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MODEL THEORY AND PROOF THEORY OF THE GLOBAL
REFLECTION PRINCIPLE

MATEUSZ ZBIGNIEW ŁEŁYK

Abstract. The current paper studies the formal properties of the Global Reflection Principle, to wit the
assertion “All theorems of Th are true,” where Th is a theory in the language of arithmetic and the truth
predicate satisfies the usual Tarskian inductive conditions for formulae in the language of arithmetic. We fix
the gap in Kotlarski’s proof from [15], showing that the Global Reflection Principle for Peano Arithmetic
is provable in the theory of compositional truth with bounded induction only (CT0). Furthermore, we
extend the above result showing that Σ1-uniform reflection over a theory of uniform Tarski biconditionals
(UTB–) is provable in CT0, thus answering the question of Beklemishev and Pakhomov [2]. Finally, we
introduce the notion of a prolongable satisfaction class and use it to study the structure of models of CT0.
In particular, we provide a new model-theoretical characterization of theories of finite iterations of uniform
reflection and present a new proof characterizing the arithmetical consequences of CT0.

§1. Introduction. The Global Reflection Principle (GRP) for a theory Th is the
assertion that all theorems of Th are true. As the statement involves the notion of
truth for the language of Th, to uncover its meaning adequately one shall pass to
a proper extension of Th in a richer language. Minimal such extensions are called
axiomatic theories of truth for Th. Each such theory arises by enriching the language
of Th with a single fresh predicateT (x) and adding a bunch of axioms characterizing
T (x) as a truth predicate for the language of Th. In the paper we focus on one of
the most natural such extensions, which comprises straightforward formalizations
of the usual inductive Tarski’s conditions in the language of Th together with the
predicate T (x). Let us denote this theory with CT–.1

The GRP lies at the intersection of at least three, to some extent independent,
areas of research. The first, which was the starting point for the current paper, is
the Tarski Boundary project, that seeks to characterize the extensions of CT– + Th
which are conservative over Th. This is non-trivial for two reasons: on the one
hand, if Th can develop enough coding apparatus,2 CT– + Th does not prove any
new sentences from the language of Th. On the other hand, it is an immediate
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theories of truth.
1The minus sign signalizes the lack of induction for the extended language. Defined as CT � in [10]

and CT in [2].
2As shown by [17], this holds whenever Th interprets the elementary arithmetic EA, which, for the

purposes of this paper, can be taken to be IΔ0 + exp.
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MODEL THEORY AND PROOF THEORY OF THE GLOBAL REFLECTION PRINCIPLE 739

consequence of second Gödels Incompleteness theorem, that CT– + Th+GRP is a
nonconservative extension of Th. Moreover, the “natural” extensions of CT– + Th
that are nonconservative over Th all prove GRP for Th. Hence, in a sense, GRP is
the source of nonconservativity in the realm of truth theories and it seems highly
desirable to know what are the minimal resources needed to prove it.

The second area is proof theory, especially ordinal analysis as initiated in [21] and
further developed, e.g., in [2]. In this approach natural truth-free counterparts of
GRP, Uniform Reflection Principles (REF), play central roles in determining the
quantitative information about the consequences of theories of predicative strength.
To get things right, one adds stratified truth predicates to the picture and studies
(partial) uniform reflection principles over axiomatic theories of truth (this is the
method used in [2]). This is how the GRP enters the scene.

Last but not least, axiomatic theories of truth play an important role in the field
of model theory of Peano Arithmetic (cf. [12, 14]). Any subset S ⊆ M such that
(M, S) |= CT– is essentially a full satisfaction class. If (M, S) additionally satisfies
GRP, then S contains all the theorems of Th, in the sense of M. Satisfaction
classes provide a very powerful tool in constructing interesting models of PA and
investigating their structure.3

The current paper contributes to all the three areas. More specifically:
1. We prove that Δ0-induction for the truth predicate is enough to prove GRP for

PA. Coupled with the earlier results by Kotlarski [15], this shows that, over
CT– + EA, Δ0 induction for the truth predicate is equivalent to GRP for PA
(we denote this theory with CT0). This improves on earlier results from [25]
and provides a direct fix to Kotlarski’s argument in [15].4 Additionally, coupled
with various developments from the literature, our result shows that the Global
Reflection Principle for PA is a very robust notion, being equivalent to various
others, apparently very different, truth-theoretic principles, as witnessed by the
Many Faces Theorem (Corollary 3.18).

2. We extend the above result, answering the open problem posed by Beklemishev
and Pakhomov in [2]. We show that not only GRP is provable in CT0 but also
Σ1-Uniform Reflection over a weak truth extension of EA, called UTB– + EA
(which adds to the arithmetical part uniquely Uniform Tarski Biconditionals).
The result has some bearings on the analysis performed in [2].

3. We provide a new conservativity proof for CT0. Unlike in the first one from
[15] we are able to show directly that CT0 is arithmetically conservative over
�-iterations of uniform reflection over PA (denote this theory with
REF�(PA)5). The proof is based on an essentially model-theoretic idea of
prolonging a (partial) satisfaction class in an end-extension. This proves to
be sufficiently robust to characterize finite iterations of Uniform Reflection.
We show that a model (M, S), where S is a partial inductive satisfaction
class, satisfies n iterations of uniform reflection if and only if a nonstandard
restriction of S can be prolonged n times.

3For example the construction of a recursively saturated rather classless model of PA by Schmerl [14]
employs them in a crucial way.

4Around 2012 a serious gap in the proof of Theorem 2.2 was discovered by Richard Heck and Albert
Visser.

5The direct conservativity argument for these theories is presented in [2] as well.

https://doi.org/10.1017/jsl.2022.39 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.39


740 MATEUSZ ZBIGNIEW ŁEŁYK

The paper is organised as follows: in Section 2 we introduce all the relevant
preliminaries and context. In particular we develop handy and uniform conventions
regarding the definable models and satisfaction classes. Section 3 is devoted to
the proof of GRP in CT0. In particular we describe the history of the problem
and comment on flaws in Kotlarski’s aforementioned proof [15]. The proof is a
streamlined version of the one presented by the author in [18]. In Section 4 we
extend the result from the previous section answering the question of Beklemishev
and Pakhomov in [2] in the positive: we give a proof of Σ1-uniform reflection over
UTB– + EA in CT0. The proof makes crucial use of the Arithmetized Completeness
Theorem. Additionally, the section offers some strengthenings of this main result. In
Section 5 we give a proof of the conservativity of CT0 over �-iterations of uniform
reflection over PA. Extending the work of Kaye and Kotlarski [13] we characterize
the theory of n-iterated uniform reflection over PA in terms of models of the form
(M, S) where S is a partial inductive satisfaction class. Finally we examine the
structure of models of CT0 and prove a variation of the main result of Section 4.

To enhance the reading, � (as usual) denotes the end of a proof, while �
means that the proof is omitted. � signalizes the end of a definition, remark,
convention, etc.

§2. Setting the stage. In this section we gather all the technical preliminaries
needed to follow our reasoning and at the same time develop a useful framework
for proving our main results. In particular most of the results contained herein can
be found (sometimes under slightly different wording) in [9, 12].

For starters, PA denotes Peano Arithmetic and L denotes its language, which we
stipulate to contain +,×, 0, 1,≤ as primitive symbols. While studying extensions
of PA in a richer language, we use a handy convention known from [14]: PA∗

denotes any theory in the extended language that admits all instantiations of the
induction scheme for the extended language. Similarly, IΣ∗

n denotes the extension of
PA with induction for Σn formulae of the extended language. If L′ is any language
then, L′

S and L′
T denote the result of extending L′ with a single binary predicate

S or a single unary predicate T, respectively. Most of the extensions of PA that
we study are formulated either in the language LS or LT . Last but not least, EA
denotes elementary arithmetic, i.e., the extension of IΔ0 with a single Π2 assertion
“exp is total.” All the theories we study extend EA, possibly in a richer language.
Δ0(exp) denote the class of bounded formulae in the language with a symbol for
the exponential function exp: it will be used throughout the paper because various
syntactical functions needed to state the axioms for the satisfaction predicate are in
fact Δ0(exp). However, since most of the theories we consider are extensions of PA,
the presence of exp as a primitive symbol do not increase their strength. We explain
this in more detail in Section 3.

To smoothly deal with class sized-objects (such as definable models of arithmetical
theories) various definitions will be stated in the canonical predicative two-sorted
extension of PA, i.e., ACA0. Uppercase lettersX,Y,Z,X1, Y1, Z1, ... denote second-
order variables. In all applications we shall reason about definable classes (perhaps
in a richer language) which will be substituted for the free second-order variables.
The two sorted language is denoted L2.
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2.1. Coding conventions. We assume a standard coding of syntax in PA (defined
as in [9]): primitive symbols of the language are assigned numbers in a recursive
way, and then terms, formulae, sentences, etc. are treated as well-formed sequences
of such numbers. The notion of sequence is based on the definable Ackermanian
membership predicate ∈. Term(x), ClTerm(x), Var(x), Form(x), and Sent(x)
denote the arithmetical formulae expressing that x is an arithmetical term, a closed
term, a variable, an arithmetical formula, and an arithmetical sentence, respectively.
x ∈ Subf(y) expresses that x is a subformula of y. We define x ∈ Term(y) and
x ∈ ClTerm(y) analogously (y is required to be either a formula or a term).
x ∈ FV(y) expresses that x is a variable which has a free occurrence in (a formula) y.

The choice of coding apparatus is irrelevant as long as the coding is PA provably
monotone, i.e., the following is provable in PA:

∀φ,�
(
φ ∈ Subf(�) → φ ≤ �

)
.

We require a similar condition for (the given formalisation) of x ∈ Term(y). Various
codings which violate this condition are studied in [8, 11].

Throughout the paper we distinguish between variables of the metalanguage,
for which we reserve the symbols x, y, z, x0, x1, ... , y0, y1, ... , and variables of
the arithmetized language, which are denoted v, v0, v1, .... We assume a fixed
correspondence between the first and the second ones. x̄, v̄, ... denote sequences of
variables. For a formula φ, �φ� denotes its Gödel code.

2.2. Some model theory of PA. All the definitions and conventions regarding
models of PA are as in [12]. By default M, N , K (possibly with indices) range over
nonstandard models of PA and M, N, K denote their respective universes. If M is
any model (possibly for LS) and φ(x̄) a formula (possibly with parameters from
M; x̄ denotes a sequence of variables), then φM denotes the set definable by φ
in M, i.e., {ā ∈M | M |= φ(ā)}. If M |= PA and X ⊆Mn, then X �<b denotes
the restriction of X to all elements smaller than b. In the case when N ⊆ M, X �N
denotes

⋃
b∈N X �<b (the restriction of a relation to the submodel).

Let I ⊆M . We write d > I if d is greater than all the elements of I. I is called an
initial segment of M if I is closed downwards with respect to ≤. We say that I is a
cut if I is an initial segment which is closed under successor, i.e.,

∀x x ∈ I → x + 1 ∈ I.

If I is a cut of M, then we call M an end-extension of I and write I ⊆e M (note
that I need not be a submodel of M). Any element c ∈M such that c > � is called
nonstandard.

The following is one of the most basic consequences of induction in models
of PA∗:

Lemma 2.1 (Overspill). If M |= PA∗, then no nontrivial cut of M is definable. �

In particular, if ∅ � I �e M is a cut and φ(x) is any formula such that

∀a ∈ I M |= φ(a),

then there exists a d > I such that M |= φ(d ).
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742 MATEUSZ ZBIGNIEW ŁEŁYK

One last notion which is very tightly linked to the topic of satisfaction classes is
recursive saturation:

Definition 2.2. Fix M and ā ∈M . Let p(x) be a set of formulae with at most
one variable x and parameters ā. We say that p(x) is recursive (or computable) if so
is the set

{�φ(x, ȳ)� | φ(x, ā) ∈ p(x)}.

We say that p(x) is a type over M if every finite subset of p(x) is satisfied in M.
We say that M is realized if there is a b ∈M such that for every φ(x) ∈ p(x),
M |= φ(b). We say that M is recursively saturated (or computably saturated) if
every recursive type over M is realized in M. �

2.3. Some model theory in PA. Models of theories extending Robinson’s arith-
metic are infinite objects; thus inside arithmetic they become essentially second-order
objects. In what follows a set means a second-order object and we distinguish it from
a coded set (a first-order object). The notion of a Δn set is explained below. x ∈ X
should be understood as a membership relation between a first- and a second-order
object, whereas x ∈ y denotes the Ackermanian membership (mentioned earlier)
between first-order objects.

We recall the notion of a Δn-set (see [9]): SatΣn (x, y)(SatΠn (x, y)) denotes the
arithmetically definable partial satisfaction predicate for Σn (Πn respectively) for-
mulae (as in [12] or [9]) and TrΣn (x)(TrΠn (x)) abbreviates SatΣn (x, ε) (SatΠn (x, ε)).
We stress that the construction of SatΣn (SatΠn ) is elementary in n, so it gives rise to
an EA-provably total Δ1 map sending n to (the formula) SatΣn .

In PA, a Σn set (Πn set) is any Σn(Πn) formulaφ(v) with precisely one free variable.
We define a Δn set to be a pair of formulae (φ,�) such that φ is Σn, � is Πn, and

∀x
(
SatΣn (φ, x) ≡ SatΠn (�, x)

)
.

The notions of a Σn(Πn,Δn) relation is defined analogously. If X is a Δk set given by
the Σk formula φ(v) and a Πk formula �(v), then x ∈k X abbreviates SatΣk (φ, x).
Note that x ∈k X is Δk .

Observe that a set A ⊆M is definable from parameters in a model M if and only
if, for some k ∈ �, there exists a Δk set X such that

A := {x ∈M | x ∈k X}.

In the paper, except for side remarks, in which case the definitions below can
clearly be adapted, we will only need to talk about models for very specific signatures
consisting of two binary functions +, ×, one binary relational symbol S(x, y),
reserved for a satisfaction class and two constants, 0 and 1.

We note that since in PA models for theories extending some basic arithmetic
(which we are uniquely interested in) are class-size objects, we do not always have
a satisfaction relation for them. Models without the satisfaction relation will called
partial to contrast them with the full ones for which the truth of an arbitrary sentence
can be decided.
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Definition 2.3 (ACA0; partial model). We say that M = (UM,+M,×M, SM,
0M, 1M) is a partial model if:

1. UM, SM are sets and SM ⊆ U 2
M,

2. +M,×M are functions of type U 2
M → UM,

3. 0M ∈M , 1M ∈M .

We say that M is a Δn-model if it is a Δn set satisfying the above conditions. �
Definition 2.4. If N is any model of PA then we say that M is a partial

N -definable model if for some k ∈ �,

N |= “M is a partial Δk model.” �

Note that, according to our convention, “N -definable” means “N -definable with
parameters.”

Example 2.5 (ACA0). For every set S, 〈v = v, v1 + v2 = v3, v1 · v2 = v3, S, 0, 1〉
is a partial model. We denote it with V[S]. v = v, v1 + v2 = v3, and v1 · v2 = v3

denote sets definable with respective formulae. V denotes V[∅]. �
Remark 2.6. If N |= PA and M = (UM,+M,×M, SM, 0M, 1M) is a partial

N -definable model, then, outside of N , it gives rise to a model for the signature
{+,×, S, 0, 1}. Indeed, we may define model M by putting

M := ((UM)N , (+M)N , (×M)N , (SM)N , 0M, 1M).

Such a model will be denoted by (M)N . �
Definition 2.7.

1. For a natural number n, n denotes the canonical numeral naming n, i.e.,

1 + (1 + ··· + (1 + 0) ...)︸ ︷︷ ︸
n times 1

.

y = x denotes the formalisation of this relation in PA. We shall often treat x
as a term symbol depending on variable x.

2. (ACA0) An assignment is any function with domain dom(f) ⊆ Var. For a
partial model M, α is an M-assignment if its range is contained in UM. We
denote it with α ∈ Asn(M). α is an M-assignment for φ, symbolically α ∈
Asn(φ,M), ifα is an M-assignment and FV(φ) = dom(α). We naturally extend
this definition to coded sequences of terms and formulae: if s is such a sequence,
then

α ∈ Asn(s,M) := ∀i ∈ dom(s) α ∈ Asn(si ,M).

α ∈ Asn(s) has an analogous meaning.
3. (ACA0) If α is any assignment and φ a formula, then by φ[α] we denote the

result of the simultaneous substitution of α(v) for every free occurrence of v,
for every v ∈ FV(φ) ∩ dom(α). t[α] for a term t is defined analogously. If we
are interested in a single substitution in a formula φ, then we write φ[x/v], or
φ[x] if v is clear from context, to mean φ[α] where α is an assignment such
that dom(α) = {v} and α(v) = x. Abusing the notation a little bit, for a term
t, φ[t/v] denotes the result of substituting t for every free occurrence of v.
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Example 2.8 (PA). If φ =
(
(v0 + v1 = v2) ∧ (∃v2 v2 = v2)

)
and α(v0) = 2,

α(v2) = 3, then

φ[α] =
(
((1 + 1 + 0) + x1 = (1 + 1 + 1 + 0)) ∧ (∃v2 v2 = v2)

)
.

Note that this is the same as
(
(2 + x1 = 3) ∧ (∃v2 v2 = v2)

)
. We shall use both

formats. �
4. (ACA0) If α is any X -assignment, then α�φ abbreviates α�FV(φ), where f�A

denotes the restriction of a function f to a set A. If φ is clear from context, we
will write α�· instead of α�φ .

5. (ACA0) If t is a term and α ∈ Asn(t), then tα denotes the value of t under α.
It is the same as the value of t[α] (t[α] is a closed term).

6. (PA) If α and � are any two assignments and v is a variable, then α ≤v �
expresses that � extends α by assigning something to the variable v, i.e.,
dom(�) = dom(α) ∪ {v} and for all w ∈ dom(α), α(w) = �(w). Note that
if α ≤v � and v ∈ dom(α), then α = � .

7. (PA) If c is any (coded) set of variables and a is a number, then [a]c denotes
the constant assignment sending everything in c to a. If a variable v is clear
from context then we will omit it writing [a] instead of [a]v . �

Definition 2.9 (ACA0). Let M be a partial model. An M-evaluation of terms is
a partial function f of type

Term × Asn(M) → M

such that for every term t, {t} × Asn(t,M) ⊆ dom(f) and for every terms s, t and
every M-assignment α:

1. 〈t, α〉 ∈ dom(f) ↔ FV(t) ⊆ dom(α),
2. α ⊆ � ∧ 〈t, α〉 ∈ dom(f) → f(t, α) = f(t, �),
3. f(0, α) = 0M, f(1, α) = 1M,

4. f(v, α) =
{
α(v), if v ∈ dom(α),
undefined, otherwise,

5. f((s + t), α) = f(s, α) +M f(t, α), f((s · t), α) = f(s, α) ·M f(t, α). �
Observation 2.10 (ACA0). For every partial model M there exists the unique

M-evaluation of terms. We shall denote it with valM. Moreover, if the model is Δk ,
then valM can be taken to be Δk as well. �

Definition 2.11 (ACA0). Let M be a partial model. If X is a set of formulae
closed under subformulae, then let s(X ) denote the set of proper subformulae of
formulae from X.S ′ is called an X -satisfaction relation for M if the conditions below
holds.

1. X ⊆ FormLS ∧ ∀φ∀�
(
� ∈ Subf(φ) ∧ φ ∈ X → � ∈ X

)
.

2. ∀y, z(S ′(y, z) → y ∈ X ∧ z ∈ Asn(y,M)
)
.

3. ∀s, t∀α ∈ Asn(s, t,M)
(
S ′(s = t, α) ≡ valM(s, α) = valM(t, α)) .

4. ∀s, t∀α ∈ Asn(s, t,M)
(
S ′(S(s, t), α) ≡ 〈valM(s, α), valM(t, α)〉 ∈ SM) .

5. ∀φ ∈ s(X )∀α ∈ Asn(φ,M)
(
S ′(¬φ, α) ≡ ¬S ′(φ, α)).

6. ∀φ,� ∈ s(X )∀α ∈ Asn(φ,�,M)
(
S ′(φ ∨ �,α) ≡ S ′(φ, α�·) ∨ S ′(�,α�·)).

7. ∀φ ∈ s(X )∀v∀α ∈ Asn(∃vφ,M) (S ′(∃vφ, α) ≡ ∃� ≥v α
(
� ∈ Asn(M)∧

S ′(φ, ��·)
)
.
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Let CS–(X,M, S ′) denote the conjunction of the above sentences of L2 (we treat
M, S ′, X as second-order variables). In the context of S, S(φ, α�·) always mean
S(φ, α�φ). �

Definition 2.12. (PA; measures of complexity of formulae)
1. The depth of a formula φ is the length of the longest path in the syntactic

tree of φ. Equivalently, the depth of φ is defined recursively: the depth of an
atomic formula is 0, ∃ and ¬ raise the complexity by one, and the depth of the
disjunction is the maximum of the depths of the disjuncts plus one. φ ∈ dp(x)
expresses that the depth of φ is at most x.

2. Let us fix a canonical syntactical (elementary) transformation, which for a
formula φ(x̄) returns a formula in the Σc form, that is logically equivalent
to φ(x̄). Denote with φ(x̄)Σ the result of applying this transformation. We
assume that FV(φ(x̄)) = FV(φ(x̄)Σ). For a number c, let Σ∗

c denote the class
of formulae φ(x) such that φ(x)Σ ∈ Σc . �

Definition 2.13 (ACA0). For a number c, a c-full model is a tuple (M, SatM)
where M is a partial model, and SatM ⊆ FormLS × Asn(M) is a Σ∗

c -satisfaction
relation for M. A model (M, SatM) is a full model if it is a c-full model for every c.
Moreover, a tuple (M, SatM) is a depth-c-full model if SatM is a dp(c)-satisfaction
relation for M, i.e., CS–(dp(c),M, SatM) holds. �

We stress that (M, SatM) being c-full presupposes that M and SatM satisfy full
induction (treated as additional predicates).

Observe that if for every n ∈ �, (M, SatM) is an N -definable n-full model, then
we have two satisfaction classes for M at our disposal: the metatheoretical one and
SatM. The two relations agree in the following sense: for every φ(x1, ... , xn) ∈ LS
and for all a1, ... , an ∈ (UM)N ,

M |= φ[a1/x1, ... , an/xn] ⇐⇒ N |= SatM(�φ(x0, ... , xn)�, [a1, ... , an]),

where [a1, ... , an] denotes the assignment xi �→ ai , i ≤ n.

Convention 2.14. We reserve calligraphic letters M, N , K to talk, both internally
and externally, about models with satisfaction relations, while M, N, K will denote
arbitrary partial models.

By the Tarski’s undefinability of truth theorem one obtains that if M is any
model of PA, then there is no formula SatV with parameters from M such that for
every n, (V, SatV) is an n-full model. However, relativizing the standard partial truth
predicates (see [9]) one obtains the following observation.

Observation 2.15 (ACA0). If M is any partial model, then for every k there are
uniquely determined predicates SatkM such that (M, SatkM) is a k-full model. �

Proposition 2.16 (ACA0). Let X be closed under subformulae. Suppose that SatM
is an X-satisfaction class for M. LetY ⊆ X be a set of sentences such that M |=SatM Y .
Then Y is consistent.

Proof. We reason in ACA0 and assume the contrary. Then there is a sequent-
calculus proof of the sequent

Γ ⇒ 0 = 1
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in the pure first-order logic, where Γ ⊆ Y is a finite set. By cut-elimination we may
assume that this proof has a subformula property, so every formula occurring in it
is a subformula of a formula from Γ ∪ {0 = 1}. By induction on the length of the
proof we can show that for every sequent Θ ⇒ Δ it holds that

∀φ ∈ Θ
(
M |=SatM φ

)
→ ∃� ∈ Δ

(
M |=SatM �

)
.

This contradicts that the proof ends with 0 = 1. �

The above notions of partial and full model lead to the definition of two
interpretability relations between structures:

Definition 2.17 (Interpretable models; see [12]). Let M and N be two models
of an extension of PA (not necessarily satisfying PA∗). We say that M interprets N
if there exists a partial M-definable model N such that

N = (N)M.

We say that M strongly interprets N iff there exists K witnessing that M interprets
N and there exists an M-definable satisfaction predicate SatK making K a full
model. Interpretability and strong interpretability will be denoted by � and �S ,
respectively. �

Observe that, as defined neither interpretability nor strong interpretability is
preserved under isomorphism, in the sense that from M�N and N � K we cannot
conclude that M�K. The next two propositions uncover the important properties
of �. The following routine notion will come in handy:

Definition 2.18 (ACA0; relativization). Suppose that M is a partial model. For
every formula φ we define its relativization φM by induction on the complexity of φ:

(s(v̄s) = t(v̄t))M := valM(s, [v̄s ]) = valM(t, [v̄t ]),

(S(t(v̄)))M := valM(t, [v̄]) ∈ SM,

(φ ∨ �)M := (φ)M ∨ (�)M,

(¬φ)M := ¬(φ)M,

(∃xφ)M := ∃x ∈ UM (φ)M.

Above, valM(t, [v̄s ]) = y abbreviates the formula

∃α
(
α ∈ Asn(t,M) ∧

∧
i

α(vi) = xi ∧ y = valM(t, α)
)
. �

Proposition 2.19. If M�N and N �K, then M�K.

Proof. Suppose that N = (N)M and K = (K)N . Suppose further that N is
partial Δk model in M. Hence using partial satisfaction predicate for Σk formulae,
we can see that the KN (see Definition 2.18) makes sense in M, and, in M, KN is a
partial Δk model. Moreover it is easy to observe that(

KN
)M

= K,

which ends the proof. �

https://doi.org/10.1017/jsl.2022.39 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.39


MODEL THEORY AND PROOF THEORY OF THE GLOBAL REFLECTION PRINCIPLE 747

The following proposition will play a crucial role in some of our arguments. Its
proof consists in internalizing the argument from Remark 2.6 and makes use of the
arithmetization of the relativization function introduced above.

Proposition 2.20 (Enayat–Visser). Suppose that M�S N and N �K, then
M�S K.

Proof. By Proposition 2.19 we have M�K and (K)N is a partial M-definable
model witnessing the interpretability. We define the satisfaction relation for (K)N via
the formula

SatKN(x, y) := FormLS (x) ∧ y ∈ Asn(x,KN) ∧ SatN(xK, y). �

In PA we can prove that every consistent theory admits a full model. Since in most
cases both the theory and the model are infinite objects, this is in fact a parametrized
family of theorems:

Theorem 2.21 (Arithmetized Completeness Theorem). For every n ∈ �, PA∗

proves the sentence

Every Δn consistent theory has a Δn+1 full model. �

Since the proof of this fact (apart from axioms for arithmetical operations)
depends only on the presence of induction, it can be proved also in every extension
of PA which includes full induction scheme (for the extended language). This will
be crucial in the second part of the paper. Let us complete this introductory part
with two classical observations which give us some information about the structure
of interpretable models. The first one shows that in fact interpretability can be seen
as refined end-extendibility.

Definition 2.22. If M is a model for a language L′ extending L, then M�L
denote its L-reduct. �

Proposition 2.23 (Folklore). Let M,N be models of PA∗. If M interprets N ,
then there exists a unique M-definable isomorphism between M�L and initial segment
of N �L.

Proof. Suppose N := 〈UN,+N,×N, SN, 0N, 1N〉 is an M definable partial model
witnessing the interpretability of N in M. Let valN be a valuation function for N.
We define the embedding � : M → N via the formula

�(x) := valN(x, ε),

where x is a canonical numeral (in the sense of M) naming x. By the earlier remarks
there exists a satisfaction predicate SatN making N a 1-full model. The fact that � is
an initial embedding follows since for every x we can build a quantifier-free sentence
(in the sense of M)

∀v
(
v < x →

∨
z<x

v = z
)
,

and by induction on x show that every such sentence is true in N according SatN.
But this is equivalent to � being an initial embedding. Now, if �′ is any other M
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definable isomorphism between M and an initial segment of N , then it follows that

M |= “�′(0) = 0N ∧ ∀x
(
�′(x + 1) = �′(x) +N 1N

)
.”

Then, by induction it follows that M |= ∀x
(
�(x) = �′(x)

)
. �

If we strengthen the assumption to strong interpretability, then we can conclude
that the interpreted model is always “longer.”

Proposition 2.24 (Folklore). Let M,N be models of PA∗. Suppose that M
strongly interprets N and let � : M�L → N �L be the embedding from Proposition
2.23. Then � is not an elementary embedding. In particular, M is isomorphic to a
proper initial segment of N .

Proof. Let M, N , � be as above and let N be a partial M-definable model such
that N = (N)M. That � is not elementary follows from Tarski undefinability of truth
theorem. Indeed, since � and SatN are M definable, we can define in M a predicate
S(x, y) by putting

S(φ, α) ≡ SatN(φ, � ◦ α).

With such a definition for every formula φ(x1, ... , xn) and all a1, ... , an ∈M we have

M |= S(�φ(x1, ... , xn)�, [a1, ... , an]) ⇐⇒ N |= φ(�(a1), ... , �(an)).

Then, if � were elementary, then the condition on the right-hand side would be
equivalent to M |= φ(a1, ... , an) which contradicts Tarski’s theorem. The last part
follows easily from the above and Proposition 2.23. �

Let us note one immediate corollary. Recall that M is κ-like if |M | = κ but every
proper initial segment of M has cardinality strictly smaller than κ.

Corollary 2.25. If M is κ-like, then M is not strongly interpreted in any model
of PA.

Proof. Obviously, ifN interpretsM, then |N | ≥ |M |. Moreover, ifM is strongly
interpretable in N , then it has a proper initial segment of cardinality |M |. �

Moreover, models strongly interpretable in a nonstandard model of PA have to
be recursively saturated. This is a corollary to the proposition below (see also [14]):

Proposition 2.26. Suppose d is a nonstandard element of N . If M is isomorphic
to a depth-d-full model, then M is recursively saturated.

Proof. Suppose that M = (M, SatM) is an N definable depth-d-full model, N
and d being as above. Fix an arbitrary recursive type p(x) = {φi(x, a) | i ∈ �}with
(without loss of generality) a single parameter a and let 
(x, y) be the Δ1 formula
representing its recursive enumeration, i.e., for every i ∈ �,

PA � ∀w
(

(i, w) ↔ w = �φi(x, z)�

)
.

Now, since the depth of every φi is less than d and p(x) is a type we have for every
n ∈ �

N |= ∃z∀i ≤ n∀w
(

(i, w) → SatM(w, [x �→ z, y �→ a])

)
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([x �→ z, y �→ a] denotes the unique assignment sending the variable x to z and the
variable y to a). Hence, by overspill for some nonstandard c we have

N |= ∃z∀i ≤ c∀w
(

(i, w) → SatM(w, [x �→ z, y �→ a])

)
,

which shows that p(x) is realised in M. �

2.4. Satisfaction classes. Satisfaction classes provide truth conditions for V.6

Usually they are studied in the context of nonstandard models of PA. Let M
be such a model.

Definition 2.27. We say that S ⊆M 2 is a partial satisfaction class on M if
there is a nonstandard c such that (M, S) |= CS–(dp(c + 1),V, S). Equivalently the
following holds in (M, S):

1. ∀x, y
(
S(x, y) → Form(x) ∧ x ∈ dp(c) ∧ y ∈ Asn(x)

)
.

2. ∀s, t∀α ∈ Asn(s, t)
(
S(s = t, α) ≡ sα = tα).

3. ∀φ ∈ dp(c)∀α ∈ Asn(φ)
(
S(¬φ, α) ≡ ¬S(φ, α)).

4. ∀φ,� ∈ dp(c)∀α ∈ Asn(φ,�)
(
S(φ ∨ �,α) ≡ S(φ, α�φ) ∨ S(�,α��)).

5. ∀φ ∈ dp(c)∀v∀α ∈ Asn(∃vφ)
(
S(∃vφ, α) ≡ ∃� ≥v α

(
S(φ, ��φ)

)
.

Henceforth, the conjunction of 1–5 will be denoted by CS–(c). If additionally
(M, S) |= PA∗, then S is called a partial inductive satisfaction class. If (M, S) |=
∀x CS–(x), then S is called a full satisfaction class. Further define:

UTB– := {CS–(n) | n ∈ �},
UTBn := UTB– + IΣn(S),

UTB :=
⋃
n∈�

UTBn.

Now we define an analogue of arithmetical hierarchy over the theory of a full
satisfaction class.

CS– := ∀x CS–(x),

CSn := CS– + IΣn(S),

CS :=
⋃
n∈�

CSn.

If S is a partial satisfaction class on M and b ∈M , then we put

Sb := {〈φ, α〉 ∈ S | φ ∈ Σ∗
b}.

Note that Sb is Δ0 definable from S, and hence for every n, if S is Σn inductive, then
so is Sb . �

Note that if S is a full satisfaction class, then (M, S) strongly interprets M and
V is a Δ0 partial model witnessing the interpretation. However, (V, S) need not be
full, as we need not have any induction for S. In particular, it does not follow that

(M, S) |= ∀φ ∈ AxPA S(φ, ε),

6Obviously one can study satisfaction classes for languages with additional predicates, but we will
not be interested in such objects.
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which, arguably, would mean that M knows that V is a model of PA. Let us call
such a satisfaction class PA-correct. It can be shown that for a countable M the
following conditions are equivalent:

1. There exists a full satisfaction class on M.
2. There exists a PA-correct full satisfaction class on M.
3. M is recursively saturated.

The implication 3.⇒ 2. has been shown for the first time in [16]. References [7, 17]
contain different proofs. The implication 1.⇒ 3. is a consequence of Lachlan’s
theorem (see Theorem 2.31).

The name UTB– stands for Uniform Tarski Biconditionals7 and is normally used
for the theory having as axioms all sentences of the form

∀α ∈ Asn(φ) S(�φ�, α) ≡ φ((α(x1), ... , (α(xn)),

for every φ(x1, ... , xn) ∈ FormL.8 One can show that, over EA, this set of
sentences is equivalent to the one we’ve officially taken as a definition of UTB–.
By Observation 2.15 each finite portion of UTB– is definable in PA and consequently
we obtain the following proposition (which formalizes in EA).

Proposition 2.28 (EA). If Th is any extension of PA, then UTB + Th is
conservative over Th. �

Furthermore, observe that (M, S) |= CS– iff S is a full satisfaction class on M
and (M, S) |= CS iff S is a full inductive satisfaction class in the sense of [14]. For
further usage let us observe that the relation of CS to CSn is similar to that between
PA and IΣn. In particular there are definable partial SatΣn satisfaction predicates
for ΣnLS formulae. Each SatΣn is a ΣnLS formula. As a consequence we obtain:

Proposition 2.29. For every n, EA + CSn+1 � ConEA+CSn . �
We note that if S is a partial satisfaction class on a model M, then for an arbitrary

standard formula φ(x0, ... , xn) ∈ L,

(M, S) |= ∀α
(
S(�φ�, α) ≡ φ(α(x1), ... , α(xn))) .

In particular it follows from Tarski’s theorem that S is never definable in M (even if
we allow parameters).

Nonstandard satisfaction classes provide a very useful tool for investigating
nonstandard models of PA. The first point of interest is that their existence implies
recursive saturation. For starters we cite a proposition which directly follows from
Proposition 2.26:

Proposition 2.30 (Folklore; see [12]). If S is a partial inductive satisfaction class
in M, then M is recursively saturated.

Proof. Suppose that (M, S) |= CS(c) for some nonstandard c ∈M . Then M
is isomorphic to a depth-c-full M-definable model. Hence by Proposition 2.26 it is
recursively saturated. �

7This theory is defined as UTB� in [10] and as UTB in [2].
8In the above α is a bound variable, so φ((α(x1), ... , (α(xn)) denotes the formula

∃y1, ... , yn
( ∧
i≤n yi = (α)i ∧ φ(y1, ... , yn)

)
.
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Interestingly, with a much more complicated proof one can strengthen the above
proposition lifting the assumption that the chosen satisfaction class is inductive.

Theorem 2.31 (Lachlan; see [12]). If for some nonstandard c, (M, S) |= CS–(c),
then M is recursively saturated. �

The converse to Lachlan’s theorem fails, as was shown by Smith.

Theorem 2.32 (Smith [22]). If (M, S) |= CS–, then there is S ′ such that for some
nonstandard c ∈M (M, S ′) |= CS0(c). �

The condition that (M, S ′) |= IΔ0(S) implies that S ′ is piecewise coded (in the
sense of [9]) or, using set-theoretical notions, a class on M. Since (M, S ′) |= CS–(c)
it follows that S ′ is not definable (even allowing parameters) in M (or, is a proper
class). Since there are recursively saturated models of PA in which every class is
definable (with parameters; see [14]), Smith’s result shows that there are recursively
saturated models which do not carry a full satisfaction class.

A common strengthening of theorems of Smith’s and Lachlan’s was obtained by
Wcisło in [25]:

Theorem 2.33 (Wcisło). If (M, S) |= CS–(c) then there is anS ′ and a nonstandard
c such that (M, S ′) |= CS(c). �

An interesting open problem in the model theory of PA is whether the converse
to the above theorem is true, i.e., whether every M |= PA which admits a partial
inductive satisfaction class admits a full satisfaction class. If one allows to prolong
the given model, then there is a positive answer to this question.

Theorem 2.34 (Visser). If (M, S) |= CS(c) for some c ∈M , then there are M �e
N and S ′ such that (N , S ′) |= CS– and S ⊆ S ′. �

The proof of this theorem is given in [20, Theorem 43]. In Section 5 we shall give
an analogous result for M |= REF�(PA) and CS0 instead of CS–.

Remark 2.35. The theory CS– is a cousin of a compositional truth theory CT–

which admits a unary predicate T. All compositional axioms of CS– can be easily
adapted to this new setting; however in the case of the universal quantifier we have
two natural ways to go. The first candidate is the “numeral” version, i.e.,

∀v∀φ(v)
(
T (∀vφ) ≡ ∀xT (φ[x/v])

)
.

We stress that φ[x/v] denotes the result of substituting the numeral naming x for
every free occurrence of the variable v. If such an axiom is adopted, then the resulting
theory, denote it nCT–, can define the satisfaction predicate satisfying CS– via the
formula

S(φ, α) := FormL(φ) ∧ α ∈ Asn(φ) ∧ T (φ[α]).

Let us stress that the above formula is Δ0(exp). The second option is the “term”
version of CT–, denote it tCT–, where the axiom for ∀ is the following:

∀v∀φ(v)
(
T (∀vφ) ≡ ∀t ∈ Term T (φ[t/v])

)
.

Using Enayat–Visser methods from [7] it can be shown that nCT– and tCT– are
independent of each other, i.e., neither of them implies the other one (over the
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remaining axioms of CS–). Moreover, it is an open problem whether tCT– can
define the predicate of CS–. In this paper CT– will be introduced in Section 3 and
will denote the numeral version, i.e., nCT–. �

2.5. Reflection principles. Reflection principles are various (families of) state-
ments expressing the soundness of a given theory Th in a way which is transparent
for Th. In other words, their aim is to capture the meaning of the metatheoretical
assertion:

Every theorem of Th is true.

In order to avoid the problem of choosing the presentation for (an abstractly given
theory Th), we will assume that Th is an elementary formula, which, provably in
EA, defines a set of sentences. Such a formula will be called a Gödelized theory. We
use PA to abbreviate the canonical elementary formula saying “x is an axiom of PA–

or an axiom of induction.” Having a satisfaction predicate S(x, y) at our disposal
we can express the above in the form of the Global Reflection Principle

∀φ PrTh(φ) → S(φ, ε). (GR(Th))

If S satisfies UTB–, then from this one can derive instantiation of the uniform
reflection

∀x1 ...∀xn
(
PrTh(�φ�[x1, ... , xn]) → φ(x1, ... , xn)

)
. (REF(Th))

Hence REF(Th) contains all the formulae of the above form for the language of
Th. If Γ is a set of formulae of the language of Th, then Γ-REF(Th) denote the
restriction of REF(Th) to formulae from class Γ. Below we will need also its iterated
versions:

Γ-REF0(Th) := Th,

Γ-REFn+1(Th) := Th + Γ-REF(REFn(Th)),

Γ-REF�(Th) :=
⋃
n∈�

Γ-REFn(Th).

In the successor step we tacitly fix the canonical representation of Γ-REFn(Th).
The last definition which is relevant to formalizing soundness claims introduces

the oracle provability predicates.

Definition 2.36. Let Th be any elementary theory. ProofXTh(x, y) denotes a
Δ0

0(exp) formula with a second-order variable X which canonically formalizes the
relation: “y is a proof of sentence x from axioms of Th and sentences belonging to
X.” PrXTh is the Σ0

1 provability predicate based on it. �
The oracle provability predicate defined above enables us to (uniformly) define

a closure conditions on various satisfaction classes. For example we shall often
encounter the assertion

∀φ
(
PrS∅ (φ) → S(φ, ε)

)
,

which should be read as “Every first-order consequence of true sentences is true,”
where “true” abbreviates that S(φ, ε) holds. In the above assertion we simply
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substitute the definable class {x | S(x, ε)} for the free second-order variable X.
Let us also observe that formally PrXTh is the same as PrTh∪X ; however, for heuristic
reasons we prefer to keep the lower index for absolute definitions and the upper one
for arbitrary sets of formulae.

2.5.1. Reflection and internal models. The theory REF(Th) admits a model-
theoretical characterisation in terms of strongly definable models. Below KA(M)
denote the set of elements of a model M which are definable in M with parameters
from the set A.

Theorem 2.37 (Kotlarski–Kaye [13]). For an arbitrary recursively saturated M
the following are equivalent:

1. M |= REF(Th).
2. There exists a full M-definable model N = (N, SatN) such that:

(a) M ≡ N .
(b) K∅(M) = K∅(N ).
(c) M |= ∀φ ∈ Th SatN(φ, ε).

Thanks to condition (a) imposed onN in the above, Theorem 2.37 can be iterated
an arbitrary finite number of times. Let us call the pair (M,N ) a KK-pair if it satisfies
conditions 1. – 3. in the thesis of the above theorem. Thus we obtain:

Corollary 2.38. M |= REF(Th) if and only if there exists {Mi}i∈� such that
M0 = M and for each i, (Mi ,Mi+1) is a KK-pair.

In Section 5 we shall offer a similar in spirit model-theoretical characterization
of REFn(Th) and REF�(Th). The main difference will be that we shall work with
models with satisfaction classes.

2.5.2. Reflection and satisfaction classes. Full satisfaction classes in non-
standard models embody the conception of a satisfaction relation for V. However, as
we have already remarked, not every satisfaction class provides us with a reasonable
truth predicate for V. One property that one would require from such a truth
predicate is the closure under the internal provability relation. In particular the
satisfaction relation for V should make true all the (internal) theorems of first-order
logic. This corresponds to the sentence

∀φ
(
Pr∅(φ) → S(φ, ε)

)
(GR(∅))

being true in a model (M, S). However, as shown for the first time in [4], over
CS– the above sentence implies GR(PA). In particular, in a countable recursively
saturated model M in which there is a proof of inconsistency of PA there is no
such a reasonable class for V (although there are many unreasonable ones). A
characterization of models admitting a well-behaved satisfaction class was essentially
first given by Kotlarski (in [15]):9

9The attribution here is qualified by “essentially,” since Kotlarski proves this theorem for a
different axiomatization of REF�(PA) (see [18]). The current formulation requires going through the
characterization of formal�-consistency by Smoryński [23]. This paper contains a different direct proof
of this theorem.
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Theorem 2.39 (Kotlarski). Suppose M is a countable recursively saturated model
of PA. Then, there exists a full satisfaction class S such that (M, S) |= GR(PA) if
and only if M |= REF�(PA). �

A different natural question is how much induction is required to prove the global
reflection for PA. Here a partial answer was given by Wcisło in [25], who showed
that the satisfaction predicate satisfying CS– + GR(PA) is definable in CS0:

Theorem 2.40 (Wcisło). There exists an LS formula S ′(x, y) such that

EA + CS0 � [CS– + GR(PA)][S ′/S]. �

In the above φ[S ′/S] denotes the result of a uniform substitution of a formula
S ′(s, t) for each occurrence of a formula S(s, t) (renaming variables if necessary).
In the next section we improve this result and show that GR(PA) is provable in
EA + CS0.

§3. Provability of the global reflection principle. In this section we confirm
Kotlarski’s claim [15] that, over EA, the Δ0 induction for a satisfaction predicate is
enough to prove the Global Reflection Principle for PA. We start by explaining the
original strategy and our fix. Unless said otherwise, all theories by default extend
EA. However, it is very easy to see that CS0 + EA � PA, since for every arithmetical
formula φ(x), �(x) := T (φ[x]) is a Δ0(LT + exp) and consequently, we have an
induction axiom for it.

3.1. Kotlarski’s proof. Kotlarski’s proof of GR(PA) in CS0 starts by observing
that each Δ0 inductive satisfaction class makes all (in the sense of the ground model)
the axioms of induction true. The argument runs as follows: working in CS0 fix a
formula φ(v) with a free variable v. Then, S(φ(v), [x]) is a Δ0(exp) formula with a
free variable x, where [x] denotes the assignment {〈v, x〉}. Hence, the following is
an axiom of CS0:

S(φ(v), [0]) ∧ ∀x
(
S(φ(v), [x]) → S(φ(v), [x + 1])

)
−→ ∀xS(φ(v), [x]).

Here Kotlarski’s proof of PA-correctness ends. However, it is not obvious whether
the above is equivalent to S(Ind(φ(v)), ε), where Ind(�) denotes the axiom of
induction for a formula �. Repeated applications of the compositional clauses yield
the equivalence of S(Ind(φ(v)), ε) with

S(φ[0/v], ε) ∧ ∀x
(
S(φ(v), [x]) → S(φ[v + 1/v], [x])

)
−→ ∀xS(φ(v), [x]).

Firstly, on the grounds of CS– alone S(φ(v), [0]) neither implies S(φ[0/v], ε) nor
is implied by it. Similarly with S(φ(v), [x + 1]) and S(φ[v + 1/v], [x]). To see this
one should think of a nonstandard φ(v) in which v occurs nonstandardly deep in
φ(v) (i.e., at a nonstandard level of φ(v)′s syntactical tree). For example one can
take φ(v) to be

0 = 0 ∨ (0 = 0 ∨ (0 = 0 ∨ ···︸ ︷︷ ︸
a times 0=0

∨v = v) ··· ),

for a nonstandard element a. This is the first problem.
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The second problem lies in showing that a Δ0–inductive satisfaction class is closed
under provability, i.e., proving the sentence

∀φ
(
PrS∅ (φ) → S(φ, ε)

)
.

In the above PrS∅ derives from the oracle provability predicate defined in
Definition 2.36. Kotlarski’s idea was to work (internally in PA) with a Hilbert-
style proof calculus with Modus Ponens as the only rule of reasoning and then using
Δ0(exp) induction for an LS formula

�(x, p) := “If φ is the x– th sentence in p, then S(φ, ε).”

In �(x, p) all quantifiers can be bounded by p,10 that can be taken as a parameter. So
it is indeed a Δ0(exp)-formula. In the base step φ is either a logical axiom or a true
sentence, so it’s truth is either trivial (the latter case) or seems to follow from the
compositional axioms. In the inductive step, we have to check that if φ and φ → �
are true, then so is �. This is indeed guaranteed by the compositional axioms.

However, problems arise while verifying the base step. For example (working in
a nonstandard model) we might encounter the following logical axiom:

� := ∀vφ(v) → φ(t),

for some nonstandard formula φ and a term t. Then S(�, ε) is equivalent to

∀yS(φ(v), [y]) → S(φ(t), ε),

so we encounter problems similar to the ones discussed while dealing with the truth
of induction axioms. Moreover, there are more generic problems: if one does not
want to incorporate the rule of universal generalisation, then one has to accept
universal generalisations of all instances of propositional tautologies as axioms. In
particular (working in a nonstandard model (M, S)) in the base step one might
encounter an axiom of the form

� := ∀v1 ...∀va
(
φ ∨ ¬φ

)
.

If it is true that that for any full satisfaction class S on M, (M, S) |= ∀α ∈
Asn(φ)S(φ ∨ ¬φ, α), inferring that (M, S) |= S(�, ε) requires some argument
which cannot be carried out in CS– alone.

3.2. The idea. To fill in the gaps in Kotlarski’s reasoning it is sufficient to establish
within CS0 a kind of induction on the buildup of formulae. Indeed, what we missed
were (inter alia) the following properties:

∀φ ∈ FormL∀α ∈ Asn(φ)
(
S(φ, α) ≡ S(φ[α], ε)

)
.

∀φ ∈ Form≤1
L ∀s, t∀α ∈ Asn(s)∀� ∈ Asn(t)

(
sα = t� → S(φ[s/v], α) ≡ S(φ[t/v], �)

)
.

The above hold (provably in CS–) if φ is an atomic formula and clearly are preserved
by taking disjunctions, negations, and applying existential quantification. However,
in order to secure the step for ∃we need a Π1 assumption, saying that the equivalence

S(�,α) ≡ S(�[α], ε)

10Or, to be more accurate, by objects of size exponential in p.
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holds under an arbitrary assignment α. It turns out, however, that such assumptions
can be expressed with a Δ0 formula. Firstly, the above is clearly equivalent to

∀α ∈ Asn(�)S(� ≡ �[α], α). (1)

Secondly, if S commuted with the blocks of universal quantifiers, the above could
have been further reduced to

S(ucl(� ≡ �[α]), ε), (2)

where ucl(·) is a (definable) function which given a formula returns its universal
closure. Our problem thus reduces to showing the equivalence between conditions
of types (1) and (2). The standard strategy is to use induction on the length of
the quantifier prefix. However, the proof of this once again uses Π1 induction. To
bypass this problem, we shall first establish commutation with blocks of uniformly
bounded universal quantifiers, i.e., the principle

∀φ∀x
(
S(bucl(φ, x), ε) ≡ ∀α ≺ [x]φ

(
α ∈ Asn(φ) → S(φ, α)

)
, (B∀C)

where bucl(φ, x) denotes the universal closure of φ, in which every quantifier in the
prefix is bounded by (the term) x and α ≺ [x]φ says that dom(α) = FV(φ) and each
value of α is less than x. Having this, we will express ∀αS(φ, α) in a Δ0 way via

S(∀vbucl(φ, v), ε),

where v is a variable which do not occur in φ. We now proceed to the details.

3.3. The proof. One more preparation step will be helpful. We shall expand the
language LS with symbols for all primitive recursive functions and extend CS0 with
the defining equations of them. Let L+

S denote the expanded language and CS+
0 the

extended theory. Since, trivially, CS+
0 is LS -conservative over CS0, it is sufficient to

prove (GR(Th)) in CS+
0 . Let us observe that the latter theory proves Δ0 induction

for the language with new function symbols.

Proposition 3.1. CS+
0 � IΔ0(L+

S ).

Proof. Fix a model M |= CS+
0 and a Δ0(L+

S ) formula with parameters φ(x).
Without loss of generality all the terms occurring in φ(x) are of the form f(n, y)
where f(x, y) is a two place p.r. function. Let �f(x, y, z) be the Δ0 formula of L
defining the graph of f. Fix an arbitrary a ∈M , assume that φ(a) holds, and let b
be greater than a and all parameters from φ(x). Without loss of generality assume
that b is nonstandard. Let c be such that

M |= ∀x < b∀y < b�f(x, y) < c.

Now let φ′(x) result from φ(x) by recursively changing all subformulae of φ(x) of
the form

R(f(k, x), f(n, y))

into

∃z∃w
(
z < c ∧ w < c ∧ �f(n, y, w) ∧ �f(k, x, z) ∧R(w, z)

)
,
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where z, w are fresh variables. φ′(x) is a Δ0(LS) formula and clearly we have

M |= ∀x < b
(
φ(x) ≡ φ′(x)

)
.

Hence, since a < b and φ(a) holds, φ′(a) holds as well. Since for φ′(x) we have an
induction axiom there is the least d < a such that φ′(d ) holds. Hence d is the least
element satisfying φ(x). �

In the proof below we shall use the following primitive recursive functions
(we identify p.r. relations with their characteristic functions):

• ≺ is a primitive recursive product ordering on functions. That is, if α and � are
two functions, then α ≺ � holds if α is smaller than � in the product ordering,
i.e.,

dom(α) = dom(�) ∧ ∀x ∈ dom(α) α(x) < �(x).

� is the partial ordering based on ≺.
• bucl(φ, x) denotes the universal closure of φ, in which every quantifier in the

prefix is bounded by (the term) x.
• bucl(φ, x, c) returns the formula

∀vi1 < x ... ∀viy < x φ,

where xi1 , ... , xiy are all the elements of the set c listed in the order of decreasing
indices (i.e., iy < iy–1 < ··· < i1). In particular x has to be a term and c a set
of variables. Officially ∀x < t� abbreviates ∀x

(
x < t → �); hence the above

formula is slightly more complicated than it seems to be. Moreover c need not
contain uniquely variables which are free in φ; hence some of the quantifiers in
the prefix of bucl(φ, x, c) might be dummy.

• [x]c returns the constant function assigning value x to every variable from the
set c.

• For a coded set of variables c and a number a, c↑a denotes the set consisting
of first a elements of c and c↓a the set consisting of last a elements of c. For
simplicity we assume that the ordering of variables is given by their indices.

• Syntactical relations mentioned at the beginning of Section 2.

Lemma 3.2 (CS+
0 ). For every formula φ, every a, every set of variables c, and every

assignment α for bucl(φ, a, c),

S(bucl(φ, a, c), α) ≡ ∀� ≺ [a]cS(φ, α ∪ ��·).

Proof. Fix φ, a, c and let b be the cardinality of c. We formalize the standard
argument on the length of the quantifier prefix in bucl(φ, a, c): starting from the
assumption that ∀� ≺ [a]cS(φ, α ∪ ��·) we check that we can prefix φ with b
quantifiers and arrive at S(bucl(φ, a, c), α). Formally, we use induction on y up
to b in the Δ0(L+

S )-formula

∀� ≺ [a]c↓b–yS(bucl(φ, a, c↑y), α ∪ ��·) ≡ ∀� ≺ [a]cS(φ, α ∪ ��·).

Observe that c↑b = c↓b = c, c↓0 = ∅. Hence bucl(φ, a, c↑0) = φ, [a]c↓b = [a]c .
Moreover, ε is the unique assignment  satisfying  ≺ [a]∅. Consequently, for y = b
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the left-hand side is equivalent to S(bucl(φ, a, c), α) and for y = 0 both sides of the
equivalence are the same.

Assume that the inductive hypothesis holds for d and let id be the index of the
(d + 1)-st variable in c. Observe that

bucl(φ, a, c↑d+1) = ∀vid < a
�bucl(φ, a, c↑d ).

Hence by compositional axioms, ∀� ≺ [a]c↓b–(d+1)S(bucl(φ, a, c↑d+1), α ∪ ��·) is
equivalent to

∀� ≺ [a]c↓b–(d+1)∀≥vid α ∪ ��bucl(φ,a,c↑d+1)

(
(vid ) < a → S(bucl(φ, a, c↑d ), �·)

)
.

(∗)

Observe that the above is equivalent to

∀�
(
� ≺ [a]c↓b–d → S(bucl(φ, a, c↑d ), α ∪ ��·)

)
,

which, by induction hypothesis, is equivalent to ∀� ≺ [a]cS(φ, α ∪ ��·). �
The above lemma motivates the following abbreviation: we define

cl(φ, c) := ∀v�bucl(φ, v, c).

In the above v is a variable with the least index among those which do not occur
in φ. In particular cl(x, y) is a (partial) primitive recursive function, so we have a
symbol for it in CS+

0 . cl(φ) abbreviates cl(φ,FV(φ)).
Now, the following corollary clearly follows from Lemma 3.2.

Corollary 3.3 (CS+
0 ). For all φ, c ⊆ Var and α ∈ Asn(cl(φ, c)) it holds that

S(cl(φ, c), α) ≡ ∀� ∈ Asn
(
dom(�) = c → S(φ, α ∪ ��·)

)
.

Proof. Fix φ and c. By the compositional axioms and Lemma 3.2
S(∀vbucl(φ, v, c), α) is equivalent to ∀x∀� ≺ [x]cS(φ, α ∪ ��·), which is clearly
equivalent to ∀�

(
dom(�) = c → S(φ, α ∪ ��·)), since each assignment for φ is

dominated by an assignment of the form [a]φ for some a. �
Now, we demonstrate how to use the above corollary for establishing, within CS+

0 ,
the induction on the buildup of formulae. It will be convenient to isolate a few more
definitions.

Definition 3.4 (PA). An occurrence of a variable v in a formula φ (term s) is a
path in a syntactic tree of φ (term s) ending with v. An occurrence of a subformula
� of a formula φ is defined analogously. The fact that � is a subformula occurrence
in φ is denoted � ≤o φ. The (coded) set of occurrences of variables in a formula φ
(term s) will be denoted Occ(φ) (Occ(s)).

A substitution of terms for a formula φ is a (coded) function � such that dom(�) ⊆
Occ(φ) and rg(�) ⊆ ClTerm. For a formula φ, φ[�] denotes the result of applying �
to φ.

If � is a substitution of terms for φ and � is a subformula of φ, then � naturally
gives rise to a substitution of terms for � (we look only at those paths that pass
through � and take their suffixes starting from �). Such a substitution will be
denoted by ��� or simply ��· if it is clear from context which formula should occur
in the subscript.
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The substitution of terms � for a formulaφ agrees with an assignmentα ∈ Asn(φ)
if whenever p ∈ dom(�) is an occurrence of a variable v in φ, then (�(p))◦ = α(v).
Let vp denote the variable whose occurrence p is.

Let φ be a formula and � an occurrence of its subformula. Var(φ/�) denotes the
(coded) set of variables whose occurrence in � is free in � but bounded in φ.

For a subformula� of φ define clφ(�) := ∀v�bucl(�, v,Var(φ/�)) where v is the
least variable not occurring in φ. �

Example 3.5. Let � :=
(
x0 = x1 ∧ ∃x2(x2 = ((0 + 1) + 1) · x0)

)
and φ :=

(∀x0�) ∧ x0 = x0. Then

Var(φ/�) = {x0}.

Consequently clφ(�) = ∀x3∀x0 < x3
(
x0 = x1 ∧ ∃x2

(
x2 = ((0 + 1) + 1) · x0

))
. �

Lemma 3.6 (CS+
0 ). Assume that φ is a formula, � ∈ Asn(φ), and � is a substitution

of terms for φ which agrees with � . Then it holds that S(φ ≡ (φ[�]), �).

Proof. Fix a formula φ, any assignment � ∈ Asn(φ), and a substitution of terms
� which agrees with � . We reason by induction on y in the Δ0(L+

S )-formula

�(y) := ∀� ≤o φ
(
� ∈ dp(y) → S(clφ(� ≡ �[���]), ��·)

)
.

Let us observe that S(clφ(� ≡ �[���]), ��·) makes sense: each occurrence of a free
variable of � ≡ �[���] is either an occurrence of a free variable of φ and hence
the variable gets assigned a value by ���, or is bounded in φ and so, belonging to
Var(φ/�), gets bounded by a quantifier occurring in a prefix of clφ(� ≡ �[���]).

Let z be the least variable not occurring in φ. We show that �(0) holds. The unique
sentences of depth 0 are atomic sentences, so let us fix two terms s, t and argue that

S
(
clφ(s = t ≡ (s = t[��s=t ])), ��·

)
holds. Let c = Var(φ/�). Consequently

clφ(s = t ≡ (s = t[��s=t ])) = ∀z�bucl(s = t ≡ (s = t[��s=t ]), z, c).

Call the above sentence on the right-hand side �. By Corollary 3.3 we know that
S(�, ��·) is equivalent to

∀α ∈ Asn
(
dom(α) = c → S(s = t ≡ (s = t[��s=t ]), ��� ∪ α)

)
.

The last sentence holds, since, by the compositional conditions for atomic sentences
and connectives, it is equivalent to the assertion that for every α ∈ Asn such that
dom(α) = c

(s���∪α = t���∪α) ≡ (s[��s=t ]��s=t[��s=t ]∪α = t[��s=t ]��s=t[��s=t ]∪α). ($)

To avoid double restrictions let us abbreviate ��� with �� . Observe that ���s=t =
�� . To prove ($) it is sufficient to show that each occurrence of a variable
in either s or t gets assigned the same value on both sides. This holds since
if o ∈ Occ(s), then either o ∈ dom(��s=t) or not. In the former case by our
assumption ��(vo) = �(vo) = (�(o))◦. If o /∈ dom(��s=t), then o /∈ dom(�) and
vo ∈ dom(���s=t[��s=t ] ∪ α) ⊆ dom(�� ∪ α), and hence o get assigned the same value
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on both sides of the equivalence. Consequently

s[��s=t ]���s=t[��s=t ]∪α = s��∪α.

The same holds for t in place of s. Now assume that the thesis holds for y
and consider (an occurrence of) � of depth y + 1. We shall do the case of
� = �1 ∨ �2 and � = ∃v�3. We treat them simultaneously. As previously put � :=
clφ

(
� ≡ (�[���])

)
, �i := clφ

(
�i ≡ (�i [���i ])

)
, c = Var(φ/�), and ci = Var(φ/�i).

Applying the inductive assumption and Corollary 3.3 we have for i ∈ {1, 2, 3}

∀α ∈ Asn
(
dom(α) = ci → S(�i ≡ (�i [���i ]), ���i ∪ α)

)
.

Now observe that ���i ��i = ���i and if dom(α) = ci , then α��i = α. By this and
compositional conditions, for arbitrary α such that dom(α) = ci , the succedent of
the above implication is equivalent to

S(�i , ���i ∪ α) ≡ S(�i [���i ], ���i ��i [���i ] ∪ α��i [���i ]). (3)

In the case � = �1 ∨ �2 we have c = c1 ∪ c2. Now, by compositional conditions,
the following are equivalent for an arbitrary assignment α such that dom(α) = c:

S(�1 ∨ �2 ≡ (�1 ∨ �2[���1∨�2 ]), ��� ∪ α). (4)
⎛
⎝ ∨
i∈{0,1}

S(�i , �����i ∪ α��i )

⎞
⎠ ≡

⎛
⎝ ∨
i∈{0,1}

S(�i [���i ], �����i [���i ] ∪ α��i [���i ])

⎞
⎠ .

(5)

Now observe that �����i = ���i ��i = ���i . Indeed, v is a free variable in
clφ(� ≡ �[���]) (= �) and a free variable in �i , if and only if v is a free variable in
clφ(�i ≡ �i [���i ]) (= �i) and in �i . Hence dom(�����i ) = dom(���i ��i ) and this
completes our claim. The same reasoning shows also that �����i [���i ] = ���i ��i [���i ].
Finally, if dom(α) = c, then dom(α��i ) = ci . It follows that (3) implies the above
condition (5) and the case of ∨ is done.

In the case of ∃, we observe that

c3 =
{
c ∪ {v}, if v ∈ FV(�3),
c, otherwise.

The following are equivalent for every α ∈ Asn such that dom(α) = c:

S(∃v�3 ≡ (∃v�3[��∃v�3 ]), ��� ∪ α). (6)
(
∃� ≥v (α ∪ ���)�∃v�3S(�3, ���3 )

)

≡
(
∃� ≥v (α ∪ ���)�∃v�3[��∃v�3

]S(�3[���3 ], ���3[���3 ])
)
. (7)

(
∃� ≥v (α ∪ ���)S(�3, ���3 )

)

≡
(
∃� ≥v (α ∪ ���)�∃v�3[��∃v�3

]S(�3[���3 ], ���3[���3 ])
)
. (8)
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Observe that v /∈ dom(���) ∪ dom(���3), because every occurrence of v in ∃v�3

is bounded in φ. Hence ��� = ���3 , and consequently �����3 = ���3��3 = ���3 .
With this observation the proof in the case v /∈ FV(�3) is straightforward, for (8)
immediately reduces to (for all α such that dom(α) = c3)(

S(�3, α ∪ ���3)
)
≡

(
S(�3[���3 ], (α ∪ ���3)��3[���3 ])

)
.

The above is the same as our induction assumption. So we may assume that v ∈
FV(�3). Now fix α such that dom(α) = c. Suppose first that � ≥v (α ∪ ���3) is
such that S(�3, ���3 ) holds. Let us observe that in this case, ���3 = � . Moreover
dom(α) ∩ dom(���3 ) = ∅; hence for someα′ such that dom(α′) = c3, � = α′ ∪ ���3 .
Hence S(�3[���3 ], ���3[���3 ]) follows by induction assumption (3). It is left to show
that ���3[��∃v�3

] ≥v (α ∪ ���)�∃v�3[��∃v�3
]. This holds since no occurrence of v is

in dom(���3 ) = dom(��∃v�3 ) and � ≥v (α ∪ ���3). So now assume that for some
� ≥v (α ∪ ���3)�∃v�3[��∃v�3

]S(�3[���3 ], ���3[���3 ]) holds. As no occurrence of v is
in dom(���3 ), we can infer that S(�3[���3 ], �) holds. Extend α to α′ such that
dom(α′) = c3 and α′(v) = �(v). Then (α′ ∪ ���3)��3[���3 ] = � and by (3) we obtain
S(�3, α

′ ∪ ���3). Hence there exists � ′ such that � ′ ≥v α ∪ ���3 and S(�3, �
′). This

ends the whole proof. �

Corollary 3.7 (CS+
0 ). For every φ,�, α ∈ Asn(φ), � ∈ Asn(�), if φ[α] = �[�],

then S(φ, α) ≡ S(�, �).

Proof. By Lemma 3.6 S(φ, α) is equivalent to S(φ[α], ε) and S(�, �) is
equivalent to S(�[�], ε). �

Corollary 3.8. CS+
0 � ∀φ(v)S(Ind(φ(v)), ε).

Proof. By the previous considerations at the beginning of this section, for a fixed
φ(v), S(Ind(φ(v)), ε) is equivalent to

S(φ[0/v], ε) ∧ ∀x
(
S(φ(v), [x]) → S(φ[v + 1/v], [x])

)
−→ ∀xS(φ(v), [x]).

By Lemma 3.6 and Corollary 3.7 we have

S(φ[0/v], ε) ≡ S(φ(v), [0]),

∀x
(
S(φ[v + 1/v], [x]) ≡ S(φ(v), [x + 1])

)
.

Hence, finally S(Ind(φ(v)), ε) is equivalent to the following axiom of Δ0(L+
S )-

induction:

S(φ(v), [0]) ∧ ∀x
(
S(φ(v), [x]) → S(φ(v), [x + 1])

)
−→ ∀xS(φ(v), [x]). �

Recall that φ(t/v) denotes the substitution of t for all (free) occurrences of v in
φ(v).

Corollary 3.9 (CS+
0 ). For every formula φ(v), term t (possibly having some

variables), which is substitutable for v in φ(v) and every α ∈ Asn(φ(t/v)), if
S(∀vφ(v), α�·), then S(φ(t/v), α).
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Proof. Fix φ(v), t, α, as above and suppose S(∀vφ(v), α�·). By compositional
conditions we know that for every � such that � ≥v α�∀vφ(v), S(φ(v), ��·) holds.
Define � such that ��∀vφ(x) = α�∀vφ(x) and �(v) = tα . Hence, by our assumption
we have S(φ(v), �). Let �0 be a substitution of t[α] for every occurrence of v in
φ(v). Then �0 agrees with � , so by Lemma 3.6 we have S(φ(v)[�0], ��.). Observe
that ��φ(v)[�0] = α�φ(v)[�0]; hence we have S(φ(v)[�0], α�.). Let � be a (coded) set of
occurrences of the free variables from φ(t/v) that are within the new occurrences of
t (observe that there might be some occurrences of t in φ(v)). Let � be a substitution
of numerals such that for every occurrence p ∈ �, �(p) = α(vp) (recall that vp is
the variable whose occurrence is p). By the definition of �, we have φ(v)[�0] =
φ(t/v)[�]; hence we can conclude that S(φ(t/v)[�], α�.) holds. Since � agrees with
α, Lemma 3.6 yields S(φ(t/v), α). �

Theorem 3.10. CS0 � ∀φ
(
PrS∅ (φ) → S(φ, ε)

)
.

Proof. We reason in CS+
0 . We fix a sequent calculus for the first-order logic with

equality, as in [24] (this choice is just a matter of convenience11). We fix a proof p of
a sentence φ and by induction on its length argue that whenever a sequent Γ ⇒ Δ
occurs in p, then

S(cl
(∧

Γ →
∨

Δ
)
, ε) (9)

holds, where
∧

Γ and
∨

Γ denote (the canonically parenthesized) conjunction and
disjunction over sentences from sets Γ and Δ, respectively. To simplify the notation∧

Γ →
∨

Δ will be abbreviated using the sequent notation as Γ ⇒ Δ. In the course
of the induction we rely on the fact that the following sentence is provable in CS0:

∀α ∈ Asn(Γ)
(
S

(∨
Γ, α

)
≡ ∃φ ∈ ΓS(φ, α�φ)

)
. (DC)

The proof of (DC) in CT0 consists in a straightforward induction on the size of Γ
and a similar argument can be given in the case of

∧
yielding a dual equivalence (see

also [3, 25] for precise arguments). We go back to the main induction on the length
of the fixed proof p. In the base step we have to establish that all initial sequents
satisfy (9). These include initial sequents for equality and all sequents of the form
φ ⇒ φ. In both cases the proof follows the same pattern: first using Corollary 3.3
we get rid of the quantifier prefix and then verify that the formula following it is
satisfied by every assignment. In the case of the initial sequents for equality we use
the conditions for atomic sentences from CS–, in case of φ ⇒ φ we use the axioms
for ¬ and ∨.

In the induction step the cases of quantifier rules are the unique non-obvious
ones. Let us consider the dictum de omni rule:

Γ, φ(t) ⇒ Δ
Γ,∀vφ(v) ⇒ Δ

,

11Strictly speaking this calculus is formulated only for the language with both ∨ and ∧ and both ∃,
∀, but we can always extend the language by defining the missing symbols and adding axioms defining
them.
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where φ(v) is a formula and t is free for v in φ(v). We may safely assume that v is a
free variable in φ. For simplicity abbreviate φ(t/v) with simply φ(t). So suppose for
every α ∈ Asn

((
Γ + φ(t)

)
⇒ Δ

)
it holds that

S
((

Γ + φ(t)
)
⇒ Δ, α

)
. (10)

Fix an arbitrary α ∈ Asn
((

Γ + ∀vφ(v)
)
⇒ Δ

)
and assume that for every � ∈

Γ ∪ {∀vφ(v)}, S(�, α�·) holds. Consider any � ∈ Asn
((

Γ + φ(t)
)
⇒ Δ

)
such that

��(
Γ+∀vφ(v)

)
⇒Δ

= α. Since S(∀vφ(v), ��·), then by Lemma 3.9, S(φ(t), ��·) as well.

Hence for every � ∈ Γ ∪ {φ(t)} it holds thatS(�, ��·). By the induction assumption,
for some � ∈ Δ, S(�, ��·) and since ��� = α��, this ends the proof.

Now consider the rule of universal generalisation

Γ ⇒ Δ, φ(v)
Γ ⇒ Δ,∀vφ(v)

,

where v does not occur free in the lower sequent. As previously assume that for all
α ∈ Asn

(
Γ ⇒ (Δ + φ(v))),

S
(
Γ ⇒

(
Δ + φ(v)

)
, α

)
.

Fix an arbitrary � ∈ Asn
(
Γ ⇒

(
Δ + ∀vφ(v)

))
and arbitrary  ≥v � and assume

that for all � ∈ Γ, S(�, �·). Since �Γ = ��Γ (v is not a free variable in Γ) it follows
that there is � ∈ Δ ∪ {φ(v)} such that S(�, �·). If � ∈ Δ, then we are done, since
�Δ = ��Δ. Otherwise S(φ(v), �·) and it follows that S(∀vφ(v), ��·), since  was
arbitrary.

Now, the thesis of the theorem follows, since, for arbitrary φ, if PrS∅ (φ) holds, then
there is a sequent calculus proof of Γ ⇒ φ, where for every � ∈ Γ we have S(�, ε).
Hence, by the proof above we obtain

S
(

cl
(∧

Γ → φ
)
, ε

)
,

and since
∧

Γ → φ does not admit any free variables, then we have S(
∧

Γ → φ, ε).
The thesis follows by the conjunctive correctness and compositional conditions:
since for every � ∈ Γ we have S(�, ε), then S(

∧
Γ, ε) holds and an application of

Modus Ponens yields S(φ, ε). �
Corollary 3.11. For every Gödelized theory Th, we have

CS0 + ∀x
(
Th(x) → S(x, ε)

)
� ∀φ

(
PrTh(φ) → S(φ, ε)

)
.

Hence,

CS0 + ∀x
(
Th(x) → S(x, ε)

)
� REF�(Th).

Proof. The first part follows directly from Theorem 3.10. Having it, we prove
the second one: by induction on n we prove that

CS0 + ∀x
(
Th(x) → S(x, ε)

)
� ∀φ

(
PrREFn(Th)(φ) → S(φ, ε)

)
.

For n = 0 this follows from the first part. Fix n and assume the thesis holds for it.
By the compositional clauses for CS– we have

CS0 + ∀x
(
Th(x) → S(x, ε)

)
� ∀φ

(
S(�PrREFn(Th)(φ) → φ�, ε)

)
.
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Consequently, reapplying the first part of this corollary for REFn(Th) substituted
for Th we get the induction thesis for n + 1. �

The corollary below easily follows from the corollary above and Corollary 3.8.

Corollary 3.12. CS0 � ∀φ
(
PrPA(φ) → S(φ, ε)

)
. �

Corollary 3.13. CS0 � REF�(PA). �

3.4. Corollaries.

3.4.1. Compositional satisfaction vs. compositional truth. The above results
transfer immediately to the setting of the following theory of truth:

Definition 3.14. CT– is the L ∪ {T} theory extending EA with the following
axioms:

1. ∀x
(
T (x) → Sent(x)

)
.

2. ∀s, t ∈ ClTerm
(
T (s = t) ≡ (s)◦ = (t)◦

)
.

3. ∀φ,� ∈ Sent
(
T (φ ∨ �) ≡ (T (φ) ∨ T (�))

)
.

4. ∀φ ∈ Sent
(
T (¬φ) ≡ ¬T (φ)

)
.

5. ∀φ(v) ∈ Form≤1(T (∃vφ(v)) ≡ ∃xT (φ[x]
)
.

As usual CTn denotes the result of extending the following theory with induction
axioms for Σn formulae of the extended language. �

Let L+
T denote the extension of LT with function symbols for all p.r. recursive

functions and CT+
0 denote the extension of CT0 with all defining axioms for fresh

functions symbols in L+
T . Then we have an analogue of Proposition 3.1:

Proposition 3.15. CT+
0 � IΔ0(L+

T ). �
Now we show that the result on the provability of (GR(Th)) in CS0 transfers to

the setting with the truth predicate.

Corollary 3.16. CT0 � ∀φ ∈ Sent
(
PrPA(φ) → T (φ)

)
.

Proof. Work in CT+
0 and put

S(x, y) := Form(x) ∧ y ∈ Asn(x) ∧ T (x[y]).

The above is a Δ0(L+
T ) formula, so obviously we have IΔ0(L+

S ). Now, we show that
S(x, y) behaves compositionally. We focus on the ∃-axiom. Pick a formula φ(v) and
α ∈ Asn(∃vφ(v)). Observe that the following equivalences hold:

S(∃vφ(v), α) ≡ T (∃vφ(v)[α])

≡ ∃xT (φ[α][x]))

≡ ∃� ≥v αT (φ[�])

≡ ∃� ≥v αS(φ, �).

In the second and the third equivalence we use the fact that v /∈ dom(α). Hence (in
CT0) by Theorem 3.10 we have

∀φ ∈ Sent
(
PrPA(φ) → S(φ, ε)

)
.

Translating it back to the language with the truth predicate, we get our thesis. �
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The proof of the above corollary proceeds by defining the satisfaction predicate
satisfying CS+

0 in CT+
0 . In fact, the same translation works also in the context

of the non-inductive versions of both theories, CS– and CT–. However, it is not
known, whether the reverse is true in the context of these theories, i.e., whether
CS– can define the truth predicate of CT–. Using the Enayat–Visser method [7] of
constructing pathological models for CS– one can show that standard methods of
defining truth from satisfaction do not work. However, the results from the previous
section witness that Δ0 induction is sufficient to overcome these deficiencies of CS–.

Proposition 3.17. The truth predicate satisfying CT0 is definable in CS0.

Proof. Working in CS0, put

T (x) := S(x, ε).

As previously, T (x) is a Δ0(LS) formula, so CS0 � IΔ0(LT ). Since sentences are
the unique formulae for which ε is an assignment, so axiom 1. of CS– implies the
corresponding axiom of CT–. Once again we focus on the compositional axioms
for ∃. Working in CS0 fix φ and without loss of generality assume that v ∈ FV(φ).
Observe that the following equivalences hold:

T (∃vφ) ≡ S(∃vφ, ε)
≡ ∃� ≥v εS(φ, ��·)
≡ ∃xS(φ, [x])

≡ ∃xS(φ[x], ε)

≡ ∃xT (φ[x]).

The proof of the fourth equivalence involves the crucial use of Lemma 3.6. �

3.4.2. Many faces theorem. Corollary 3.16 coupled with some known results
from the literature, shows that the Global Reflection Principle is a very robust
notion. Not only it is equivalent to bounded induction but is immune to, apparently
significant, variations. This is summarized in the corollary below (we state it for the
theory of compositional truth; however all the equivalences should transfer to the
setting of a satisfaction predicate without significant changes). PrTSent(φ) asserts that
φ is provable from the set of true sentences in pure sentential logic, while DC is a
truth variant of the principles from the proof of Theorem 3.10.

Corollary 3.18. Over CT– + EA the following theories are equivalent:
1. IΔ0(LT );
2. ∀φ

(
PrPA(φ) → T (φ)

)
;

3. ∀φ
(
Pr∅(φ) → T (φ)

)
;

4. ∀φ
(
PrT∅ (φ) → T (φ)

)
;

5. ∀φ
(
PrTSent(φ) → T (φ)

)
;

6. DC.

The implication 3.⇒4. is established in [5]. The equivalence between 5. and 1. is
demonstrated in [3]. Much later it was significantly fine-tuned in [6], yielding the
implication 6.⇒1. �
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3.4.3. Fullness. The following is one of the most useful properties of CS0. It
implies that every model of CS0 is full, a theorem first demonstrated by Wcisło
and presented in [25]. The proof below is an observation also due to Wcisło which
crucially uses the provability of (GR(Th)). It’s proof is included also in [20] (Fact
33) but we give it here for completeness. In the definition below we fix a canonical
elementary translation transforming a given formula φ into one in the Σn form. We
assume that it formalizes in PA.

Recall (Definition 2.12) that φ(x)Σ denotes the canonical Σc form of φ(x) and
Σ∗
c := {φ | φΣ ∈ Σc}. Moreover recall that Sc denotes the restriction of S to all

formulae which are equivalent to sentences of Σc complexity (in the sense of M).
More precisely

Sc := {〈φ, α〉 | (M, S) |= φ ∈ Σ∗
c ∧ S(φΣ, α)}.

Theorem 3.19. Suppose that (M, S) |= CS– + GR(PA). Then for every c,
(M, Sc) |= CS(Σ∗

c ).

Proof. Fix a model (M, S) |= CS– + GR(PA) and c ∈M . It will be easier to
switch to the truth predicate, so put T := S(x, ε). Since for every formula φ ∈ Σ∗

c

and every α ∈ Asn(φ) we have

(M, S) |= S(φ, α) ≡ T (φ[α]),

it is sufficient to show that (M, Tc) |= Ind(LT ), where Tc is the restriction of T to
the formulae of Σ∗

c complexity, i.e.,

Tc := (Σ∗
c )

M ∩ (T )(M,S).

From now on we work in (M, T ). By the classical metamathematics of PA, for
every c there is a formula SatΣc such that for every φ ∈ Σ∗

c and every α ∈ Asn(φ) we
have

PrPA
(
φ[α] ≡ SatΣc (φ

Σ, α)
)
.

Hence, by GR(PA) we conclude that for every sentence φ ∈ Σ∗
c

T (φ) ≡ T (SatΣc (φ
Σ, ε)).

Put �(v) := SatΣc (v, ε) and T ′(x) := T (�[x]) ∧ x ∈ Σ∗
c . Then we see that

Tc = (T ′)(M,T ) ∩ (Σ∗
c )

M.

Consequently, T ′ satisfies the compositional axioms of CT– for formulae from the
Σ∗
c class. We shall now show (M, T ′) |= Ind(LT ). Thus let �[T ′] be an arbitrary

axiom of induction for a formula with T ′ (we mark all occurrences of T ′ in �). We
may assume that �[T ′] is in the semirelational form (as defined in [19]). Since, using
the notation of [19], T ′ is of the form T ∗ �, by Lemma 25 in [19] we have

(M, T ) |= �[T ′] ≡ T (�[�]).

However, �[�] is an axiom of induction (in the sense of M) for an arithmetical
formula �[�], hence T (�[�]) by GR(PA). �

Remark 3.20. A very similar reasoning was used in Kotlarski in [15]. However
various parts of this paper are negatively influenced by the significant gaps already
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discussed at the beginning of this section. We decided to reprove it in a rigorous way.
Essentially the same proof is given in [20]. �

Corollary 3.21. For any (M, S) |= CS– the following conditions are equivalent:

1. (M, S) |= GR(PA).
2. For every c ∈M , (M, S) |= CS(Σ∗

c ).
3. (M, S) |= CS0.

Proof. We show the remaining implication 2.⇒ 3. By the classical fact in the
metamathematics of PA, a subset of the model satisfies Δ0-induction if and only if
it is piecewise coded, i.e., it is sufficient to show

(M, S) |= ∀c∃d∀x < c
(
S((x)0, (x)1) ≡ x ∈ d

)
,

where (x)i denotes the i-th projection of x. Working in (M, S) fix an arbitrary c.
Obviously, if a formula φ < c then φ ∈ Σ∗

c . Hence, it is sufficient to find a d such
that

(M, Sc) |= ∀x < c
(
S((x)0, (x)1) ≡ x ∈ d

)
.

This clearly can be done as Sc satisfies full induction. �

§4. Consequences of the global reflection principle. In this section we focus on
the Δ0-inductive truth predicate. We remind the Reader that by default all theories
extend EA. We extend the result from the previous section and prove the following
theorem.

Theorem 4.1. For every φ(x) ∈ Σ1(LT ) and every n ∈ � the following sentence is
provable in CT0:

∀x
(
PrTUTBn (φ[x]) → φ(x)

)
.

Corollary 4.2. CT0 � Σ1(LT )-REF(UTB–).

The above answers affirmatively the question of Beklemishev and Pakhomov
from [2].

Convention 4.3. Working in an extension of UTB–, it makes sense to treat the
predicate T as a theory composed of all true sentences. Thus, we shall often write ( for
a Gödelized theory Th)

Γ-REF(Th + T )

to denote the theory consisting of all sentences

∀x
(
PrTTh(φ[x]) → φ(x)

)
,

for φ(x) ∈ Γ. �
Let us start by explaining that Theorem 4.1 really improves on the results from

the previous section. Let Th be a Gödelized theory extending EA in a language L′

and let UTB–(Th) denote the extension of Th with UTB– axioms. It is enough to
observe that over EA

Δ0(LUTB–(Th))-REF(UTB–(Th)) � GR(Th).
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Indeed, working in EA + Δ0(LUTB–(Th))-REF(UTB–(Th)) fix an arbitrary LTh

sentence φ and assume PrTh(φ). By the axioms of UTB–(Th) we immediately obtain
PrUTB–(Th)(�T (φ)�). Therefore, by the Δ0 reflection for UTB–(Th) we obtain, T (φ).

Proof of Theorem 4.1 starts with a lemma:12

Lemma 4.4. For every φ ∈ Δ0(LT ),

CT0 � ∀x
(
PrTUTB(φ[x]) → φ(x)

)
.

Proof. Fix (M, T ) |= CT0, φ(x) ∈ Δ0(LT ) and a ∈M and any proof p such
that (M, T ) |= ProofTUTB(p, φ[a]). Since in φ all the quantifiers are bounded, then
there is a b ∈M such that for every (M′, T ′) satisfying (1) M ⊆e M′ and (2)
T ′�<b = T �<b we have

(M, T ) |= φ(a) ⇐⇒ (M ′, T ′) |= φ(a). (A)

Recall that forX ⊆M ,X �<b denotes the set of elements of X below b. Fix any such
b. In short, b is big enough so that any end-extension of (M, T ) which agrees with T
up to b is absolute with respect to φ(a). Without loss of generality assume that p < b
and let c be big enough so that any formula (with code) smaller than b belongs to
(Σ∗
c–1)M. By Theorem 3.19, (M, Tc) |= CT(Σ∗

c ). Now we work in (M, Tc). Consider
the theory

Th := PA + {φ ∈ Σ∗
c | T (φ)}.

By GR(PA) (Corollary 3.12) Th is consistent and by the trivial conservativity proof
for UTB it follows that UTB + Th is consistent as well. Hence, by the Arithmetized
Completeness Theorem (for PA∗) there is a full model ((N , T ′), Sat(N ,T ′)) such that

(M, Tc) |=
[
(N , T ′) |=Sat(N ,T ′)

UTB + Th
]
. (B)

Since (N , T ′) is strongly interpretable in (M, Tc), then, by Proposition 2.24,
M ⊆e N . Since internally in (M, Tc), (N , T ′) is a model of UTB + Th, then every
sentence occurring in p is true in (N , T ′). So we see that (N , T ′) |= φ(a). We show
that T ′�<b = T �<b . Fix any sentence � such that � < b. Then, by the choice of c,
� ∈ Σ∗

c–1 and hence the following conditions are equivalent:

1. � ∈ T �<b .
2. � ∈ Th.
3. (M, Tc) |=

[
N |=Sat(N ,T ′)

�
]
.

4. (N , T ′) |= T (�).
5. � ∈ T ′�<b .

The equivalence between 3. and 4. follows by (B). Hence it follows by (A) that
(M, T ) |= φ(a), which suffices to prove the claim. �

Remark 4.5. The above proof generalises to the case in which PA is replaced
with a (formalized) theory Th in an expanded (at most countable) language L′ (we
assume a fixed Gödel coding of L′) such that Th � IndL′ . This allows us to obtain:

12This lemma can be obtained by the methods of [2] as well. Indeed, the result (for UTB– instead of
UTB and without the oracle T) is mentioned in an open question at the end of page 15.
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Lemma 4.6. For every φ ∈ Δ0(L′
T ),

CT0 + ∀φ
(
Th(φ) → T (φ)

)
� ∀x

(
PrTUTB(L′)+Th(φ[x]) → φ(x)

)
.

In order to bypass the problems with infinitely many additional predicates in
L′ it is sufficient to work with an M-bounded fragment of Th and consider only
the fragment of L′ consisting of predicates which occur in a formula in the fixed
proof p. �

The following lemma suffices to complete the proof of Theorem 4.1.

Lemma 4.7 (Bounding lemma). For every formula φ(x) ∈ Δ0(LT ) and every
n ∈ �, the following implication is provable in CT0:

PrTUTBn (∃vφ(v)) → ∃yPrTUTB(∃v < yφ(v)).

Before we prove it, let us show a proposition which was the motivation for the
proof of the above lemma:

Proposition 4.8 (Σ1-completeness for UTB–). For every Δ0(LT ) formula
φ(x), if (N,Th(N)) |= ∃xφ(x), then for some n ∈ � Th(N) + UTB– � ∃x < nφ(x).

Proof. Suppose that for every n, UTB– + Th(N) + ∀x < n¬φ(x) is consistent. A
trivial compactness argument then shows that Th(N)+UTB– +{∀x < nφ(x) | n∈�}
is consistent as well. So let us take (M, T ) |= Th(N)+UTB– +{∀x < nφ(x) | n ∈�}
and look at (N, T �N). Since N �e M, (N, T �N) |= UTB–, and, consequently
T �N = Th(N), because in N there is only one interpretation for the UTB–-truth
predicate. Since φ(x) ∈ Δ0(LT ), then (N,Th(N)) |= ∀x¬φ(x), which suffices to end
the proof. �

Remark 4.9. Essentially the same proof shows that already TB– (a non-uniform
version of UTB– based solely on Tarski biconditionals for arithmetical sentences)
is Σ1-complete in the above sense. �

Proof of Lemma 4.7. Fix n ∈ �, φ(x) ∈ Δ0(LT ), and a model (M, T ) |= CT0.
Assume that for all a ∈M , (M, T ) |= ¬PrTUTB(∀v<a¬φ(v)). By formalizing in PA
the trivial compactness argument, we see that for an (M, T )-definable theory

Th := UTB + {φ | T (φ)} + {∀v < a¬φ(v) | a ∈M},
(M, T ) |= ConTh. However, contrary to what happened in the proof of Σ1-
completeness for UTB– (Proposition 4.8), there need not be an (M, T )-definable full
model of Th, since we may not have Σ1-induction for LT . As a remedy, we shall work
with restrictions of T. For an arbitrary c we shall show that ¬PrT�cUTBn�c (∀v¬φ(v)),
which suffices to prove the claim by a trivial compactness argument (UTBn�c denotes
the first c – 1 axioms of UTBn). Fix c and let c < b be big enough so that every
formula in T �c and every axiom of UTB–�c belongs to Σ∗

b–1. Working in (M, Tb)
consider

Thb := UTB + {φ | T (φ) ∧ φ ∈ Σ∗
b} + {∀v < a¬φ(v) | a ∈M}.

Since Thb ⊆ Th, then Thb is consistent. Thb is definable in (M, Tb) |= PA∗; hence
we can fix a full model ((N , T ′), Sat(N ,T ′)) such that

(M, Tb) |=
[
(N , T ′) |=Sat(N ,T ′)

Thb
]
.
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Consider a model (M, T ′�M ) (i.e., we restrict T ′ to model M). Since
(M, T ′�M ) ⊆e (N , T ′) and φ(x) ∈ Δ0(LT ), then (M, T ′�M ) |= ∀x¬φ(x). We
check that (M, T ′�M ) |= CS–(Σ∗

b). To this end it is sufficient to show that for
every φ ∈ Σ∗

b we have

φ ∈ T ′�M ⇐⇒ φ ∈ T. (∗)

So fix an arbitrary such φ. Now the following conditions are equivalent:

1. φ ∈ T ′�M ;
2. (N , T ′) |= T (φ);
3. (M,Tb) |=

[
(N , T ′) |=Sat(N ,T ′)

φ
]
;

4. (M, T ) |= T (φ).

Now, the equivalence between (2) and (3) is by the fact that (N , T ′) is an (M, Tb)-
definable full model of UTB. The equivalence between (3) and (4) holds because N
satisfies all sentences from Σ∗

b , which T deems true in M. Since T ′�M is (M, Tb)-
definable it satisfies full LT induction. To sum up, we have just concluded that

(M, T ′�M ) |= CS(Σ∗
b) + ∀x¬φ(x).

We work in (M, T ′�M ). First observe that T ′
b makes V (i.e., the class of all numbers;

see Example 2.5) a b-full model for the arithmetical vocabulary (becauseT ′
b = Tb , by

(∗)). For a fixed k ∈ � letXk consist of all Boolean combinations of sentences from
Σ∗
b(L) ∪ Σ∗

k(LT ). Observe that for all k ∈ �, all the uniform Tarski biconditionals
are in Xk and this class is closed under subformulae. Now for every k ∈ �, there
exists an (M, T ′�M ) definable satisfaction class for V[T ] and sentences from Xk .

Denote such a satisfaction predicate with Sat
T ′
b

Σk
. Then Sat

T ′
b

Σn+2
makes V[T ] an Xn-

model for the definable restricted theory

{φ ∈ LPA | Tc(φ)} + UTBn�c + ∀x¬φ(x).

By Proposition 2.16 this is enough to show that this theory is consistent. �
Remark 4.10. The proof of Lemma 4.4 can be modified to yield a new proof of

Theorem 1 from [2] (for finite languages). Let us restate it and prove it here:

Theorem 4.11 (Beklemishev–Pakhomov). Let L′ be an arbitrary finite language
with a fixed Gödel numbering and Th be a Gödelized L′ theory. Then,

UTB–(L′) + Δ0(L′
T )-REF(UTB–(L′) + Th)

is L′-conservative over REF(Th).

Proof. Pick any (M, S) |= REF(Th) + CS(Σ∗
c (L′)) (the satisfaction class is

defined for L′). Using overspill, as in the proof of Lemma 5.3 we may pick a
nonstandard d < c such that

(M, S) |= ∀φ ∈ Σ∗
d (L′)

(
PrSdTh(φ) → S(φ, ε)

)
.

Then, in (M, S) the L′
S -theory Th + UTB–(L′) + {φ ∈ Σ∗

d (L′) | S(φ, ε)} is
consistent, so let (N , S ′) be its full model. We claim that

(M, S ′�M ) |= UTB–(L′) + Δ0(L′
T )-REF(UTB–(L′) + Th).
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UTB–(L′) holds in (M, S ′�M ) since, in M, S and S ′�M coincide on all formulae
from Σ∗

d . To show Δ0 reflection, we use the fact that (N , S ′) is strongly interpretable
in (M, S). Fix a Δ0(L′

T )-formula φ(x) and working in (M, S) assume that p is a
proof of φ(a) (for some element a) from the axioms of UTB–(L′) + Th. Since

(M, S) |=
[

(N , S ′) |=Sat(N ,S′)
UTB– + Th

]
,

then (N , S ′) |= φ(a) and since (M, S ′�M ) ⊆e (N , S ′), φ(a) holds in (M, S ′�M ) by
absoluteness of bounded formulae. �

�

§5. The arithmetical part of CT0. In this section we reprove the following result
of Kotlarski [15].13

Theorem 5.1 (Kotlarski and Smoryński). CT0 is arithmetically conservative over
REF�(PA).

The idea of Kotlarski’s argument is to mimic the Henkin proof of Completeness
Theorem in a countable recursively saturated model. Also, [2] gives a different,
syntactic proof of Theorem 5.1. We choose a still different path and our main
ingredient is the following:

Theorem 5.2. Let Th be any Gödelized L theory. Suppose that M |= REF�(Th)
and S is a satisfaction class for M such that

(M, S) |= CS(Σ∗
c (L))

for some nonstandard c. Then there exists a nonstandard d ∈M and (N , S ′) |= CS0 +
∀x

(
Th(x) → S(x, ε)

)
such that M �e N and Sd ⊆ S ′.

Observe that the conditions M �e N and Sd ⊆ S ′ jointly imply that M �e N
(assuming Sd and S ′ are satisfaction classes). The construction of (N , S ′) proceeds
in �-stages and is motivated by Corollary 3.21: N will admit a cofinal �-sequence
a0, ... , an, ... and at the n-th stage of the construction we shall build a satisfaction
class for all formulae of complexity an. The following lemma makes this idea more
precise. Henceforth Th is any Gödelized theory in L.14

Lemma 5.3. Suppose that M |= REF�(Th), c is a nonstandard element of M,
and (M, S) |= CS(Σ∗

c (L)). Then there exist a nonstandard d ∈M and a sequence
{(Mn, Sn, cn)}n∈� such that (M0, S0, c0) = (M, Sd , d ) and for each n:

1. Mn �e Mn+1 and Sn ⊆ Sn+1.
2. (Mn+1, Sn+1) |= CS(Σ∗

cn+1
(L)) + ∀φ ∈ Σ∗

cn+1

(
Th(φ) → S(φ, ε)

)
.

3. cn+1 ∈Mn+1 \Mn.
Thus {(Mn, Sn, cn)}n∈� consists of proper end-extensions and each satisfaction

class Sn+1 in the sequence decides all formulae in the sense ofMn. Let us show that
Lemma 5.3 immediately implies Theorem 5.2.

13In order to get the arithmetical theory right one should compose Kotlarski’s result with Smoryński’s
observation from [23].

14All the results generalize to the setting where L is substituted with an arbitrary finite language. We
have decided for the reduced version to keep the definition simpler.
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Proof of Theorem 5.2 modulo Lemma 5.3. Fix M |= REF�(Th) and S such
that (M, S) |= CS(Σ∗

c ). Fix a chain {(Mn, Sn, cn)}n∈� as in the thesis of Lemma 5.3.
Put N =

⋃
nMn, S ′ =

⋃
n Sn. It is straightforward to verify that (N , S ′) |=

CS– + ∀φ
(
Th(φ) → S(φ, ε)

)
. Let us check one direction of the quantifier axiom.

Assume that (N , S ′) |= ∃� ≥v αS(φ(v), �). Let k be big enough so that (Mn, Sn) |=
∃� ≥v αS(φ(v), �) and φ(v) ∈ Σ∗

cn–1. It follows that (Mn, Sn) |= S(∃vφ(v), α).
Hence (N , S ′) |= S(∃vφ(v), α). The argument in the rest of cases is similar.

To check Δ0(LT )-induction, we verify that S is coded, i.e., for every c ∈ N there
exists a d ∈ N such that

∀x < c
(
S((x)0, (x)1) ≡ x ∈ d

)
holds (recall that (x)i denotes the projection of x to the i-th coordinate). Take any
c and let n be big enough so that c ∈Mn and each formula smaller than c is of
complexity Σ∗

cn . By using induction in (Mn+1, Sn+1) we can find the appropriate
d ∈Mn and since (Mn, Sn+1�Mn ) ⊆e (N , S ′), this d will work also for (N , S ′). �

The proof of Lemma 5.3 consists in prolonging the given satisfaction class S until
its domain catches up with the universes of models constructed along the way. As it
turns out this notion of a satisfaction class being prolongable is worth isolating.

Definition 5.4. Suppose (M, S, X ) |= CS(X ) and for every n, (M, X ) |=
Σ∗
n ⊆ X .

1. S is 0-prolongable if there is N such that M �e N , N is strongly interpreted
in (M, S) via a satisfaction class SatN , and for all φ ∈ s(X ) and α ∈ Asn(φ),

(M, S) |=
[
S(φ, α) ≡ N |=SatN φ[α]

]
.

2. S is n + 1 prolongable if there is N such that M �e N , c ∈ N \M , and
S ′ ⊆ N 2 such that (N , S ′) |= CS(Σ∗

c ), S ⊆ S ′, and S ′ is n-prolongable. �

Let us observe that if N witnesses the 0-prolongability of S, then N |= PA. The
following lemma is the key element of our reasoning:

Convention 5.5. Let GR(X,S,Z) denote the following sentence of L2:

∀φ ∈ s(X )
(
PrZ(φ) → S(φ, ε)

)
.

Moreover, if S is a satisfaction class on M, then (M, S) |= GR(X,S, S + Y ) will
abbreviate (M, S) |= GR(X,S, {φ ∈ SentL | S(φ, ε)} ∪ Y ). �

Lemma 5.6. Suppose that (M, S, c) |= CS(Σ∗
c ) ∧ GR(Σ∗

c , S, S + REF(Th)). Then
there exists (N , S ′, c′) |= CS(Σ∗

c′) ∧ GR(Σ∗
c′ , S

′, S ′ + Th) such that:

1. (N , S ′, c′) is strongly interpretable in (M, S, c).
2. c′ ∈ N \M .
3. S ⊆ S ′.

Proof. Fix (M, S, c) as in the assumption and work in it. Consider the following
LS′ ∪ {c′} theory, where c′ is a fresh constant and S ′ is a fresh predicate:

GR(Σ∗
c′ , S

′, S ′ + Th) + {φ | S(φ, ε)} + CS(Σ∗
c′ , S

′) + {c′ > a | a ∈M}.
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We shall show that the theory is consistent. The proof proceeds in two stages.
In the first one, we fix a full model of REF(Th) + {φ | S(φ, ε)}, i.e., a full
model (N ′, SatN ′) such that N ′ |=SatN′ REF(Th) + {φ | S(φ, ε)}. Such a model
exists by the Arithmetized Completeness Theorem, since by our assumption every
consequence of REF(Th) and the set of true sentences (in the sense of S) is true,
in the sense of S (recall that (M, S) |= PA∗). Let us observe that N ′ |=SatN′ PA,
since REF(EA) � PA (and the proof formalizes in EA) and Th ⊇ EA. Now, using
N ′ we formalize the standard argument that any model of PA admits an elementary
extension to a model with a fully inductive, partial nonstandard satisfaction class.
We reason in (M, S, c). We show that

ElDiagSatN′ (N
′) + CS(Σ∗

c′ , S
′) + {c > a | a ∈M} + GR(Σ∗

c′ , S
′, S ′ + Th)

is consistent. Let A be a finite (in the sense of M) fragment of this theory and
let a – 1 be the greatest d such that �c > d� ∈ A. We shall find the interpretation
for S ′ in N ′. Consider the arithmetical partial truth predicate Sata for formulae
from Σ∗

a and interpret S ′ as Sata . Then N ′ |= CS(Σ∗
a, Sata). Moreover, as N ′ |=

REF(Th), N ′ |= GR(Σ∗
a, Sata, Sata + Th) (see, e.g., [1]). So A is consistent and by

the formalized compactness theorem, so is the entire theory. Let (N , S ′, c′) be its
full model. Then N is clearly an end-extension of M and c′ ∈ N \M . Moreover
(N , S ′, c′) |= CS(Σ∗

c′ , S
′) ∧ GR(Σ∗

c′ , S
′, S ′ + Th) and S ⊆ S ′, by construction. �

The following lemma isolates the relation between prolongability and global
reflection.

Lemma 5.7. Suppose that (M, S, c) |= CS(Σ∗
c ) where c is nonstandard. Then the

following conditions are equivalent:
1. S is n-prolongable.
2. (M, S, c) |= GR(Σ∗

c , S, S + REFn(EA)).

Proof. We prove by induction on n that

∀M∀S∀c ∈M \ �
[

(M, S, c) |= CS(Σ∗
c ) =⇒

(
S is n– prolongable

⇐⇒ (M, S, c) |= GR(Σ∗
c , S, S + REFn(EA))

)]
.

For the base step fix M, S, X as above and assume first that S is 0-prolongable. Fix
N as in the definition of 0-prolongability. Working in (M, S) take any proof p of a
sentence φ ∈ s(Σ∗

c ) from EA. Since EA is a finite theory N |=SatN EA. Then, since
p is a proof from true axioms in the sense of SatN , then SatN (φ, ε). Hence, since φ
is a formula from s(Σ∗

c ), S(φ, ε) holds by the definition of 0-prolongability.
Suppose now that (M, S, c) |= ∀φ ∈ s(Σ∗

c )
(
PrSEA(φ) → S(φ, ε)

)
. Consider the

following (M, S, c)-definable theory Th := {φ ∈ Σ∗
c | S(φ, ε)}. By our assumption,

(M, S, c) |= ConTh. Work in (M, S, c). By the Arithmetized Completeness Theorem
(we use the assumption that (M, S, c) |= PA∗), we have a full model N |=SatN Th.
Hence, obviously SatN and S coincide on s(Σ∗

c ) (observe that they need not coincide
on Σ∗

c ).
Now assume that the equivalence holds for n. Fix M, S, Σ∗

c as above and
assume first that S is (n + 1)-prolongable and pick (N , S ′, c′) |= CS(Σ∗

c′) such that
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S ⊆ S ′ and S ′ is n-prolongable. By the induction assumption (N , S ′, c′) |= ∀φ ∈
s(Σ∗

c′)
(
PrSREFn(EA)(φ) → S(φ, ε)

)
. By compositional clauses, it follows that for every

φ(v) ∈M

(N , S ′, c′) |= S(�∀v
(
PrREFn(EA)(φ[v]) → φ(v)

)
�, ε).

Hence in particular, if � ∈M is any axiom of EA + REFn+1(EA), then (N , S ′) |=
S(�, ε). So suppose p ∈M is a proof of a sentence φ ∈ s(Σ∗

c ) from the axioms of
REFn+1(EA). Work in (N , S ′). By the previous argument, if � is a premise of p,
then S(�, ε) holds. Since all the formulae occurring in p belong to Σ∗

c′ , then we have
(N , S ′) |= S(φ, ε). However, S ′ and S coincide on s(Σ∗

c ).
Now, working in (M, S, c), assume ∀φ ∈ s(Σ∗

c )
(
PrSREFn+1(EA)(φ) → S(φ, ε)

)
. We

apply Lemma 5.6 to Th := REFn(EA) and conclude that there is (N , S ′, c′) as in the
thesis of the lemma. By our inductive assumption applied to (N , S ′, c′), it follows
that S ′ is n-prolongable. Hence S is n + 1-prolongable, which ends the proof. �

Corollary 5.8. The following conditions are equivalent for a model (M, S, c) |=
CS(Σ∗

c , S):

1. (M, S, c) is n-prolongable.
2. There exists an (M, S, c)-definable sequence of models {(Mk, Sk, ck)}k≤n∈�

such that (M0, S0, c0) = (M, S, c) and for each k < n:
(a) Mk �e Mk+1 and Sk ⊆ Sk+1.
(b) (Mk, Sk, ck) |= CS(Σ∗

ck
).

(c) ck+1 ∈Mk+1 \Mk .
(d) (Mk+1, Sk+1, ck+1) is strongly interpretable in (Mk, Sk, ck).

Corollary 5.9. The following conditions are equivalent for a model (M, S, c) |=
CS(Σ∗

c , S) and for every n ∈ �:

1. M |= REFn+1(EA).
2. There exists b ∈M \ � such that Sb is n-prolongable.

Proof. (2) ⇒ (1) follows immediately from Lemma 5.7. We prove (1) ⇒ (2).
Fix (M, S, c) as in the assumptions. Let Satk be an arithmetically definable truth
predicate for Σ∗

k (as in the proof of Lemma 5.6). By induction in (M, S, c), we have

∀φ ∈ Σ∗
k

(
Satk(φ, ε) ≡ S(φ, ε)

)
for every k. Since M |= REFn+1(EA), then, for every k, we have

M |= ∀φ ∈ Σ∗
k

(
PrSatk

REFn(EA)(φ) → Satk(φ, ε)
)
.

Hence for every l ∈ �, (M, S, c) |= ∀x < l∀φ ∈ Σ∗
x

(
PrSxREFn(EA)(φ) → Sx(φ, ε)

)
. By

the overspill principle we can find a b > �, b ≤ c, such that

(M, S, c) |= ∀x < b∀φ ∈ Σ∗
x

(
PrSxREFn(EA)(φ) → Sx(φ, ε)

)
.

Hence Sb–1 is n-prolongable. �

Since REF(EA) = PA, the following is the most memorizable version of our main
lemma:
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Theorem 5.10. The following conditions are equivalent for a model (M, S, c) |=
CS(Σ∗

c ) and for every n ∈ �:

1. M |= REFn(PA).
2. There exists b ∈M \ � such that Sb is n-prolongable.

Now, we have all that is needed to finish our conservativity proof for CT0:

Proof of Lemma 5.3. Suppose (M, S, c) |= CS(Σ∗
c ) and M |= REF�(Th). Let

Satn be the arithmetical partial truth predicate for formulae in Σ∗
n . By assumption

on M it follows that for every n

M |= ∀φ ∈ Σ∗
n

(
PrSatn

REFn(Th)(φ) → Satn(φ, ε)
)
.

By induction, for every n ∈ �, Satn and Sn coincide. Hence for every n ∈ � we have

(M, S) |= ∀x < n GR(Σ∗
x, Sx, Sx + REFx(Th)).

By overspill it follows that for some d > �

(M, S) |= GR(Σ∗
d , Sd , Sd + REFd (Th)).

We define the chain (Mn, Sn, cn) by induction. Assume that (Mk, Sk, ck) has been
defined and it satisfies GR(Σ∗

ck
, Sck , Sck + REFd–k(Th)). To get (Mk+1, Sk+1, ck+1)

we apply Lemma 5.6 to Th′ = REFd–(k+1)(Th). �

Corollary 5.11. The arithmetical consequences of CT0 + ∀φ
(
Th(φ) → S(φ, ε)

)
and REF�(Th) coincide.

Proof. Conservativity part follows from Theorem 5.2. That CT0 + ∀φ
(
Th(φ) →

S(φ, ε)
)
� REF�(Th) was established in Corollary 3.11. �

It might seem that in the above proof the limit model is a very specific model of
CS0. Quite surprisingly every model of CS0 is of this form. One of the crucial steps
in the proof is worth isolating as a lemma.

Lemma 5.12. Suppose that (M, S) |= CS0, (M0, S�M0 ) ⊆ (M, S), d1 ∈M0, and
(M0, Sd1�M0) |= CS–(Σ∗

d1
). Then for every d0 ∈M0 such that d1 – d0 is nonstandard,

(M0, Sd0�M0) |= CS(Σ∗
d0

).

Proof. Let us fix M, S,M0, d1, d1 as above. Since (M0, Sd1�M0) |= CS–(Σ∗
d1

), it
follows that

(M0, Sd0�M0) |= CS–(Σ∗
d0

).

We prove that induction axioms hold in (M0, Sd0�M0) as well. By the assumptions,
it follows that (M, Sd1 ) |= ∀φ ∈ Σ∗

d1

(
PrPA(φ) → S(φ, ε)

)
, hence also

(M0, Sd1�M0 ) |= ∀φ ∈ Σ∗
d1

(
PrPA(φ) → S(φ, ε)

)
.

Let SatΣd0
be as in the proof of Theorem 3.19 and let us abbreviate S(φ, ε) with

T (φ) and SatΣd0
(x, ε) with Trd0(x). Observe that Trd0 ∈ Σ∗

d0
. It follows that

(M0, Sd1�M0) |= ∀φ ∈ Σ∗
d0

(
T (Trd0 (φΣ)) ≡ T (φΣ)

)
.
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Since Sd0 coincides with Sd1 on (Σ∗
d0

)M0 , then

(M0, Sd0�M0) |= ∀φ ∈ Σ∗
d0

(
T (Trd0 (φΣ)) ≡ T (φΣ)

)
.

Since T (Trd0 (xΣ)) defines and Sd0�M0 in (M0, Sd1�M0 ) it is sufficient to show that

(M0, Sd1�M0) |= �[T (Trd0 (xΣ))/P], (∗)

where � is an arbitrary instance of an induction axiom for a fresh predicate
letter P, in a semi-relational form. Fix �. Since M0 |= PrPA(�[Trd0 (xΣ)/P]) and
�[Trd0 (xΣ)/P] ∈ Σ∗

d1
, we have

(M0, Sd1�M0) |= T
(
�[Trd0 (xΣ)/P]

)
.

(∗) follows as in [19] and Theorem 3.19. �
Theorem 5.13. Suppose (M, S) |= CS0 has cofinality κ. Then there is a chain

{(Mα, Sα, cα)}α∈κ such that
⋃
α∈κMα = M,

⋃
α∈κ Sα and for every α < � < κ:

1. Mα �e M� and Sα ⊆ S� .
2. (M� , S�) |= CS(Σ∗

c�
).

3. c� ∈M� \Mα .

We note that the above chain need not be continuous.

Proof. Fix (M, S) |= CS0 and a cofinal sequence {dα}α∈κ. In the base step we
build (M0, S0, d0) |= CS(Σ∗

d0
). Consider the formula � ′(x, y, z)

∃c
(
Seq(c) ∧ len(c) = x ∧ c0 = z ∧ ∀i < x(2ci < ci+1) ∧ �(x, y, c)

)
,

where �(x, y, c) is

∀φ ∈ Σ∗
y∀i < x∀α < ci

(
φ < ci ∧ α ∈ Asn(∃vφ) ∧ S(∃vφ, α)

→ ∃� < ci+1
(
� ∼v α ∧ S(φ, ��φ)

))
.

Thus � ′(x, y, z) expresses that there is a witness-bounding sequence c of length x
and starting from z, which works for those formulae of Σ∗

y complexity which are
below some of the elements of the sequence. Let e be such that e – d0 is nonstandard.
We reason in (M, Se) |= CS(Σ∗

e ) and by a straightforward induction conclude that

∀x� ′(x, e, e).
We let a be an arbitrary nonstandard number and we fix c witnessing � ′(a, e, e). We
define

M0 := sup{ci | i ∈ �}.
Clearly if b1, b2 < ci , for some i, then b1 + b2, b1 · b2 < ci+1 by the assumption on c.
Hence M0 ⊆ M. We check that (M0, Se�M0) |= CS–(Σ∗

e ). The unique non-trivial
step is the one for quantifiers: fix any formula φ(v, w̄) ∈ Σ∗

e ∩M0, α ∈M0 and
assume that (M0, Se�M0) |= S(∃vφ(v, w̄), α) and α, φ < ci . Then

(M, S) |= S(∃vφ(v, w̄), α)
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Hence by the properties of c there is � < ci+1, � ∼v α such that

(M0, Se) |= S(φ, �).

To conclude that S0 := Sd0 is fully inductive, we apply Corollary 5.12 for M′ = M0,
d0 = d0, and d1 = e.

In the successor step assume that (Mα, Sα, cα) has been constructed and w.l.o.g.
assume that dα+1 /∈Mα . We pick e ∈M such that e – dα+1 is nonstandard and
repeat the reasoning from the base step with dα+1 replacing d0. In the limit step,
we assume that for every α < � , (Mα, Sα, cα) has been constructed. We take
(M′

� , S
′
�) =

⋃
α<�(Mα, Sα) and assume (by the regularity of κ) that  is the least

such that d /∈M ′
� . We put c� = d and repeat the reasoning from the base step with

c� replacing d0. �

The construction from Lemma 5.3 enables us to extend the result from Section 4.

Theorem 5.14. CT0 + Σ1(LT )-REF(UTB + T ) is Π1(LT ) conservative over CT0.

Proof. Fix (M, T ) |= CT0. We shall find (M, T ) ⊆ (N , T ′) |= CT0 +
Σ1(LT )-REF(UTB + T ), which suffices to end the proof. Firstly, turn (M, T )
into a model (M, S) |= CS0 in the canonical way. Secondly, assume that there
exists {(Mi , Si , ci)}i∈� such that (M0, S0) = (M, S), the rest of the chain is
as in the thesis of Lemma 5.3 and for each i > 0, (Mi+1, Si+1, ci+1) is strongly
interpreted in its predecessor (Mi , Si , ci). Let Sati+1 denote the satisfaction
relation witnessing the interpretability of (Mi+1, Si+1, ci+1) in (Mi , Si , ci). Put
(M∞, S∞) =

⋃
i∈�(Mi , Si) and define T∞ := {φ ∈M∞ | S(φ, ε)}. By the proof

of Theorem 5.2, (M∞, S∞) |= CS0, and hence (M∞, T∞) |= CT0, so it is sufficient
to show that

(M∞, T∞) |= Σ1(LT )-REF(UTB + T ).

Suppose that for some φ(x) ∈ Σ1(LT ) and c ∈M , (M∞, T∞) |= PrTUTB(φ(c)). Let
p be the witnessing proof and fix any i ∈ � such that p < ci . Hence (Mi , Si) |=
PrSUTB(φ(c)). We reason in (Mi , Si). Since every next model in the chain is strongly
interpretable in the previous one, we have (in (Mi , Si))

(Mi+1, Si+1) |=Sati+1 ∀v(Mi+2, Si+2, ci+2) |=Sati+2 CS(Σ∗
ci+2

) ∧ ci+2 > v.

Consider (in (Mi , Si)) the model (Mi+1, Si+2�Mi+1 ). This model is interpretable
in (Mi+1, Si+1); hence by Proposition 2.20 it is a full model (in the sense of
(Mi , Si); i.e., it is strongly interpretable in (Mi , Si)). Let Sat′i+1 denote the respective
satisfaction class. We shall show that

(Mi+1, Si+2�Mi+1 ) |= φ(c).

This suffices to end the proof, since φ(c) is a Σ1(LT ) formula and (Mi+1, Si+2�Mi+1 )
⊆e (M∞, T∞). Reasoning in (Mi , Si) we see that since Si+2�Mi+1 is definable in
(Mi+1, Si+1), which satisfies full induction, also (Mi+1, Si+2�Mi+1 ) satisfies full
induction. Moreover, since Si+1 ⊆ Si+2�Mi+1 we know that for every e (∈Mi)
(Mi+1, Si+2�Mi+1 ) |=Sat′

i+1
CS(Σ∗

e ). Hence,

(Mi+1, Si+2�Mi+1) |=Sat′
i+1

UTB.
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Moreover, if � is an assumption of proof p and an arithmetical sentence, then � ∈
T� ; hence, by the choice of i, � ∈ Si . It follows that (Mi+1, Si+2�Mi+1 ) |=Sat′

i+1
�,

since Sat′i+1 coincides with Sati+1 on sentences fromMi . We conclude, still working
in (Mi , Si), that Sat′i+1 makes every premise of p true in (Mi+1, Si+2�Mi+1 ). So p’s
conclusion,φ(c), must be deemed true in (Mi+1, Si+2�Mi+1 ) by Sat′i+1. Sinceφ(c) is a
standard formula with a parameter, we can conclude that (Mi+1, Si+2�Mi+1) |= φ(c).

Now, we show how to justify the existence of the chain {(Mi , Si , ci)}i∈� . Let
BΣ1(LT ) denote the extension of CT0 with Σ1 collection scheme for the language
with the truth predicate. As shown in [20], BΣ1(LT ) is Π2 conservative over CT0. So
we can assume that the above model (M, T ) is a countable recursively saturated (in
the extended language) model of CT– + BΣ1(LT ). By the classical result of Wilkie–
Paris [26] there exists a proper end-extension (M′, T ′) |= CT0 of (M, T ).15 Hence it
is sufficient to start the construction of the chain from (M′, T ′

a), where a ∈M ′ \M
and then proceed as in the proof of Lemma 5.3. �

§6. Two open problems. We conclude our paper with two open problems:

Question 1. Does the statement of Theorem 5.13 remain true if we require for
every α < � , M� is strongly interpretable in Mα?

Question 2. Can we strengthen Theorem 5.14 by showing that Σ1(LT )-
REF(UTB + T ) is in fact provable in CT0 + EA?

Let us stress that, by the proof of Theorem 5.14, the positive answer to Question
1 implies that the answer to Question 2 is positive as well.
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