other.

Suppose $\theta<\alpha$ and $\gamma \in B_{\theta}$. Suppose

$$
\left\{\rho \in \underset{\phi<\theta}{\cup} B_{\phi}: \text { there is a } y \in Y \text { with }\{\rho, \gamma\} \subseteq y\right\}
$$

is infinite. Let $\left\{\rho_{m}: m \in \omega\right\}$ be a denumerable subset, and for each $m \in \omega$, let $y_{m} \in Y$ such that $\left\{\rho_{m}, \gamma\right\} \subseteq y_{m}$. Let $\beta<\alpha$ such that

$$
\gamma_{\beta}>\sup \left(\left\{\rho_{m}: m \in \omega\right\} \cup \underset{m \in \omega}{\cup} y_{m} \cup\{\gamma\}\right)
$$

For each $m \in \omega$,

$$
\mathscr{U}\left(\gamma, F_{\gamma \beta}\right) \cap \mathscr{U}\left(\rho_{m}, F_{\rho_{m} \beta}\right) \cap Y \cap P R\left(\gamma_{\beta}{ }^{*}\right)=\emptyset .
$$

For each $m \in \omega$,

$$
F_{\rho_{m} \beta} \subseteq P_{\rho_{m}} \subseteq \bigcup_{\phi<\theta} B_{\phi}
$$

so $\gamma \notin F_{\rho_{m} \beta}$. Also, there must be a $k \in \omega$ such that if $m \geqq k$, then $\rho_{m} \notin$ $F_{\gamma \beta}$. For each $m \geqq k$,

$$
y_{m} \cap F_{\rho_{m} \beta}=\emptyset,
$$

and so

$$
y_{m} \in \mathscr{U}\left(\rho_{m}, F_{\rho_{m} \beta}\right)
$$

this implies that $y_{m} \notin \mathscr{U}\left(\gamma, F_{\gamma \beta}\right)$, and so we must have that

$$
y_{m} \cap F_{\gamma \beta} \neq \emptyset,
$$

and neither $\gamma$ nor $\rho_{m}$ can be in this intersection. Now we use an argument employed before: there must be a $\delta$ and an infinite subset $J$ of $\omega-k$ such that for each $m \in J$,

$$
\delta \in y_{m} \cap F_{\gamma \beta}
$$

for each $m \in J,\left\{\gamma, \delta, \rho_{m}\right\} \subseteq y_{m}$, contradicting property (2). From this we must conclude that the set

$$
\left\{\rho \in \bigcup_{\phi<\theta} B_{\phi}: \text { there is a } y \in Y \text { with }\{\rho, \gamma\} \subseteq y\right\}
$$

is finite.
For each $\theta<\alpha$ and $\gamma \in B_{\theta}$, let $S_{\gamma}$ be the finite set

$$
\left\{\rho \in \bigcup_{\phi<\theta}^{\cup} B_{\phi}: \text { there is a } y \in Y \text { with }\{\rho, \gamma\} \subseteq y\right\}
$$

These sets enable us to separate the $B_{\theta}$ 's. This completes the proof for $\operatorname{cf}(\kappa)>\omega$.

Finally, if $\operatorname{cf}(\kappa)=\omega$, apply the fact that normal spaces are $\kappa_{0}$-collectionwise-normal to the space obtained from $Y$ by isolating all points except the singletons. The proof is then complete.

Our idea now is to first prove that every normal, locally compact, boundedly metacompact space is collectionwise-Hausdorff, and then use this result to prove every normal, locally compact, boundedly metacompact space is paracompact by a method similar to that outlined at the beginning of the proof of Theorem 2.

To prove that a normal, locally compact, boundedly metacompact space $X$ is collectionwise-Hausdorff, we take a discrete closed set $D=\left\{d_{\alpha}: \alpha<\right.$ $\kappa\}$ of $X$ and a map $f$ into $P R\left(\kappa^{*}\right)$ that is continuous on $D$, takes $d_{\alpha}$ to $\alpha$, and gives us a subspace of $P R\left(\kappa^{*}\right)$ that has the properties mentioned in Lemma 4. Then, separating $\kappa$ in the subspace allows us to separate the points of $D$ in $X$.

More precisely, we start with a normal, locally compact space $X$, a discrete closed subset $D=\left\{d_{\alpha}: \alpha<\kappa\right\}$ of $X$, and a cover $\mathscr{U}=\left\{U_{\alpha}: \alpha<\kappa\right\}$ of $X$ by open sets with compact closures, with the properties that for each $\alpha<\kappa, d_{\alpha} \in U_{\alpha}$, and if $\beta \neq \alpha$, then $d_{\alpha} \notin \bar{U}_{\beta}$, and that each of $X$ belongs to at most $n$ elements of $\mathscr{U}$ for some positive integer $n$. Define $f: X \rightarrow$ $P R\left(\kappa^{*}\right)$ by

$$
f(x)=\left\{\alpha: x \in U_{\alpha}\right\} \quad \text { for each } x \in X
$$

By a procedure similar to the one in the proof of Theorem 2, it can be shown that any two disjoint subsets of $\kappa$ can be separated in $f(X)$. Recall
that this is one of the properties of Lemma 4. If we can also satisfy the second property of that lemma, then we can separate $\kappa$ in $f(X)$.

Since for each $\alpha<\kappa, f\left(d_{\alpha}\right)=\alpha$ and if $\beta \neq \alpha$, then $d_{\alpha} \notin \bar{U}_{\beta}$, the function $f$ is continuous on $D$, so separating $\kappa$ in $f(X)$ allows us to separate $D$ in $X$. However, we may not be able to satisfy the second property with this function $f$. Consider $\alpha<\beta<\kappa$. It is not clear that $\{\gamma: \gamma$ occurs with $\alpha, \beta$ in $f(X)\}$ is finite. It is obvious, however, that if we let

$$
Y=\{x \in X: x \text { belongs to at most two elements of } \mathscr{U}\}
$$

then $\{\gamma: \gamma$ occurs with $\alpha, \beta$ in $f(Y)\}$ is finite, and so $\kappa$ can be separated in $f(Y)$, and $D$ can be separated in $Y$. The idea in the next theorem is along the following lines: use the fact that $D$ can be separated in $Y$ to define a new open cover $\mathscr{V}$ of $X$ and a new function $g$ from $X$ into $P R\left(\kappa^{*}\right)$ based on this cover so that if we let

$$
Z=\{x \in X: x \text { belongs to at most three elements of } \mathscr{V}\}
$$

then $g(Z)$ witnesses the properties of Lemma 4. Then we can separate $\kappa$ in $g(Z)$ and $D$ in $Z$. We continue in this way, inductively generating new open covers and new functions into $P R\left(\kappa^{*}\right)$ that allow us to separate the points of $D$ in more of the space $X$ until finally we can separate $D$ in $X$.

We set up the necessary machinery in the following theorem, but first we give the definition of a concept needed in the theorem. If $\left\{U_{\alpha}: \alpha<\kappa\right\}$ is an open cover of a space $X$, then an open refinement $\left\{V_{\alpha}: \alpha<\kappa\right\}$ is said to shrink $\left\{U_{\alpha}: \alpha<\kappa\right\}$ provided that for each $\alpha<\kappa, \bar{V}_{\alpha} \subseteq U_{\alpha}$. Any point-finite open cover of a normal space can be shrunk.

THEOREM 5. If Y is normal, locally compact, and boundedly metacompact, then $Y$ is collectionwise-Hausdorff.

Proof. Suppose $Y$ is normal, locally compact, and boundedly metacompact. Suppose $D=\left\{d_{\alpha}: \alpha<\kappa\right\}$ is a discrete closed subset of $Y$. Let $\left\{U_{\alpha}: \alpha\right.$ $<\kappa\}$ be as in Lemma 3.

Let $X^{\prime}$ be an open set such that

$$
D \subseteq X^{\prime} \subseteq \bar{X}^{\prime} \subseteq \underset{\alpha<\kappa}{\cup} U_{\alpha}
$$

Let $\bar{X}^{\prime}=X$. For each $\alpha<\kappa$, let

$$
U_{\alpha} \cap X=U_{(n-2) \alpha}
$$

and let

$$
\mathscr{U}_{n-2}=\left\{U_{(n-2) \alpha}: \alpha<\kappa\right\} .
$$

For each natural number $j<n-2$, let

$$
\mathscr{U}_{j}=\left\{U_{j \alpha}: \alpha<\kappa\right\}
$$

be a collection of open sets of $X$ such that $\mathscr{U}_{j}$ shrinks $\mathscr{U}_{j+1}$. For each natural number $j \leqq n-2$ let

$$
Y_{j}=\left\{x \in X: x \text { belongs to at most } j+2 \text { elements of } \mathscr{U}_{j}\right\} .
$$

Let $P_{j}, 0 \leqq j \leqq n-2$, be the statement that there is an open subset $Z_{j}^{\prime}$ of $X$ that contains $D$ and a collection $\left\{F_{j \alpha}: \alpha<\kappa\right\}$ such that for each $\alpha<\kappa, F_{j \alpha}$ is a finite subset of $\kappa-\{\alpha\}$, and

$$
\left\{U_{j \alpha}-\underset{\gamma \in F_{j \alpha}}{\cup} \overline{U_{j \gamma}}: \alpha<\kappa\right\}
$$

is a collection of open sets such that no point of $Y_{j} \cap \bar{Z}_{j}^{\prime}$ belongs to two of these sets.

We will show that $P_{n-2}$ is true by induction. Let $f_{0}: X \rightarrow P R_{\leqq n}\left(\kappa^{*}\right)$ be the function such that

$$
f_{0}(x)=\left\{\alpha: x \in U_{0 \alpha}\right\} \quad \text { for each } x \in X
$$

$Y_{0}$ is closed in $X$, and so is a normal, locally compact space. For each $\alpha<$ $\kappa$, let $V_{\alpha}=U_{0 \alpha} \cap Y_{0}$. Then $\left\{V_{\alpha}: \alpha<\kappa\right\}$ is a point-finite open cover of $Y_{0}$ by sets with compact closures. Let $f: Y_{0} \rightarrow P R\left(\kappa^{*}\right)$ be the function defined by

$$
f(x)=\left\{\alpha: x \in V_{\alpha}\right\} \quad \text { for each } x \in Y_{0}
$$

Note that for each $x \in Y_{0}, f(x)=f_{0}(x)$. As previously noted, any two disjoint subsets of $\kappa$ can be separated in $f\left(Y_{0}\right)$, and thus in $f_{0}\left(Y_{0}\right)$. Also, for each $\alpha<\beta<\kappa$, $\left\{\gamma: \gamma\right.$ occurs with $\alpha, \beta$ in $\left.f_{0}\left(Y_{0}\right)\right\}$ is finite. Thus, since $f_{0}\left(Y_{0}\right)$ satisfies the two properties of the hypothesis of Lemma $4, \kappa$ can be separated in $f_{0}\left(Y_{0}\right)$, i.e., for each $\alpha<\kappa$, we may assign a finite subset $F_{0 \alpha}$ of $\kappa-\{\alpha\}$ such that for each $\beta<\kappa$ with $\beta \neq \alpha$,

$$
\mathscr{U}\left(\alpha, F_{0 \alpha}\right) \cap \mathscr{U}\left(\beta, F_{0 \beta}\right) \cap f_{0}\left(Y_{0}\right)=\emptyset .
$$

Let $Z_{0}^{\prime}=X$. With the collection

$$
\left\{U_{0 \alpha}-\underset{\gamma \in F_{0 \alpha}}{\cup} \bar{U}_{0 \gamma}: \alpha<\kappa\right\}
$$

we have shown $P_{0}$ is true.
Now suppose that $P_{j}$ is true for some $j, 0 \leqq j<n-2$. For each $\alpha<\kappa$, let $H_{(j+1) \alpha}$ be a finite subset of $\kappa-\{\alpha\}$ containing $F_{j \alpha}$ such that

$$
\bar{U}_{(j+1) \alpha}-U_{j \alpha} \subseteq \underset{\gamma \in H_{(j+1) \alpha}}{\cup} U_{j \gamma},
$$

and let $Z_{(j+1)}^{\prime}$ be an open set such that

$$
D \subseteq Z_{j+1}^{\prime} \subseteq \overline{Z_{j+1}^{\prime}} \subseteq\left[\cup_{\alpha<\kappa}^{\cup}\left(U_{(j+1) \alpha}-\underset{\gamma \in H_{(j+1) \alpha}}{\cup} \overline{U_{(j+1) \gamma}}\right)\right] \cap Z_{j}^{\prime} .
$$

Let $\overline{Z_{j+1}^{\prime}}=Z_{j+1}$ and $\bar{Z}_{j}^{\prime}=Z_{j}$, and let $f_{j+1}: Z_{j+1} \rightarrow P R_{\leqq n}\left(\kappa^{*}\right)$ be defined by

$$
f_{j+1}(x)=\left\{\alpha: x \in U_{(j+1) \alpha}-\underset{\gamma \in H_{(j+1) \alpha}}{\cup} \overline{U_{(j+1) \gamma}}\right\}
$$

Any two disjoint subsets of $\kappa$ can be separated in $f_{j+1}\left(Z_{j+1} \cap Y_{j+1}\right)$.
We now establish that $f_{j+1}\left(Z_{j+1} \cap Y_{j+1}\right)$ satisfies pronerty (2) of Lemma 4. Suppose $\alpha<\beta<\kappa$ and $\left\{\gamma: \gamma\right.$ occurs with $\alpha, \beta$ in $f_{j+1}\left(Z_{j+1} \cap\right.$ $\left.\left.Y_{j+1}\right)\right\}$ is infinite. Let $\left\{\gamma_{m}: m \in \omega\right\}$ be a denumerable subset of this set, and for each $m \in \omega$, let $z_{m} \in Z_{j+1} \cap Y_{j+1}$ such that

$$
\left\{\alpha, \beta, \gamma_{m}\right\} \subseteq f_{j+1}\left(z_{m}\right)
$$

Since each $z_{m}$ is in $U_{(j+1) \alpha}$, let $z$ be a limit point of $\left\{z_{m}: m \in \omega\right\}$. Note that since for each $m \in \omega, z_{m}$ belongs to at most $(j+3)$ elements of $\mathscr{U}_{j+1}$ and since $\mathscr{U}_{j}$ shrinks $\mathscr{U}_{j+1}$, for each $m \in \omega, z_{m}$ belongs to at most $(j+3)$ elements of $\mathscr{U}_{j}$. So $z$ must belong to at most $j+2$ elements of $\mathscr{U}_{j}$, that is, $z$ $\in Y_{j}$. Recall that $Z_{j+1} \subseteq Z_{j}$, so $z \in Z_{j}$. We show that

$$
z \in\left(U_{j \alpha}-\underset{\gamma \in F_{j \alpha}}{\cup} \overline{U_{j \gamma}}\right) \cap\left(U_{j \beta}-\underset{\gamma \in F_{j \beta}}{\cup} \overline{U_{j \gamma}}\right)
$$

which contradicts our assumptions.
Suppose that

$$
z \notin U_{j \alpha}-\underset{\gamma \in F_{j a}}{\cup} \bar{U}_{j \gamma} .
$$

First suppose $z \notin U_{j \alpha}$. Then, since for each $m \in \omega, z_{m} \in U_{(j+1) \alpha}$, we have

$$
z \in U_{(j+1) \alpha}-U_{j \alpha} .
$$

So there is some element of $H_{(j+1) \alpha}$, say $\gamma$, such that $z \in U_{j \gamma}$. Let $m \in \gamma$ such that $z_{m} \in U_{j \gamma}$, and so $z_{m} \in U_{(j+1) r}$. This gives us a contradiction, since $\alpha \in f_{j+1}\left(z_{m}\right)$ means that

$$
z_{m} \in U_{(j+1) \alpha}-\underset{\delta \in H_{(j+1) \alpha}}{\cup} \bar{U}_{(j+1) \delta} .
$$

Suppose that on the other hand,

$$
z \in \underset{\gamma \in F_{j \alpha}}{\cup} \bar{U}_{j \gamma}
$$

and let $\gamma \in F_{j \alpha}$ such that $z \in \bar{U}_{j \gamma}$. But since $F_{j \alpha} \subseteq H_{(j+1) \alpha}$, we may derive a similar contradiction. A similar argument shows that

$$
z \in U_{j \beta}-\underset{\gamma \in F_{j \beta}}{\cup} \overline{U_{j \gamma}} .
$$

This gives a contradiction, and indicates that $f_{j+1}\left(Z_{j+1} \cap Y_{j+1}\right)$ does satisfy property (2) of Lemma 4 . Hence by Lemma 4 we conclude that the points of $\kappa$ can be separated, and we may assign for each $\alpha<\kappa$ a definite subset $F_{(j+1) \alpha}$ of $\kappa-\{\alpha\}$ that contains $H_{(j+1) \alpha}$ and such that for any $\beta<$ $\kappa$ with $\beta \neq \alpha$,

$$
\mathscr{U}\left(\alpha, F_{(j+1) \alpha}\right) \cap \mathscr{U}\left(\beta, F_{(j+1) \beta}\right) \cap f_{j+1}\left(Z_{j+1} \cap Y_{j+1}\right)=\emptyset .
$$

With the collection

$$
\left\{u_{(j+1) \alpha}-\underset{\gamma \in F_{(j: 1), k}}{\cup} \overline{U_{(j+1) \gamma}}: \alpha<\kappa\right\}
$$

we have shown $P_{j+1}$ is true. Therefore, $P_{n-2}$ is true.
So we may let $Z$ be an open subset of $X$ that contains $D$ and $\left\{F_{\alpha}: \alpha<\kappa\right\}$ be a collection such that for each $\alpha<\kappa, F_{\alpha}$ is a finite subset of $\kappa-\{\alpha\}$ and

$$
\left\{\left(U_{\alpha} \cap X\right)-\underset{\gamma \in F_{a}}{\cup} \overline{U_{\gamma} \cap X}: \alpha<\kappa\right\}
$$

is a collection of open sets in $X$ such that no point of $\bar{Z}$ belongs to two of these sets. Thus we can separate $D$ in $X$. It follows that we can separate the points of $D$ in $Y$.

We are now able to state and prove the main result.
THEOREM 6. Every normal, locally compact, boundedly metacompact space is paracompact.

Proof. Suppose $X$ is normal, locally compact, and boundedly metacompact. To show $X$ is paracompact, it suffices to show $X$ is collectionwisenormal with respect to compact sets.

Suppose $\mathscr{H}=\left\{H_{\alpha}: \alpha<\kappa\right\}$ is a discrete collection of compact sets. Let $q: X \rightarrow X / \mathscr{H}$ be the natural quotient map. Let $Y=X / \mathscr{H}$. Then $Y$ is locally compact and normal. We show that $Y$ is boundedly metacompact, and hence collectionwise-Hausdorff by Theorem 5 .

Suppose $\mathscr{U}$ is an open cover of $Y$. Note that $\left\{H_{\alpha}: \alpha<\kappa\right\}$ is a discrete closed subset of $Y$, and denote it by $H$. Similar to the proof of Lemma 3, for each $y \in Y$ we choose an open set $V_{y}$ with compact closure that contains $y$ and is contained in some set of $\mathscr{U}$ and such that $\bar{V}_{y} \cap H \subseteq\{y\}$. Then $\left\{q^{-1}\left(V_{y}\right): y \in Y\right\}$ is an open cover of $X$. Since $X$ is boundedly metacompact, let $n$ be a positive integer and $\mathscr{W}$ an open refinement of $\left\{q^{-1}\left(V_{y}\right): y \in Y\right\}$ such that each point of $X$ is at most $n$ elements of $\mathscr{W}$.

For each $\alpha<\kappa$, let

$$
W_{\alpha}=\cup\left\{W \in \mathscr{W}: W \cap H_{\alpha} \neq \emptyset\right\}
$$

Let $R$ be an open set in $X$ such that

$$
\underset{\alpha<\kappa}{\cup} H_{\alpha} \subseteq R \subseteq \bar{R} \subseteq \underset{\alpha<\kappa}{\cup} W_{\alpha}
$$

(by the normality of $X$ ).
Let $\mathscr{W}^{\prime}=\left\{W_{\alpha}: \alpha<\kappa\right\} \cup\{W \cap(X-\bar{R}):$

$$
\left.W \in \mathscr{W} \text { and for each } \alpha<\kappa, W \cap H_{\alpha}=\emptyset\right\}
$$

Since for each $y \in Y, q^{-1}\left(V_{y}\right)$ meets at most one element of $\mathscr{H}, \mathscr{W}^{\prime}$ also has the property that each point of $X$ is in at most $n$ elements of $\mathscr{W}^{\prime}$.

Now $\left\{q(W): W \in \mathscr{W}^{\prime}\right\}$ is an open cover of $Y$, since for each $W \in \mathscr{W}^{\prime}$, $q^{-1}(q(W))=W$. Also, each point of $Y$ is in at most $n$ elements of $\left\{q(W): W \in \mathscr{W}^{\prime}\right\}$, and this collection is a refinement of $\left\{V_{y}: y \in Y\right\}$ and hence of $\mathscr{U}$.

Since we have shown that for any open cover $\mathscr{U}$ of $Y$, there is a positive integer $n$ and a refinement of $\mathscr{U}$ such that each point of $Y$ is in at most $n$ elements of this refinement, $Y$ is boundedly metacompact.

By Theorem 5, $Y$ is collectionwise-Hausdorff. So we may let $\left\{S_{\alpha}: \alpha<\kappa\right\}$ be a collection of pairwise disjoint open sets such that $H_{\alpha} \in S_{\alpha}$ for each $\alpha$ $<\kappa$. Then $\left\{q^{-1}\left(S_{\alpha}\right): \alpha<\kappa\right\}$ is a collection of pairwise disjoint open sets in $X$ such that for each $\alpha<\kappa, H_{\alpha} \subseteq S_{\alpha}$.

Therefore, $X$ is collectionwise-normal with respect to compact sets. We conclude that $X$ is paracompact.

It is interesting to note it can be shown that for any positive integer $n$ and cardinal $\kappa, P R_{\leqq n}\left(\kappa^{*}\right)$ is subparacompact if, and only if, $\kappa \leqq \omega_{1}$. (Recall that a space $X$ is subparacompact if, and only if, every open cover of $X$ has a $\sigma$-discrete closed refinement.) Using the results of this paper and the fact that paracompact spaces are subparacompact, we may prove the following:

THEOREM 7. Every zero-dimensional, normal, locally compact, metacompact space is subparacompact.

Proof. Suppose $X$ is zero-dimensional, normal, locally compact, and metacompact. Let $\mathscr{U}=\left\{U_{\alpha}: \alpha<\kappa\right\}$ be a point-finite cover of $X$ by clopen, compact sets. Define $f: X \rightarrow P R\left(\kappa^{*}\right)$ to be the function such that for each $x$ $\in X$,

$$
f(x)=\left\{\alpha: x \in U_{\alpha}\right\}
$$

We have seen in the proof of Theorem 3 that $f$ is perfect, and hence $f(X)$ is a zero-dimensional, normal, locally compact subspace of $P R\left(\kappa^{*}\right)$. For each $n \in \omega, f(X) \cap P R_{\leqq n}\left(\kappa^{*}\right)$ is normal, locally compact, and boundedly metacompact. By Theorem 6, $f(X) \cap P R_{\leqq n}\left(\kappa^{*}\right)$ is paracompact, and hence, subparacompact, for each $n \in \omega$, and it easily follows that

$$
f(X)=\bigcup_{n \in \omega}^{\cup}\left(f(X) \cap P R_{\leqq n}\left(\kappa^{*}\right)\right)
$$

is subparacompact. Since the inverse image under a perfect map of a subparacompact space is subparacompact, $X$ is subparacompact.

The author wishes to thank Dr. Gary Gruenhage and the referee for their helpful suggestions.

## References

1. A.V. Arhangel'skii, The property of paracompactness in the class of perfectly normal, locally bicompact spaces, Soviet Math. Dokl. 12 (1971), 1253-1257.
2. E.K. van Douwen, The Pixley-Roy topology on spaces of subsets, Set Theoretic Topology (Academic Press, Inc., New York, 1977), 111-134.
3. P. Fletcher, R.A. McCoy and R. Slover, On boundedly metacompact and boundedly paracompact spaces, Proceedings of the American Mathematical Society 25 (1970), 335-342.
4. G. Gruenhage, Paracompactness in normal, locally connected, locally compact spaces, Topology Proc. 4 (1979), 393-405.
5. T. Jech, Set theory (Academic Press, Inc., New York, 1978), exercise 7.9.
6. F. Tall, On the existence of normal metacompact Moore spaces which are not metrizable, Can. J. Math. 26 (1974), 1-6.
7. W.S. Watson, Locally compact normal spaces in the constructible universe, to appear in Can. J. Math.
8. J.M. Worrell, Jr., The closed images of metacompact topological spaces, Portugal Math. 25 (1966), 175-179.

University of Toronto,
Toronto, Ontario


[^0]:    Received October 23, 1981 and in revised form November 30, 1982.

