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A REDUCTION ALGORITHM FOR LARGE-BASE
PRIMITIVE PERMUTATION GROUPS
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Abstract

We present a nearly linear-time Las Vegas algorithm that, given
a large-base primitive permutation group, constructs its natural
imprimitive representation.A large-base primitive permutation group
is a subgroup of a wreath product of symmetric groups Sn and Sr

in product action on r-tuples of k-element subsets of {1, . . . , n},
containing Ar

n. The algorithm is a randomised speed-up of a
deterministic algorithm of Babai, Luks, and Seress.

1. Introduction

In 1971 Sims [10] introduced the fundamental data structures base and strong generating
set (SGS) for computing with finite permutation groups. For a set � of N points, we denote
the symmetric group of all permutations of � by Sym(�), and also sometimes by SN .
A base for G � Sym(�) is a sequence B = (β1, . . . , βm) of points from � such that
the pointwise stabiliser G(β1,...,βm) of {β1, . . . , βm} is the trivial group. A base B naturally
defines a subgroup chain

G = G[1] � G[2] � . . . � G[m] � G[m+1] = 1, (1)

where G[i] := G(β1,...,βi−1) is the pointwise stabiliser of {β1, . . . , βi−1}. The base B is
called non-redundant if G[i+1] is a proper subgroup of G[i] for all i with 1 � i � m.
In this case we have

log |G|
log N

� |B| � log |G|, where N = |�|.
(Here, and throughout the paper, we write logarithms to base 2.)

A strong generating set (SGS) for G relative to B is a generating set S for G with the
property that 〈S ∩ G[i]〉 = G[i], for 1 � i � m + 1. (2)

Given G = 〈X〉 � Sym(�), Sims’ algorithm constructs a non-redundant base B and an
SGS S relative to B. Once S is known, it is easy to construct transversals Ti for the cosets
of G[i+1] in G[i] (called transversals of G[i] mod G[i+1]). These transversals can be used
to compute the order of G as

|G| =
m∏

i=1

|Ti |,

and to factorise any g ∈ G as a product g = r1 · · · rm, with ri ∈ Ti for 1 � i � m.
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A reduction algorithm for large-base primitive permutation groups

This factorisation is unique and can be obtained by an efficient algorithm called sifting.
Sifting can be used to test membership in G. For details, we refer to [9, Section 4.1].

Deterministic versions of Sims’ algorithm run in O(|X|N2 logc |G|) time, and there
are randomised versions that run in O(|X|N logc |G|) time [1]. In particular, if log |G|
is bounded above by a polylogarithmic function of N , then the latter running time is
nearly linear as a function of the input length |X|N , namely O((|X|N) logc′

(|X|N)). This
motivated the following definition. An infinite family G of permutation groups is called
small-base if every group G ∈ G of degree m satisfies log |G| < logc m for some fixed
constant c. A family which is not small-base is called large-base.

For a group G in a large-base family, the term logc |G| may dominate the timing in Sims’
algorithm. In fact, no deterministic version of Sims’algorithm is known to have a worst-case
running time better than O(N5 + |X|N2) for arbitrary inputs G = 〈X〉 � Sym(�) with
|�| = N . The notorious N5 barrier was broken in [2, 3] by a different kind of deterministic
algorithm with running time O(N4 logc N + |X|N2), that computed |G| and set up a data
structure to test membership in G.

The algorithm in [3] is based on principles quite different from those in Sims’ original
approach. It detects large alternating sections of the input group G and handles them by
special methods, while the rest of G is handled by Sims’ method. Recently, a randomised
version of [3] was implemented in GAP [7]. This implementation is described in [8]. For
this implementation, a fast detection of large alternating sections is required. Standard
combinatorial reduction (action on orbits, followed by action on blocks of imprimitivity)
leads to primitive groups, for which we need to perform the tasks described in Definition 1.1
below. Presenting a fast algorithm to perform these tasks is the main result of this paper.
The algorithm has been implemented as part of the GAP package ‘recog’, described in [8].

Let N = (
n
k

)r , for some positive integers n, r, k with k < n/2, and let � be the set of
r-tuples of k-sets of {1, . . . , n}. Then |�| = N . The group

G(n, r) = Sn � Sr
∼= Sr

n : Sr

acts primitively on � by the natural product action: for (δ1, . . . , δr ) ∈ � and
g = (g1, . . . , gr )h ∈ G(n, r), where δi ⊆ {1, . . . , n}, gi ∈ Sn, and h ∈ Sr , we have

(δ1, . . . , δr )
g = (δ

g1a

1a , . . . , δ
gra

ra ), where a = h−1.

We consider the family F of all primitive permutation groups with the following property:
G � Sym(�) is in F if and only if there are positive integers n, r, k such that |�| =
N = (

n
k

)r and G is permutation isomorphic to a subgroup of G(n, r) � Sym(�) with
Ar

n � G � Sn �Sr . The significance of the family F is that by [5], the primitive permutation
groups not belonging to F constitute a small-base family, while F itself is a large-base
family.

Definition 1.1. Let G = 〈X〉 be a primitive permutation group in F , acting on � of
size N , so that

Ar
n � G � Sn � Sr and N = (

n
k

)r
.

We say that G is constructively identifiable if there are LasVegas algorithms for the following
tasks:

(i) find nr subsets J1, . . . , Jnr of � such that � = {J1, . . . , Jnr} is G-invariant and G

acts faithfully and transitively on �;
(ii) find a monomorphism φ : G → Sym(�) specified by the image of X;

and moreover, there is a deterministic algorithm for computing gφ for any given g ∈ G.
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The problem of identifying these primitive large-base groups constructively was solved
by a quadratic-time deterministic algorithm in [2, 3]. Here we give a nearly linear-time,
randomised solution based on ideas from these papers.

Let F0 be the subfamily of F comprising all those groups in F for which n � 2rk2. We
shall prove (see Lemma 2.1) that F0 is a small-base family. Then, since F is a large-base
family, the complement F \ F0 is also large-base. Thus it is sufficient to deal with F \ F0.
Our aim is to provide a fully analysed algorithm to identify constructively a given transitive
permutation group, assuming that it belongs to F \ F0. This problem is trivially solved for
the natural actions of alternating and symmetric groups (that is, those groups in F \ F0
with r = k = 1) since in this case � = � and φ can be taken as the identity map. Thus we
always assume that rk � 2.

In this paper we prove the following theorem, where ξ is an upper bound on the
time required per element to construct independent, (nearly) uniformly distributed random
elements of G.As usual, since we are working in a permutation-group setting, computing an
image of a point under a permutation is taken as having unit cost. The permutation domain
� is given a total ordering, and we often sort an m-subset of � with respect to this ordering.
This can be done at a cost of m log m comparisons of two points to determine which is
greater.

Theorem 1.2 (Main Theorem). Let G = 〈X〉 ∈ F \ F0 acting on � of size N , so that

Ar
n � G � Sn � Sr and N = (

n
k

)r
,

for some positive integers n, k, r with n > 2rk2 and rk > 1. Given an error probability
ε > 0, the group G can be identified constructively, with probability at least 1 − ε, in

O((ξ + |X|N + N log N) log N(log N + log ε−1))

time. The time requirement of computing gφ, for any given g ∈ G, is O(nr2k log(rk)) =
o(N), and the underlying data structures require O(N log N) memory.

The significance of this result lies in the practical application: reducing the degree of the
input group from N = (

n
k

)r to the more easily manageable nr . Moreover (see Lemma 2.2),
this action of G of degree nr is its natural imprimitive action on r blocks of size n. Note
that, for g ∈ G, we can construct gφ in time o(N), without reading the entire permutation
representing g as an element of Sym(�); see Step 7 in Section 3.

Note that, in Subsection 2.2, we describe an algorithm to compute the orbits of a point
stabiliser in an arbitrary finite permutation group. This algorithm is of independent interest,
applicable, for example, in computing blocks of imprimitivity.

2. Some preliminaries

Observe that, since k < n/2, we always have
(

n

k

)
=

k−1∏
i=0

n − i

k − i
�

(
n

k

)k

> 2k,

and hence N = (
n
k

)r
> 2kr , whence

log N > kr. (3)

First we show that the subfamily F0 of F comprising those primitive subgroups
G � Sn � Sr in product action of degree N = (

n
k

)r , but with n � 2rk2, is small-base.
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Lemma 2.1. F0 is small-base; in fact, if G � Sn � Sr is in F0, then log |G| < 4 log3 N <

log5 N .

Proof. Consider G ∈ F0 with G � Sn � Sr . Since n � 2rk2, we have

|G| � (n!)r r! < nnrrr � (2rk2)2r2k2
rr � (2r2k2)2r2k2

.

By (3), we have

log |G| < (2 log2 N) log(2 log2 N) < 2 log2 N(2 log N) < log5 N

using log(2x2) < 2x for x � 1, and log N > kr � 2.

Next we prove that, for a primitive group G � Sn �Sr of degree
(
n
k

)r , with n > 2rk2, the
only transitive action of G of degree nr is its natural action.

Lemma 2.2. Suppose that G � Snr is transitive on � = {1, . . . , nr}, where n > 2rk2 and
rk > 1, and has a normal subgroup H ∼= Ar

n. Then H has r orbits of length n in �, and so
G has the natural action on � (imprimitive if r > 1).

Proof. If r = 1 the result is obvious, so we assume that r � 2. Write H = H(1)×. . .×H(r),
where for each i, H(i) ∼= An, and let πi : H → H(i) denote the projection map. Since H

is normal in G, the H -orbits in � have a constant size, say m > 1, so m | nr . Let σ ∈ �,
and set

m = |σH | = |H : Hσ |.
Then Hσ � π1(Hσ ) × . . . × πr(Hσ ), and so m = |H : Hσ | is divisible by∏r
i=1 |H(i) : πi(Hσ )|. Now each proper subgroup of An has index at least n, and by

assumption, m � nr < n2/2. Thus πi(Hσ ) = H(i) for all but at most one i. If
πi(Hσ ) = H(i) for all i, then Hσ

∼= As
n for some s < r and

m = |H : Hσ | � |An| = 1

2
(n!),

contradicting the fact that m < n2/2.
Hence, without loss of generality we have

π1(Hσ ) � H(1), and πi(Hσ ) = H(i) for all i > 1.

If π : H → ∏r
i=2 H(i) is the natural projection, then Hσ � π1(Hσ )×π(Hσ ), and a similar

argument to that in the previous paragraph shows that π(Hσ ) = ∏r
i=2 H(i), and hence that

Hσ = π1(Hσ ) × ∏r
i=2 H(i). Thus

m = |H(1) : π1(Hσ )| � n.

Since the normal subgroup
∏r

i=2 H(i) of H is contained in the point stabiliser Hσ , the
group

∏r
i=2 H(i) fixes the H -orbit σH pointwise. Now H is faithful on �, since H � Snr ,

and it follows that H is intransitive. Thus n � m < nr .
If m = n then the result is proved, so we assume that m > n. Then n < m < nr and

m | nr . In particular r � 3, and so n � 7. Also, since n > 2r , we have

m = |H(1) : π1(Hσ )| � nr <

(
n

3

)
.
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By [6, Theorem 5.2A], the only proper subgroups of H(1) ∼= An of index less than
(
n
3

)
and

greater than n are:

(i) An−2 (of index n(n − 1));

(ii) Sn−2 (of index n(n − 1)/2);

(iii) PSL3(2) with (n, m) = (7, 15), AGL3(2) with (n, m) = (8, 15), or P�L2(8) with
(n, m) = (9, 120).

All of these cases are impossible, since m must be a proper divisor of nr with r < n/2.

2.1. Schreier trees and sifting

Schreier trees are data structures to store transversals in the point stabiliser chain defined
in (1). In our algorithm, we do not construct a full point stabiliser chain for the input
G ∈ F \ F0, and we need only the first transversal for G mod Gα , for some α ∈ �.
Therefore, we restrict our description to this special case.

For any G � Sym(�) and α ∈ �, a Schreier tree for G mod Gα is a pair (S, T ), where
S ⊆ G satisfies α〈S〉 = αG, and T is a directed labelled tree with root α. The vertex set of
T is αG. All edges of T are directed toward the root α, and the edge labels are elements
of S where the directed edge from γ to δ with label s satisfies γ s = δ. If γ is a vertex
of T , then the sequence (s1, . . . , sm) of the edge labels along the unique path from γ to α

in T determines a word in the elements of S such that the product rγ = s1 · · · sm of these
permutations maps γ to α. Thus a Schreier tree (S, T ) defines the inverses of a set of right
coset representatives for Gα in G.

For g ∈ G with αg = γ , computing rγ and gα := grγ ∈ Gα is called the sifting of g

into Gα .
The time requirement for sifting g ∈ G with αg = γ is proportional to the length of the

path from γ to α in T . Therefore, given S, we want T to have as small a depth as possible.
To this end, we may construct T as a breadth-first-search tree: level L0 := {α}, and if level
Li is already constructed, Li+1 is the set of those γ ∈ αG \ ⋃i

j=0 Lj that are of the form

γ = δs for some δ ∈ Li and s ∈ S−1.

2.2. Constructing the orbits of a point stabiliser

In our algorithm, we require particular orbits of a point stabiliser in a large-base primitive
permutation group. In this subsection we present a Las Vegas algorithm that constructs all
such orbits in nearly linear time. The results are independent of our special setting, holding
true for any finite permutation group.

Thus throughout this subsection, G � Sym(�) is an arbitrary permutation group on a
finite set � of N points, and α ∈ �. We use [9, Theorem 4.4.6], which is a strengthened
version of the main result of [4]. First we construct a subgroup of Gα which, with high
probability, has the same orbits as Gα .

Lemma 2.3. Let ε satisfy 0 < ε < 1. For G as above, O(log N(log N + log(ε−1)))

independent, uniformly distributed random elements of Gα , generate a subgroup H � Gα

which has the same orbits as Gα in � with probability at least 1 − ε.

Proof. Let �j be an orbit of Gα of length mj > 1. By [9, Theorem 4.4.6] the probability that
any subgroup of Gα generated by at least 8 log mj + 16 independent, uniformly distributed
random elements of Gα has �j as an orbit is at least 1 − m−0.29

j . Since mj � N , we
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can choose c > 1 such that c(8 log N + 16) independent, uniformly distributed, random
elements of Gα generate a subgroup that has the same orbits as Gα with accumulated
probability of failure at most ∑

mi

m−0.29c
i ,

where the sum is over all Gα-orbits in � of lengths greater than 1. Since the worst case for
the error occurs in the situation where mi = 2 for all orbits apart from {α}, the accumulated
probability of failure is less than

N

2
· 2−0.29c.

For any ε > 0, to ensure that this probability of failure is at most ε, we must take

c � log N + log(ε−1) − 1

0.29
.

To apply the previous lemma, we need to be able to construct independent, uniformly
distributed, random elements of Gα . We do this by constructing a (shallow) Schreier tree
for G mod Gα (see Subsection 2.1). We can then obtain random elements of Gα by sifting
random elements of G through this Schreier tree; this, if the tree has depth d, involves at
most d + 1 permutation multiplications for each element.

Lemma 2.4. For G as above, and ε satisfying 0 < ε < 1, there is a Las Vegas
algorithm that, with probability at least 1 − ε, constructs the orbits of Gα in

O((ξ + N log N)(log N + log(ε−1)) log N)

time, where ξ is as defined before Theorem 1.2.

Proof. By [9, Theorem 4.4.6], for c1 � 1, c1(8 log N +16) random elements of G construct
a breadth-first-search Schreier tree for G mod Gα , of depth at most 2 log N + 4, with
probability of failure less than N−0.29c1 . For any ε > 0, to ensure that this probability of
failure is at most ε/2, we must take

c1 � 1 + log(ε−1)

0.29 log N
,

and since c1 must be at least 1, we take

c1 = max

{
1 + log(ε−1)

0.29 log N
, 1

}

� max

{
1 + log(ε−1)

0.29
, 1

}
= O(log(ε−1)).

Thus we require a set X of O(log N log(ε−1)) random elements of G, each of which is
then applied to the N points of �, to construct a tree reaching every coset of G mod Gα .
Replacing the elements of X by their inverses, but keeping the labelling of the tree edges,
we obtain the Schreier tree for G mod Gα . The cost of constructing the Schreier tree is
therefore O((ξ + N) log N log(ε−1)). This tree can be stored in an array of length N (see
[9, Section 4.1]).

Assuming that the Schreier tree has been successfully constructed, we now attempt to
construct a subgroup H of Gα with the same orbits as Gα in �, as in Lemma 2.3. Sifting
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c2(8 log N + 16) random elements of G, with

c2 = log N + log(ε−1)

0.29
= O(log N + log(ε−1)),

through the Schreier tree, we obtain independent, uniformly distributed, random elements
of Gα , that generate a subgroup H of Gα with the same orbits as Gα , with a probability
of failure less than ε/2. The cost of selecting and sifting the O((log N + log(ε−1)) log N)

random elements through the Schreier tree of depth O(log N) is therefore

O((ξ + N log N)(log N + log(ε−1)) log N).

Taking these generators, we may then construct the orbits of Gα in

O(N log N(log N + log(ε−1)))

time (see [9, Section 2.1.1]). The overall probability of failure is less than ε/2+ε/2 = ε.

2.3. More details on the action of large-base primitive groups

As noted in Section 1, the family of large-base primitive groups consists of certain
subgroups of wreath products in product action, namely subgroups G of

G(n, r) = Sn � Sr
∼= Sr

n : Sr < Sym(�),

where we identify � with the set of r-tuples of k-element subsets of {1, . . . , n}. In particular,
G must contain the socle Ar

n of G(n, r) and G must act transitively on the n copies of An

in its socle by conjugation. Thus N = |�| = (
n
k

)r and, as discussed in Section 1, we may
assume that n > 2rk2, rk > 1, and k < n/2.

We therefore may view a point η of � as an r-tuple η = (η1, . . . , ηr ) where ηi ⊆
{1, . . . , n} and |ηi | = k for i ∈ {1, . . . , r}. For η ∈ �, let η[s] denote the k-set in the sth
component of η. We may then describe η by the set Pη of (letter, component)-pairs (m, s),
where m ∈ {1, . . . , n} and s ∈ {1, . . . , r}, such that m ∈ η[s]. Thus

(m, s) ∈ Pη if and only if m ∈ η[s]. (4)

For η, ζ ∈ �, we say that η meets ζ if η[s] ∩ ζ [s] 
= ∅ for some s ∈ {1, . . . , r} or,
equivalently, if Pη ∩ Pζ 
= ∅.

Since G is primitive on �, its image under the natural homomorphism from G(n, r) to Sr

is a transitive subgroup of Sr . Thus, with reference to the product action of G(n, r) defined
in Section 1, G acts transitively on the components of the points of �. Choose a point
α ∈ �. Our algorithm makes essential use of two special Gα-orbits, defined as follows.

Definition 2.5. For α ∈ �, define �(α) to be the subset of all points in � which differ
from α in only one component, and in that component differ by only one letter; that is,

�(α) = {β ∈ � : ∃c such that ∀t ∈ {1, . . . , r} \ {c}, β[t] = α[t], |β[c] ∩ α[c]| = k − 1}.
Define �(α) to be the subset of all points in � which do not meet α; that is,

�(α) = {β ∈ � : ∀ t ∈ {1, . . . , r}, β[t] ∩ α[t] = ∅}.
Lemma 2.6 (see [3, Lemma 2.10]). For G as above, �(α) is the shortest, and �(α) is the
longest Gα-orbit in � \ {α}.

Next we define a family of nr subsets of � which become our new point set for the
imprimitive action of G.
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���
�

component c

η[c]

letter �

η

Figure 1: A representation of a point η of the jellyfish J(�, c)

Definition 2.7. For each c ∈ {1, . . . , r} and � ∈ {1, . . . , n}, define the jellyfish J(�, c) to
be the subset of all points of � whose cth component contains the letter �; that is,

J(�, c) = {η ∈ � : (�, c) ∈ Pη}.
Since k < n/2, there exist points η, ζ ∈ J(�, c) such that Pη ∩ Pζ = {(�, c)}, and hence⋂

η∈J(�,c)

Pη = {(�, c)}.

Thus, a jellyfish determines a unique (letter, component)-pair. Note that each point of �

lies in exactly rk jellyfish, and the cardinality of each jellyfish is

|J(�, c)| =
(

n − 1

k − 1

)(
n

k

)r−1

= N
k

n
.

Speaking informally, the set J(�, c) focuses attention on ‘what is happening’ at a
particular component and around a particular letter. We found a representation of J(�, c), as
in Figure 1, helpful in identifying important properties of the set, and this in turn suggested
the name jellyfish. Since the sets J(�, c) were central to our algorithm, a name for them was
required, and the name jellyfish ‘stuck’. Perhaps Figure 1 may also be helpful to the reader.

The group G(n, r) permutes the set of jellyfish in a natural way: for g = (g1, . . . , gr )h ∈
G(n, r), where each gi ∈ Sn and h ∈ Sr , we have J(�, c)g = J(�gc , ch). Since G projects
to a transitive subgroup of Sr , and since G contains Ar

n, it follows that G is transitive on the
set � of all the nr jellyfish. Moreover, we have the following lemma.

Lemma 2.8. The group G acts faithfully on the set � of jellyfish; moreover, this action is
equivalent to the natural imprimitive action of G with r blocks of size n.

Proof. Let K be a non-trivial normal subgroup of G. Since G is primitive on �, K is
transitive on �, and so K fixes no jellyfish setwise. Thus K acts non-trivially on �. Taking
K = Ar

n, by Lemma 2.2, the induced action of G on the set � of all jellyfish is the natural
action with r blocks of size n (imprimitive if r > 1).

Our approach is to construct one jellyfish, from which we can construct all jellyfish as
the orbit under G of this first jellyfish. The main ingredient from a computational point of
view is the use of Gα-orbits. In particular, we make use of the shortest and longest Gα-orbits
in � \ {α} given in Lemma 2.6. For β ∈ �(α) such that β[c] \ α[c] = {�}, we show in
Lemma 4.1 that J(�, c) may be obtained by removing from � the subsets �(γ ) for certain
points γ ∈ �(α) \ �(β).
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3. Overview of our approach

In this section we outline our solution strategy, describing the way in which the geometric
structure of the assumed permutation domain, described in Subsection 2.3, can be exploited
computationally to obtain a set of ‘new points’ upon which the given large-base primitive
permutation group acts faithfully and transitively.

We outline the steps of the algorithm described and analysed in this paper. Given a
permutation group G = 〈X〉 acting primitively on � = {1, . . . , N}, where

N =
(

n

k

)r

and Ar
n � G � G(n, r) = Sn � Sr,

we construct a homomorphism (by images of generators) from G into Snr . Note that,
although we assume that G is contained in G(n, r) in its product action, we do not have
available an identification of the points of � with r-tuples of k-sets from {1, . . . , n}.

1. Choose a point α ∈ �, and construct a shallow Schreier tree for G acting on � mod
Gα , as in Subsection 2.2.

2. By sifting random elements of G through the Schreier tree to obtain random elements
of Gα (see Subsections 2.1 and 2.2), construct a subgroup H � Gα which has the
same orbit structure as Gα , and so construct the shortest Gα-orbit �(α), and the
longest Gα-orbit �(α) in �\{α}.

3. Choose a point β ∈ �(α) (where, for some c ∈ {1, . . . , n} and � ∈ {1, . . . , r},
β[c] \ α[c] = {�}). By taking random elements of �(α) \ �(β), obtain a subset I1
such that � \ ⋃

γ∈I1
�(γ ) is a jellyfish, namely J1 = J(�, c).

4. Construct the set � of all nr jellyfish as the G-orbit of the first jellyfish J1, and check
that � is G-invariant. Use the images of I1 corresponding to the jellyfish already
constructed to help determine whether a new jellyfish image is equal to one already
constructed.

5. During the orbit calculation, record — for each point γ ∈ � — a list of the indices
j of the rk jellyfish Jj containing γ (as rows of Table T 1). Also record, for each
jellyfish Jj , the points of Jj in increasing order (as rows of Table T 2), the points of
the set Ij corresponding to Jj (as rows of Table T 3), and information about how Jj

was obtained as an image of some previously constructed jellyfish, namely an integer
i and generator g ∈ X such that Jj = Jg

i (as rows of Table T 4).

6. For each jellyfish Ji , reduce the set Ii to a pair Ii = {γi, δi} of points of � such that
Pγi

∩ Pδi
= {(m, s)}, where Ji = J(m, s).

7. Rewrite each of the generators in X as permutations of degree nr by determining the
images under each generator of each of the nr jellyfish. The image under g ∈ X of
Ji is calculated by taking the images under g of the two points in Ii and intersecting
the corresponding rows of Table T 1.
This same method is used, for an arbitrary element g ∈ G, to compute the permutation
of {1, . . . , nr} corresponding to g. Note that this requires O(nr) = o(N) image
computations under the permutation g. In particular we do not need even to read the
whole of the permutation of g in its action on the N points of � into memory.
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4. Constructing the first jellyfish

In this section we are concerned with Step 3 of the outline in Section 3. Suppose that
we have already constructed the orbits of Gα . Pick any β ∈ �(α) (see Definition 2.5 and
Lemma 2.6); then there exist a component c and a letter � such that α and β differ only in
component c, and β[c] \ α[c] = {�}. We want to construct the jellyfish J(�, c): the set of
all points in � whose cth component contains the letter �. Note that for any γ ∈ �, we
have γ ∈ �(α) \ �(β) if and only if γ [d] is disjoint from α[d] = β[d] in component d for
all d 
= c, � ∈ γ [c], and γ [c] is disjoint from α[c]. Thus, for γ ∈ �(α) \ �(β) we have
γ ∈ J(�, c) and �(γ ) ∩ J(�, c) = ∅. We construct J(�, c) by removing �(γ ) from � for
various points γ ∈ �(α) \ �(β).

Lemma 4.1. Let α, β, �, c be such that β ∈ �(α) and α[c] \ β[c] = {�}, let ε satisfy
0 < ε < 1, and let I be a set of �log(N/ε)� uniformly distributed, randomly chosen
γ ∈ �(α) \ �(β). Then the probability that

J(�, c) = � \
⋃
γ∈I

�(γ )

is at least 1 − ε.

Proof. Fix a point δ ∈ � such that δ 
∈ J(�, c), so � 
∈ δ[c]. For a uniformly distributed
randomly chosen γ ∈ �(α) \ �(β), for d 
= c we have γ [d] ∩ α[d] = ∅, and so the
probability that γ [d] is disjoint from α[d] ∪ δ[d] is at least(

n−2k
k

)
(
n−k
k

) .

Also, γ [c] ∩ α[c] = ∅ and � ∈ γ [c], and so the probability that γ [c] \ {�} is disjoint from
α[c] ∪ δ[c] ∪ {�} is at least (

n−2k−1
k−1

)
(
n−k−1
k−1

) .

Now δ ∈ �(γ ) if and only if δ[d] ∩ γ [d] = ∅ for all d , and hence the probability of this
is at least (

n−2k−1
k−1

)(
n−2k

k

)r−1

(
n−k−1
k−1

)(
n−k
k

)r−1 =
( k−2∏

i=0

n − 2k − 1 − i

n − k − 1 − i

)( k−1∏
i=0

n − 2k − i

n − k − i

)r−1

�
(n − 3k

n − 2k

)k−1+k(r−1)

�
(2rk2 − 3k

2rk2 − 2k

)rk−1

using the inequality n > 2rk2. This is equal to((
1 − 1

2rk − 2

)2rk−2
)1/2

� 1

2

since (1 − 1/x)x � 1/4 for x � 2. Hence the probability that, for a set I of �log(N/ε)�
uniformly distributed randomly chosen γ ∈ �(α) \ �(β), the point δ 
∈ ⋃

γ∈I �(γ ) is at
most ( 1

2

)�(log N/ε)� � ε/N.

Since this holds for all δ 
∈ J(�, c), the probability that J(�, c) = � \ ⋃
γ∈I �(γ ) is at least

1 − ε.
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Lemma 4.2. For ε satisfying 0 < ε < 1, given the orbits of Gα and the Schreier tree (S, T )

for G mod Gα used to construct these orbits in Lemma 2.4, we can construct a jellyfish,
with probability at least 1 − ε, in O(N log N(log N + log(ε−1)) time.

Proof. Fix β ∈ �(α), and let c and � be such that β[c] \ α[c] = {�}. The path from β to α

in the Schreier tree T can be constructed in O(log N) time, and the product g−1 of the edge
labels along this path can be computed in O(N log N) time. In a further O(N) time we can
compute g and �(β) = �(α)g . Using the characteristic functions of �(α) and �(β) we
can construct the set difference �(α)\�(β) in O(N) time. Now let I be a set of �log(N/ε)�
random selections from �(α) \�(β). By Lemma 4.1, we can construct the jellyfish J(�, c)

as � \ ⋃
γ∈I �(γ ), with probability of success at least 1 − ε. Using the same approach

as for �(β) above, the construction of each �(γ ) and subsequent removal from � takes
O(N log N) time. Hence we require O(N log N(log N + log(ε−1))) time overall.

5. Constructing all jellyfish

Let I1 be the set of random points of �(α) \ �(β) used in the proof of Lemma 4.2 to
construct the first jellyfish J1, so that

J1 = � \
⋃
γ∈I1

�(γ ).

Recall that I1 ⊆ �(α) \�(β) ⊆ J1. For a jellyfish J, a subset I ⊆ J is called an identifying
set for J if J = � \ ⋃

γ∈I �(γ ).
Given the jellyfish J1 and its identifying set I1, we can construct all jellyfish by computing

the orbit of J1 under G (since by assumption, G acts transitively on the set of all jellyfish).
In order to determine whether the image of a jellyfish under a particular generator of G is
a jellyfish that we have previously encountered, we use the following lemma.

Lemma 5.1. For a jellyfish J with identifying set I, there is a unique (letter, component)-pair
common to all γ ∈ I; that is, | ⋂γ∈I Pγ | = 1.

Proof. Suppose that J = J(�, c), so that � ∈ γ [c] for all γ ∈ I ⊆ J. Then (�, c) ∈⋂
γ∈I Pγ . If (m, d) ∈ ⋂

γ∈I Pγ with (m, d) 
= (�, c), then m ∈ γ [d] for all γ ∈ I, and so
{δ ∈ � : m ∈ δ[d]} is disjoint from �(γ ) for all γ ∈ I; that is,

{δ ∈ � : m ∈ δ[d]} ⊂ � \
⋃
γ∈I

�(γ ).

However, since (m, d) 
= (�, c) there exist points δ ∈ � such that m ∈ δ[d] and � /∈ δ[c].
Such points lie in �\⋃

γ∈I �(γ ) (since m ∈ δ[d]), but do not lie in J(�, c) (since � /∈ δ[c]).
Thus � \ ⋃

γ∈I �(γ ) 
= J(�, c), which is a contradiction.

This lemma implies that an identifying set I of a jellyfish cannot be a subset of a second
distinct jellyfish, since in that case we would have | ⋂γ∈I Pγ | � 2. So, given the first
jellyfish J1 and its identifying set I1, we define the identifying set of a newly constructed
jellyfish Jg

1 for g ∈ G to be Ig
1 , and we use such identifying sets to determine efficiently

whether a jellyfish image Jg
1 is equal to any jellyfish already computed.

Lemma 5.2. Given the jellyfish J1 and its identifying set I1, we can construct all jellyfish,
with an identifying set for each, and can prove that the set of jellyfish is G-invariant, in
O(|X|N log N(log N + |I1|)) time.
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In the following proof we work with the jellyfish and identifying sets as lists of elements
of �, of length |J| and |I| respectively. Each of the jellyfish constructed is returned as a list
of its elements in increasing order.

Proof. We construct the orbit of the given jellyfish J1, and apply to each member J of the
orbit the following test, for each g ∈ X. First, we construct the image Jg in O(|J|) time.
Next, we sort the image Jg , which takes O(|J| log |J|) comparisons. For each of the (less
than nr) identifying sets I of the previously constructed jellyfish, we use at most |I| binary
searches in Jg to check whether I is a subset of Jg . Since all the I are images of I1, this
requires O(nr|I1| log |J|) time. If an identifying set I′ for a jellyfish J′ is found to lie within
Jg , we make certain that Jg is not new by comparing the two entire jellyfish Jg and J′.
(This test, carried out for all g ∈ X, guarantees that G leaves the set of jellyfish invariant.)
By Lemma 5.1 this occurs for at most one of the I′, and since all the jellyfish are stored
as sorted lists, this requires O(|J|) comparisons. For each new jellyfish Jg constructed, we
also compute an identifying set for it as the image under g of the identifying set for J in
O(|I|) time. After applying this procedure to each of the nr jellyfish J in the orbit, and for
each generator g ∈ X, we will have completed the required computation, and will have
checked that the set of jellyfish is G-invariant. The total cost of the procedure is at most

O
(
nr|X|(|J| log |J| + nr|I1| log |J|)).

Since |J| = N(k/n), this is O(|X| log N(Nrk+n2r2|I1|)). By (3), log N > rk. Also, since
rk � 2, we have N = (

n
k

)r � 1
4n2r2, the worst case being when k = 1, r = 2. Thus the

cost is at most O(|X|N log N(log N + |I1|)).

6. Constructing the homomorphism

In this section we describe how to construct the homomorphism φ from G into Snr , by
rewriting the generators of G as permutations of the set � of nr jellyfish.

6.1. Jellyfish numbering — the tables

During the construction of the orbit of all jellyfish, we maintain tables T 1, T 2, T 3 and
T 4. After completing the computation, Table T 1 has N rows, with row i being a list in
increasing order of those indices j such that the ith point lies in the j th jellyfish Jj . Table
T 2 is a list of the jellyfish, the j th row consisting of the points of Jj in increasing order,
while Table T 3 is a list of identifying sets for the jellyfish, the j th row consisting of the
points of an identifying set for Jj in increasing order. Table T 4 is simply a list of how
each jellyfish was constructed from a previously constructed jellyfish, and contains in row
j the number i < j and the generator g ∈ X such that Jj = Jg

i . Tables T 3 and T 4 can be
considered as extensions of Table T 2.

The tables are constructed as follows. When a new jellyfish, say Jj , is constructed,
say as Jg

i , the sorted list of points in Jj becomes row j of T 2, and its identifying set
is the corresponding row of T 3. The pair (i, g) is stored in row j of T 4. For each new
jellyfish constructed in the orbit computation, the number of this new jellyfish is added to
the corresponding rows of T 1 representing each of the points in this jellyfish. Each row of T 1
then contains the numbers of the jellyfish which contain that point. The jellyfish numbers,
from 1 to nr , are determined simply by the order in which the jellyfish are constructed, and
the corresponding identifying sets then have the same numbering.
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6.2. Identifying pairs

After having constructed all jellyfish and the Tables T 1, T 2, T 3 and T 4, we construct a
pair of points which uniquely identifies the first jellyfish J1. This is a pair {γ, δ} of points of
J1 with the property that γ and δ meet in only one component, and meet only once in that
component; that is, |Pγ ∩Pδ| = 1. The intersection Pγ ∩Pδ is the unique (letter, component)-
pair represented by this jellyfish; that is to say, J1 = J(�, c) where Pγ ∩ Pδ = {(�, c)}.
Since k < n/2, such a pair {γ, δ} exists, and we can check this property by checking that 1
is the only index in common in row γ and row δ of Table T 1.

Given an identifying pair for the first jellyfish, we can then use Table T 4 to construct
identifying pairs for each of the other jellyfish, since the image of an identifying pair is
again an identifying pair for the jellyfish image. These identifying pairs can then replace
the identifying sets for each of the jellyfish, and are used as a more efficient way of rewriting
group elements in the next subsection.

To find an identifying pair for the first jellyfish J1, we choose a point γ ∈ J1, and
randomly search for a second point δ. As we remarked above, such points δ exist for any
given γ , and we now estimate the probability of finding this second point.

Lemma 6.1. For ε satisfying 0 < ε < 1, a pair of points which uniquely identifies
a given jellyfish can be found in O(rk log(ε−1)) time, with probability at least 1 − ε.
Given an identifying pair for the first jellyfish, identifying pairs can be constructed for all
remaining jellyfish in additional O(nr) time. The total time required is less than
O(N + log N log(ε−1)).

Proof. Given a pointγ ∈ J(�, c), letp be the probability that a random point δ of J(�, c)\{γ }
forms an identifying pair {γ, δ} for this jellyfish (that is, that Pγ ∩ Pδ = {(�, c)}). Then

p =
(
n−k
k−1

)(
n−k
k

)r−1

(
n−1
k−1

)(
n
k

)r−1 =
( k−2∏

i=0

n − k − i

n − 1 − i

)( k−1∏
i=0

n − k − i

n − i

)r−1

�
(n − 2k

n − k

)k−1+k(r−1)

>
(2rk2 − 2k

2rk2 − k

)rk−1

=
((

1 − 1

2rk − 1

)2rk−1
)(rk−1)/(2rk−1)

>

((
1 − 1

3

)3
)1/2

>
1

2

since 2rk − 1 � 3 and (rk − 1)/(2rk − 1) < 1/2.
Making m such selections therefore gives an accumulated probability of failure of at

most (1/2)m. For a given ε > 0, to ensure that this probability of failure is at most ε, we
must make at least m = �log(ε−1)� random selections. To check that a pair of points forms
an identifying pair, we simply intersect the corresponding rows of Table T 1, which requires
rk comparisons (as the rows of Table T 1 are already sorted). Thus an identifying pair for
a given jellyfish can be found in time O(rk log(ε−1)). Since log N > rk and N > nr , the
total time required is less than O(N + log N log(ε−1)).

6.3. Rewriting group elements

We are now in a position to construct the homomorphism φ from G into Snr . We do this
by computing, for each generator g ∈ X, the image of each jellyfish under g, thus writing
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g as a permutation of the set � of nr jellyfish. This procedure requires only Table T 1 and
the list of identifying pairs.

Lemma 6.2. An element g ∈ G can be written as a permutation of the set � of nr jellyfish
in O(nr2k log(rk)) = o(N) time.

Proof. For an element g ∈ G, we compute the image of each jellyfish under g as follows.
Let Ji be a jellyfish with identifying pair {γi, δi}. We first compute the image of γi and δi

under g to obtain two points γ
g
i , δ

g
i (at a cost of two image computations). The rows of

Table T 1 corresponding to γ
g
i and δ

g
i intersect in a unique jellyfish number j , since {γi, δi}

is an identifying pair for Ji . The number j can be computed at a cost of O(rk log(rk))

comparisons, and j is then the image of i under g. In this way, each generator can be
written as a permutation of {1, . . . , nr} at a cost of O(nr2k log(rk)). By (3), rk < log N ,
and as rk � 2 we have

(
n
2

)
� N . Hence

O(nr2k log(rk)) = O(N1/2 log2 N log log N) = o(N).

7. Proof of Theorem 1.2

Let G = 〈X〉, and let ε be as in Theorem 1.2. We prove the theorem according to the
various steps described in Section 3. By Lemma 2.4, Steps 1 and 2, which construct the
Gα-orbits with probability at least 1 − ε/3, can be done in

O((ξ + N log N) log N(log N + log(3ε−1)))

time. Next, by Lemma 4.2, Step 3, the construction of the first jellyfish J1 and identifying
set I1, can be done with probability at least 1 − ε/3 in

O(N log N(log N + log(3ε−1)))

time. The identifying set constructed has size |I1| = �log(3N/ε)�. Steps 4 and 5 involve
constructing the set � of all jellyfish, as well as the Tables T 1, T 2, T 3 and T 4, and verifying
that � is G-invariant. These steps can be done in

O(|X|N log N(log N + |I1|))) = O(|X|N log N(log N + log(3ε−1)))

time, by Lemma 5.2. Step 6, in which we construct the identifying pairs, can be done, by
Lemma 6.1, with probability at least 1 − ε/3 in

O(N + log N log(3ε−1))

time. Finally Step 7, computing the images of the |X| generators as permutations of �, can
be done in

O(|X|nr2k log(rk)) = o(|X|N)

time, by Lemma 6.2.
Drawing together these estimates, we see first that the probability the algorithm will

succeed is at least 1 − ε. The cost is at most

O((ξ + |X|N + N log N) log N(log N + log(ε−1))).

At this point we have completed tasks (i) and (ii) of Definition 1.1 for identifying G con-
structively. The deterministic algorithm to compute the image of any given g ∈ G as a
permutation of {1, . . . , nr} is given in Lemma 6.2, and the time per element is

O(nr2k log(rk)) = o(N).

This completes the proof.
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