MINIMAL SURFACES IN 3-DIMENSIONAL SOLVABLE LIE GROUPS II

Jun-ichi Inoguchi

Abstract

An integral representation formula in terms of the normal Gauss map for minimal

 surfaces in 3-dimensional solvable Lie groups with left invariant metric is obtained.
1. Introduction

In the previous paper [3], we obtained an integral representation formula for minimal surfaces in the 3-dimensional solvable Lie group:

$$
G\left(\mu_{1}, \mu_{2}\right)=\left(\mathbb{R}^{3}\left(x^{1}, x^{2}, x^{3}\right), g_{\left(\mu_{1}, \mu_{2}\right)}\right),
$$

with group structure

$$
\left(x^{1}, x^{2}, x^{3}\right) \cdot\left(\widetilde{x}^{1}, \widetilde{x}^{2}, \widetilde{x}^{3}\right)=\left(x^{1}+e^{\mu_{1} x^{3}} \widetilde{x}^{1}, x^{2}+e^{\mu_{2} x^{3}} \widetilde{x}^{2}, x^{3}+\widetilde{x}^{3}\right)
$$

and metric

$$
g_{\left(\mu_{1}, \mu_{2}\right)}=e^{-2 \mu_{1} x^{3}}\left(d x^{1}\right)^{2}+e^{-2 \mu_{2} x^{3}}\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2}
$$

This two-parameter family of solvable Lie groups contains the following particular examples: Euclidean 3-space \mathbb{E}^{3}, hyperbolic 3 -space H^{3} and Euclidean motion group $E(1,1)$. Moreover, $G(0,1)$ is isometric to the Riemannian direct product $H^{2} \times \mathbb{E}^{1}$ of hyperbolic 2-space and the real line \mathbb{E}^{1}.

In this paper, we investigate the normal Gauss maps for surfaces in $G\left(\mu_{1}, \mu_{2}\right)$ and reformulate the integral representation formula of [3] in terms of the normal Gauss map.

On the other hand, study of minimal surfaces in the reducible Riemannian symmetric space $H^{2} \times \mathbb{E}^{1}$ has been started very recently by Rosenberg and his collaborators. See $[9,10]$.

In a recent paper [7], Mercuri, Montaldo and Piu obtained an integral representation formula for minimal surfaces in $H^{2} \times \mathbb{E}^{1}([7$, Theorem 5.1]). Their formula coincides with our formula for $G(0,1)$. Thus our formula is a unification of Góes-Simões-Kokubu formula [2,5] and Mercuri-Montaldo-Piu formula [7].

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/06 \$A2.00+0.00.

2. Solvable Lie group

In this paper, we study the following two-parameter family of homogeneous Riemannian 3-manifolds;

$$
\begin{equation*}
\left\{\left(\mathbb{R}^{3}\left(x^{1}, x^{2}, x^{3}\right), g_{\left(\mu_{1}, \mu_{2}\right)}\right) \mid\left(\mu_{1}, \mu_{2}\right) \in \mathbb{R}^{2}\right\} \tag{2.1}
\end{equation*}
$$

where the metrics $g_{\left(\mu_{1}, \mu_{2}\right)}$ are defined by

$$
\begin{equation*}
g_{\left(\mu_{1}, \mu_{2}\right)}:=e^{-2 \mu_{1} x^{3}}\left(d x^{1}\right)^{2}+e^{-2 \mu_{2} x^{3}}\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2} \tag{2.2}
\end{equation*}
$$

Each homogeneous space $\left(\mathbb{R}^{3}, g_{\left(\mu_{1}, \mu_{2}\right)}\right)$ is realised as the following solvable matrix Lie group:

$$
G\left(\mu_{1}, \mu_{2}\right)=\left\{\left.\left(\begin{array}{cccc}
0 & e^{\mu_{1} x^{3}} & 0 & x^{1} \\
0 & 0 & e^{\mu_{2} x^{3}} & x^{2} \\
0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, x^{1}, x^{2}, x^{3} \in \mathbb{R}\right\}
$$

The Lie algebra $g\left(\mu_{1}, \mu_{2}\right)$ is given explicitly by

$$
\mathfrak{g}\left(\mu_{1}, \mu_{2}\right)=\left\{\left.\left(\begin{array}{cccc}
0 & 0 & 0 & y^{3} \tag{2.3}\\
0 & \mu_{1} y^{3} & 0 & y^{1} \\
0 & 0 & \mu_{2} y^{3} & y^{2} \\
0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, y^{1}, y^{2}, y^{3} \in \mathbb{R}\right\}
$$

Then we can take the following orthonormal basis $\left\{E_{1}, E_{2}, E_{3}\right\}$ of $\mathfrak{g}\left(\mu_{1}, \mu_{2}\right)$:

$$
E_{1}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), E_{2}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right), E_{3}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & \mu_{1} & 0 & 0 \\
0 & 0 & \mu_{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

Then the commutation relation of \mathfrak{g} is given by

$$
\left[E_{1}, E_{2}\right]=0,\left[E_{2}, E_{3}\right]=-\mu_{2} E_{2},\left[E_{3}, E_{1}\right]=\mu_{1} E_{1}
$$

Left-translating the basis $\left\{E_{1}, E_{2}, E_{3}\right\}$, we obtain the following orthonormal frame field:

$$
e_{1}=e^{\mu_{1} x^{3}} \frac{\partial}{\partial x^{1}}, e_{2}=e^{\mu_{2} x^{3}} \frac{\partial}{\partial x^{2}}, e_{3}=\frac{\partial}{\partial x^{3}}
$$

The Levi-Civita connection ∇ of $G\left(\mu_{1}, \mu_{2}\right)$ is described by

$$
\begin{align*}
& \nabla_{e_{1}} e_{1}=\mu_{1} e_{3}, \nabla_{e_{1}} e_{2}=0, \nabla_{e_{1}} e_{3}=-\mu_{1} e_{1} \\
& \nabla_{e_{2}} e_{1}=0, \nabla_{e_{2}} e_{2}=\mu_{2} e_{3}, \nabla_{e_{2}} e_{3}=-\mu_{2} e_{2} \tag{2.4}\\
& \nabla_{e_{3}} e_{1}=\nabla_{e_{3}} e_{2}=\nabla_{e_{3}} e_{3}=0 .
\end{align*}
$$

Example 2.1. (Euclidean 3-space) The Lie group $G(0,0)$ is isomorphic and isometric to the Euclidean 3-space $\mathbb{E}^{3}=\left(\mathbb{R}^{3},+\right)$.
EXAMPLE 2.2. (Hyperbolic 3-space) Take $\mu_{1}=\mu_{2}=c \neq 0$. Then $G(c, c)$ is a warped product model of the hyperbolic 3 -space:

$$
H^{3}\left(-c^{2}\right)=\left(\mathbb{R}^{3}\left(x^{1}, x^{2}, x^{3}\right), e^{-2 c x^{3}}\left\{\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}\right\}+\left(d x^{3}\right)^{2}\right)
$$

This matrix group model $G(c, c)$ is used by Góes-Simões [2] and Kokubu [5].
Example 2.3. (Riemannian product $\left.H^{2}\left(-c^{2}\right) \times \mathbb{E}^{1}\right)$ Take $\left(\mu_{1}, \mu_{2}\right)=(0, c)$ with $c \neq 0$. Then the resulting homogeneous space is \mathbb{R}^{3} with metric:

$$
\left(d x^{1}\right)^{2}+e^{-2 c x^{3}}\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2}
$$

Hence $G(0, c)$ is identified with the Riemannian direct product of the Euclidean line $\mathbb{E}^{1}\left(x^{1}\right)$ and the warped product model

$$
\left(\mathbb{R}^{2}\left(x^{2}, x^{3}\right), e^{-2 c x^{3}}\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2}\right)
$$

of $H^{2}\left(-c^{2}\right)$. Thus $G(0, c)$ is identified with $\mathbb{E}^{1} \times H^{2}\left(-c^{2}\right)$.
Example 2.4. (Solvmanifold) The model space Sol of the 3-dimensional solvegeometry [11] is $G(1,-1)$. The Lie group $G(1,-1)$ is isomorphic to the Minkowski motion group

$$
E(1,1):=\left\{\left.\left(\begin{array}{ccc}
e^{x^{3}} & 0 & x^{1} \\
0 & e^{-x^{3}} & x^{2} \\
0 & 0 & 1
\end{array}\right) \right\rvert\, x^{1}, x^{2}, x^{3} \in \mathbb{R}\right\}
$$

The full isometry group is $G(1,-1)$ itself. The homogeneous space

$$
G(1,-1)=G(1,-1) /\{\mathrm{E}\}
$$

is the only proper simply connected generalised Riemannian symmetric space of dimension 3 . Here E is the identity matrix.
REMARK 2.1. Let $H^{2}\left(y_{1}, y_{2}\right)$ be the upper half plane model of the hyperbolic 2 -space of constant curvature -1 :

$$
H^{2}\left(y^{1}, y^{2}\right)=\left(\left\{\left(y^{1}, y^{2}\right) \in \mathbb{R}^{2} \mid y^{2}>0\right\},\left\{\left(d y^{1}\right)^{2}+\left(d y^{2}\right)^{2}\right\} /\left(y^{2}\right)^{2}\right)
$$

Consider the warped product $H^{2}\left(y^{1}, y^{2}\right) \times{ }_{y^{2}} \mathbb{E}^{1}\left(y^{3}\right)$ with warped product metric

$$
\frac{\left(d y^{1}\right)^{2}+\left(d y^{2}\right)^{2}}{\left(y^{2}\right)^{2}}+\left(y^{2}\right)^{2}\left(d y^{3}\right)^{2}
$$

Then it is easy to verify that this warped product is isometric to $E(1,1)$. In fact, the mapping $\left(y^{1}, y^{2}, y^{3}\right):=\left(x^{1}, e^{x^{3}}, x^{2}\right)$ is an isometry from $E(1,1)$ onto $H^{2}\left(y^{1}, y^{2}\right) \times y^{2} \mathbb{E}^{1}\left(y^{3}\right)$.

Kokubu showed that every product minimal surface in the Riemannian product $\mathbb{E}^{3}\left(y^{1}, y^{2}, y^{3}\right)=\mathbb{E}^{2}\left(y^{1}, y^{2}\right) \times \mathbb{E}^{1}\left(y^{3}\right)$ is minimal in the warped product $H^{2}\left(y^{1}, y^{2}\right) \times y_{y^{2}} \mathbb{E}\left(y^{3}\right)$ (see [4, Example 3.1]).

In particular, every (totally geodesic) plane $a y^{1}+b y^{2}+c=0$ in the Euclidean 3-space $\mathbb{E}^{3}\left(y^{1}, y^{2}, y^{3}\right)$ is also minimal in this warped product. These planes are totally geodesic in the warped product if and only if $y^{1}=$ constant. Hence we notice that every plane " $x^{1}=$ constant" in $G(1,-1)$ is a totally geodesic surface.

Example 2.5. $\left(H^{2} \times_{\left(y^{2}\right)^{2}} S^{1}\right)$ Take $\left(\mu_{1}, \mu_{2}\right)=(-2,1)$. Then the resulting homogeneous space is \mathbb{R}^{3} with metric $e^{4 x^{3}}\left(d x^{1}\right)^{2}+e^{-2 x^{3}}\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2}$. Under the coordinate transformation: $\left(y^{1}, y^{2}, y^{3}\right):=\left(x^{2}, e^{x^{3}}, x^{1}\right)$, this homogeneous space is represented as the warped product $H^{2} \times_{f} \mathbb{E}$ with base

$$
H^{2}=\left(\left\{\left(y^{1}, y^{2}\right) \in \mathbb{R}^{2} \mid y^{2}>0\right\},\left\{\left(d y^{1}\right)^{2}+\left(d y^{2}\right)^{2}\right\} /\left(y^{2}\right)^{2}\right)
$$

standard fibre $\mathbb{E}^{1}=\left(\mathbb{R}\left(y^{3}\right),\left(d y^{3}\right)^{2}\right)$, and the warping function $f\left(y^{1}, y^{2}\right)=\left(y^{2}\right)^{2}$. This metric induces a Riemannian metric on the coset space $G(-2,1) / \Gamma(-2,1)$, where the discrete subgroup $\Gamma(-2,1)$ is $\{(2 \pi n, 0,0) \in G(-2,1) \mid n \in \mathbb{Z}\}$. Kokubu has shown that the catenoid in Euclidean 3-space $G(0,0)$ is naturally regarded as a minimal surface in $G(-2,1) / \Gamma(-2,1) \quad([4, \quad$ Example 3.3$])$. Note that the helicoid z $=\tan ^{-1}(y / x)$ in Euclidean 3 -space is naturally regarded as a "rotational" minimal surface in $\widetilde{E}(2) / \Gamma$, where $\widetilde{E}(2)$ is the universal covering of the Euclidean motion group $E(2)$ with flat metric and Γ is the discrete subgroup defined by $\Gamma:=\{(0,0,2 \pi n) n$ $\in \mathbb{Z}\}$. (See [3, p. 83].)

Example 2.6. Let D be the distribution spanned by e_{1} and e_{2}. Since $\left[e_{1}, e_{2}\right]=0$, this distribution is involutive. Now let M be the maximal integral surface of D through a point ($x_{0}^{1}, x_{0}^{2}, x_{0}^{3}$). Then (2.4) implies that M is flat and of constant mean curvature $\left(\mu_{1}+\mu_{2}\right) / 2$. Moreover, one can check that this maximal integral surface is the plane $x^{3}=x_{0}^{3}$.
(1) If $\left(\mu_{1}, \mu_{2}\right)=(0,0)$ then M is a totally geodesic plane.
(2) If $\mu_{1}=\mu_{2}=c \neq 0$. Then M is a horosphere in the hyperbolic 3 -space $H^{3}\left(-c^{2}\right)$.
(3) If $\mu_{1}=-\mu_{2} \neq 0$. Then M is a non-totally geodesic minimal surface.

Remark 2.2. Let $\mathrm{Gr}_{2}(T G)$ the Grassmann bundle of 2-planes over the Lie group $G=G\left(\mu_{1}, \mu_{2}\right)$. Take a nonempty subset Σ of $\mathrm{Gr}_{2}(T G)$. A surface M in G is said to be an Σ-surface if all the tangent planes of M belong to Σ. The collection of Σ-surfaces is called the Σ-geometry. In particular, if Σ is an orbit of G-action on $\mathrm{Gr}_{2}(T G)$, then Σ-geometry is said to be of orbit type. Now we regard G as a homogeneous space $G /\{\mathrm{E}\}$. Then every G-orbit in $\mathrm{Gr}_{2}(T G)$ is a homogeneous subbundle of $\mathrm{Gr}_{2}(T G)$. Hence the orbit space is identified with the Grassmann manifold $\operatorname{Gr}_{2}\left(\mathfrak{g}\left(\mu_{1}, \mu_{2}\right)\right)$. Take a unit vector W
in the Lie algebra $\mathfrak{g}\left(\mu_{1}, \mu_{2}\right)$ and denote by Π_{W} the linear 2-plane in $\mathfrak{g}\left(\mu_{1}, \mu_{2}\right)$ orthogonal to W. Let $\mathcal{O}(W)$ the orbit containing Π_{W}. Recently, Kuwabara [6] investigated $\mathcal{O}(W)$ surfaces in $G\left(\mu_{1}, \mu_{2}\right)$ with $\mu_{1}=-\mu_{2} \neq 0$.

3. Integral representation formula

Here we recall the integral representation formula obtained in the previous paper [3].

Let M be a Riemann surface and (\mathfrak{D}, z) be a simply connected coordinate region. The exterior derivative d is decomposed as

$$
d=\partial+\bar{\partial}, \partial=\frac{\partial}{\partial z} d z, \bar{\partial}=\frac{\partial}{\partial \bar{z}} d \bar{z}
$$

with respect to the conformal structure of M. Take a triplet $\left\{\omega^{1}, \omega^{2}, \omega^{3}\right\}$ of (1,0)-forms which satisfies the following differential system:

$$
\begin{align*}
& \bar{\partial} \omega^{i}=\mu_{i} \bar{\omega}^{i} \wedge \omega^{3}, i=1,2 \tag{3.1}\\
& \bar{\partial} \omega^{3}=\mu_{1} \omega^{1} \wedge \overline{\omega^{1}}+\mu_{2} \omega^{2} \wedge \overline{\omega^{2}} \tag{3.2}
\end{align*}
$$

Proposition 3.1. Let $\left\{\omega^{1}, \omega^{2}, \omega^{3}\right\}$ be a solution to (3.1)-(3.2) on a simply connected coordinate region \mathfrak{D}. Then

$$
\varphi(z, \bar{z})=2 \int_{z_{0}}^{z} \operatorname{Re}\left(e^{\mu_{1} x^{3}(z, \bar{z})} \cdot \omega^{1}, e^{\mu_{2} x^{3}(z, \bar{z})} \cdot \omega^{2}, \omega^{3}\right)
$$

is a harmonic map of \mathfrak{D} into $G\left(\mu_{1}, \mu_{2}\right)$. Conversely, any harmonic map of \mathfrak{D} into $G\left(\mu_{1}, \mu_{2}\right)$ can be represented in this form.
Equivalently, the resulting harmonic map $\varphi(z, \bar{z})$ is defined by the following data:

$$
\begin{equation*}
\omega^{1}=e^{-\mu_{1} x^{3}} x_{z}^{1} d z, \omega^{2}=e^{-\mu_{1} x^{3}} x_{z}^{2} d z, \omega^{3}=x_{z}^{3} d z \tag{3.3}
\end{equation*}
$$

where the coefficient functions are solutions to

$$
\begin{gather*}
x_{z \bar{z}}^{i}-\mu_{i}\left(x_{z}^{3} x_{\bar{z}}^{i}+x_{\bar{z}}^{3} x_{z}^{i}\right)=0,(i=1,2) \tag{3.4}\\
x_{z \bar{z}}^{3}+\mu_{1} e^{-2 \mu_{1} x^{3}} x_{z}^{1} x_{\bar{z}}^{1}+\mu_{2} e^{-2 \mu_{2} x^{3}} x_{z}^{2} x_{\bar{z}}^{2}=0 . \tag{3.5}
\end{gather*}
$$

Corollary 3.1. Let $\left\{\omega^{1}, \omega^{2}, \omega^{3}\right\}$ be a solution to

$$
\begin{gather*}
\bar{\partial} \omega^{i}=\mu_{i} \overline{\omega^{i}} \wedge \omega^{3}, i=1,2 \tag{3.6}\\
\omega^{1} \otimes \omega^{1}+\omega^{2} \otimes \omega^{2}+\omega^{3} \otimes \omega^{3}=0 \tag{3.7}
\end{gather*}
$$

on a simply connected coordinate region \mathfrak{D}. Then

$$
\varphi(z, \bar{z})=2 \int_{z_{0}}^{z} \operatorname{Re}\left(e^{\mu_{1} x^{3}(z, \bar{z})} \cdot \omega^{1}, e^{\mu_{2} x^{3}(z, \bar{z})} \cdot \omega^{2}, \omega^{3}\right)
$$

is a weakly conformal harmonic map of \mathfrak{D} into $G\left(\mu_{1}, \mu_{2}\right)$. Moreover $\varphi(z, \bar{z})$ is a minimal immersion if and only if

$$
\omega^{1} \otimes \overline{\omega^{1}}+\omega^{2} \otimes \overline{\omega^{2}}+\omega^{3} \otimes \overline{\omega^{3}} \neq 0
$$

In particular for the product space $\mathbb{E}^{1} \times H^{2}$, we have the following result.
Corollary 3.2. Let $\left\{\omega^{1}, \omega^{2}, \omega^{3}\right\}$ be a solution to

$$
\begin{gather*}
\bar{\partial} \omega^{1}=0, \quad \bar{\partial} \omega^{2}=c \overline{\omega^{2}} \wedge \omega^{3} ; \tag{3.8}\\
\omega^{1} \otimes \omega^{1}+\omega^{2} \otimes \omega^{2}+\omega^{3} \otimes \omega^{3}=0 \tag{3.9}
\end{gather*}
$$

on a simply connected coordinate region \mathfrak{D}. Then

$$
\begin{equation*}
\varphi(z, \bar{z})=2 \int_{z_{0}}^{z} \operatorname{Re}\left(\omega^{1}, e^{c x^{3}(z, \bar{z})} \cdot \omega^{2}, \omega^{3}\right) \tag{3.10}
\end{equation*}
$$

is a weakly conformal harmonic map of \mathfrak{D} into the product space $G(0, c)$. Moreover $\varphi(z, \bar{z})$ is a minimal immersion if and only if

$$
\begin{equation*}
\omega^{1} \otimes \overline{\omega^{1}}+\omega^{2} \otimes \overline{\omega^{2}}+\omega^{3} \otimes \overline{\omega^{3}} \neq 0 \tag{3.11}
\end{equation*}
$$

REMARK 3.1. The representation formula for minimal surfaces in $G(0,1)=\mathbb{E}^{1} \times H^{2}$ obtained by Mercuri-Montaldo-Piu [7, Theorem 5.1] coincides with (3.10). In [7], they assumed that the data $\left(\omega^{1}, \omega^{2}, \omega^{3}\right)$ satisfies (3.8), (3.9), (3.11) and the equation:

$$
\begin{equation*}
\bar{\partial} \omega^{3}=\omega^{2} \wedge \overline{\omega^{2}} \tag{3.12}
\end{equation*}
$$

However the equations (3.8)-(3.9) imply (3.11)-(3.12) under the assumption: there are no points on \mathfrak{D} on which both ω^{3} and $\bar{\partial} \omega^{3}$ vanish (see [5, Lemma 4.5]).

4. The normal Gauss map

Let $\varphi: M \rightarrow G\left(\mu_{1}, \mu_{2}\right)$ be a conformal immersion. Take a unit normal vector field N along φ. Then, by the left translation we obtain the following smooth map:

$$
\psi:=\varphi^{-1} \cdot N: M \rightarrow S^{2} \subset \mathfrak{g}\left(\mu_{1}, \mu_{2}\right)
$$

The resulting map ψ takes value in the unit sphere in the Lie algebra $\mathfrak{g}\left(\mu_{1}, \mu_{2}\right)$. Here, via the orthonormal basis $\left\{E_{1}, E_{2}, E_{3}\right\}$, we identify $\mathfrak{g}\left(\mu_{1}, \mu_{2}\right)$ with Euclidean 3-space $\mathbb{E}^{3}\left(u^{1}, u^{2}, u^{3}\right)$.

The smooth map ψ is called the normal Gauss map of φ.
Let $\varphi: \mathfrak{D} \rightarrow G\left(\mu_{1}, \mu_{2}\right)$ be a weakly conformal harmonic map of a simply connected Riemann surface \mathfrak{D} determined by the data $\left(\omega^{1}, \omega^{2}, \omega^{3}\right)$. Express the data as $\omega^{i}=\phi^{i} d z$. Then the induced metric I of φ is

$$
I=2\left(\sum_{i=1}^{3}\left|\phi^{i}\right|^{2}\right) d z d \bar{z}
$$

Moreover these three coefficient functions satisfy

$$
\begin{gather*}
\frac{\partial \phi^{3}}{\partial \bar{z}}=-\sum_{i=1}^{2} \mu_{i}\left|\phi^{i}\right|^{2}, \quad \frac{\partial \phi^{i}}{\partial \bar{z}}=\mu_{i} \overline{\phi^{i}} \phi^{3}, i=1,2 \\
\left(\phi^{1}\right)^{2}+\left(\phi^{2}\right)^{2}+\left(\phi^{3}\right)^{2}=0 \tag{4.1}
\end{gather*}
$$

The harmonic map φ is a minimal immersion if and only if

$$
\begin{equation*}
\left|\phi^{1}\right|^{2}+\left|\phi^{2}\right|^{2}+\left|\phi^{3}\right|^{2} \neq 0 \tag{4.2}
\end{equation*}
$$

Here we would like to remark that ϕ^{3} is identically zero if and only if φ is a plane $x^{3}=$ constant. (See Example 2.6.) As we saw in Example 2.6, φ is minimal if and only if $\mu_{1}+\mu_{2}=0$.

Hereafter we assume that ϕ^{3} is not identically zero. Then we can introduce two mappings f and g by

$$
\begin{equation*}
f:=\phi^{1}-\sqrt{-1} \phi^{2}, g:=\frac{\phi^{3}}{\phi^{1}-\sqrt{-1} \phi^{2}} . \tag{4.3}
\end{equation*}
$$

By definition, f and g take values in the extended complex plane $\overline{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$. Using these two $\overline{\mathbb{C}}$-valued functions, φ is rewritten as

$$
\varphi(z, \bar{z})=2 \int_{z_{0}}^{z} \operatorname{Re}\left(e^{\mu_{1} x^{3}} \frac{1}{2} f\left(1-g^{2}\right), e^{\mu_{2} x^{3}} \frac{\sqrt{-1}}{2} f\left(1+g^{2}\right), f g\right) d z
$$

The normal Gauss map is computed as

$$
\psi(z, \bar{z})=\frac{1}{1+|g|^{2}}\left(2 \operatorname{Re}(g) E_{1}+2 \operatorname{Im}(g) E_{2}+\left(|g|^{2}-1\right) E_{3}\right)
$$

Under the stereographic projection $\mathcal{P}: S^{2} \backslash\{\infty\} \subset \mathfrak{g}\left(\mu_{1}, \mu_{2}\right) \rightarrow \mathbb{C}:=\mathbb{R} E_{1}+\mathbb{R} E_{2}$, the $\operatorname{map} \psi$ is identified with the $\overline{\mathbb{C}}$-valued function g. Based on this fundamental observation, we call the function g the normal Gauss map of φ. The harmonicity together with the integrability (3.4)-(3.5) are equivalent to the following system for f and g :

$$
\begin{align*}
& \frac{\partial f}{\partial \bar{z}}=\frac{1}{2}|f|^{2} g\left\{\mu_{1}\left(1-\bar{g}^{2}\right)-\mu_{2}\left(1+\bar{g}^{2}\right)\right\} \tag{4.4}\\
& \frac{\partial g}{\partial \bar{z}}=-\frac{1}{4}\left\{\mu_{1}\left(1+g^{2}\right)\left(1-\bar{g}^{2}\right)+\mu_{2}\left(1-g^{2}\right)\left(1+\bar{g}^{2}\right)\right\} \bar{f} \tag{4.5}
\end{align*}
$$

Theorem 4.1. Let f and g be a $\overline{\mathbb{C}}$-valued functions which are solutions to the system: (4.4)-(4.5). Then

$$
\begin{equation*}
\varphi(z, \bar{z})=2 \int_{z_{0}}^{z} \operatorname{Re}\left(e^{\mu_{1} x^{3}} \frac{1}{2} f\left(1-g^{2}\right), e^{\mu_{2} x^{3}} \frac{\sqrt{-1}}{2} f\left(1+g^{2}\right), f g\right) d z \tag{4.6}
\end{equation*}
$$

is a weakly conformal harmonic map of \mathfrak{D} into $G\left(\mu_{1}, \mu_{2}\right)$.

Proof: Since the harmonicity together with integrability is equivalent to (4.4)(4.5), Proposition 3.1 implies the result.

Example 4.1. For the space form $G(c, c)$ of curvature $-c^{2}$, (4.4)-(4.5) reduces to

$$
\frac{\partial f}{\partial \bar{z}}=-c|f|^{2}|g|^{2} \bar{g}, \quad \frac{\partial g}{\partial \bar{z}}=-\frac{c}{2} \bar{f}\left(1-|g|^{4}\right)
$$

In particular, for Euclidean 3-space, we have

$$
\frac{\partial f}{\partial \bar{z}}=\frac{\partial g}{\partial \bar{z}}=0
$$

In the case of hyperbolic 3 -space $H^{3}\left(-c^{2}\right)$, one can deduce that g is a solution to the partial differential equation:

$$
\begin{equation*}
\frac{\partial^{2} g}{\partial z \partial \bar{z}}+\frac{2|g|^{2} \bar{g}}{1-|g|^{4}} \frac{\partial g}{\partial z} \frac{\partial g}{\partial \bar{z}}=0 \tag{4.7}
\end{equation*}
$$

The equation (4.7) means that g is a harmonic map into the extended complex plane $\overline{\mathbb{C}}(w)$ with singular metric (so-called Kokubu metric) $d w d \bar{w} /\left(1-|w|^{4}\right)$.
Example 4.2. For $G(1,-1)=E(1,1),(4.4)-(4.5)$ reduces to

$$
\frac{\partial f}{\partial \bar{z}}=|f|^{2} g, \quad \frac{\partial g}{\partial \bar{z}}=-\frac{1}{2}(g+\bar{g})(g-\bar{g}) \bar{f}
$$

Example 4.3. For $G(0, c), f$ and g are solutions to

$$
\frac{\partial f}{\partial \bar{z}}=-\frac{c}{2}|f|^{2}\left(1+\bar{g}^{2}\right), \quad \frac{\partial g}{\partial \bar{z}}=-\frac{c}{4}\left(1-g^{2}\right)\left(1+\bar{g}^{2}\right) \bar{f}
$$

Example 4.4. Assume that $\mu_{1} \neq 0$. Take the following two $\overline{\mathbb{C}}$-valued functions:

$$
f=\frac{\sqrt{-1}}{\mu_{1}(z+\bar{z})}, g=-\sqrt{-1}
$$

Then f and g are solutions to (4.4)-(4.5). By the integral representation formula, we can see that the minimal surface determined by the data (f, g) is a plane $x^{2}=$ constant. Note that this plane is totally geodesic in $G(1,-1)$.
Example 4.5. Consider the product space $G(0,1)$, and take the following two functions f and g defined on \mathbb{R}^{2}.

$$
\begin{aligned}
\frac{\sqrt{-1}(f-1)}{2}= & \frac{\tan (2 y)(\cos (2 x)+\sin (2 y))+\sqrt{-1} \sin (2 x)}{2-\sin (2(x-y))+\sin (2(x+y))} \\
& 1-g^{2}=\frac{2}{f}, \quad z=x+\sqrt{-1} y
\end{aligned}
$$

Then (f, g) is a solution to (4.4)-(4.5). Moreover it is easy to see that $\phi^{1}=1,\left(\phi^{2}\right)^{2}$ $+\left(\phi^{3}\right)^{2}=-1$. One can check that the minimal surface determined by the data (f, g) is the minimal helicoid in the sense of Nelli and Rosenberg [8] (See also [7, Example 5.2]).

Remark 4.1. In [7], the following two auxiliary functions were introduced.

$$
\mathbf{G}^{2}=\frac{f}{2}, \mathbf{H}=g \cdot \mathbf{G} .
$$

Then we have

$$
\phi^{1}=\mathbf{G}^{2}-\mathbf{H}^{2}, \phi^{2}=\sqrt{-1}\left(\mathbf{G}^{2}+\mathbf{H}^{2}\right), \phi^{3}=2 \mathbf{G H}
$$

These functions are solutions to the system:

$$
\begin{aligned}
& \mathbf{G}_{z}=\frac{\mathbf{H}}{2}\left\{\mu_{1}\left(\overline{\mathbf{G}}^{2}-\overline{\mathbf{H}}^{2}\right)-\mu_{2}\left(\mathbf{G}^{2}+\mathbf{H}^{2}\right)\right\}, \\
& \mathbf{H}_{\bar{z}}=-\frac{1}{2 \mathbf{G}}\left\{\mu_{1}\left(\mathbf{G}^{2}+\mathbf{H}^{2}\right)\left(\overline{\mathbf{G}}^{2}-\overline{\mathbf{H}}^{2}\right)+\mu_{2}\left(\mathbf{G}^{2}-\mathbf{H}^{2}\right)\left(\overline{\mathbf{G}}^{2}+\overline{\mathbf{H}}^{2}\right)\right\} \\
& \\
& \quad+\frac{\mathbf{H}^{2}}{2 \mathbf{G}}\left\{\mu_{1}\left(\overline{\mathbf{G}}^{2}-\overline{\mathbf{H}}^{2}\right)-\mu_{2}\left(\mathbf{G}^{2}+\mathbf{H}^{2}\right)\right\} .
\end{aligned}
$$

The integral representation formula is rewritten as

$$
\varphi(z, \bar{z})=2 \int_{z_{0}}^{z} \operatorname{Re}\left(e^{\mu_{1} x^{3}}\left(\mathbf{G}^{2}-\mathbf{H}^{2}\right), \sqrt{-1} e^{\mu_{2} x^{3}}\left(\mathbf{G}^{2}+\mathbf{H}^{2}\right), 2 \mathbf{G H}\right) d z
$$

In [1], Berdinskiĭ and Taĭmanov obtained a Weierstrass type representaion for minimal surfaces in Sol in terms of spinors and Dirac operators.

References

[1] D.A. Berdinskiĭ and I.A. Taĭmanov, 'Surfaces in three-dimensional Lie groups', (in Russian), Sibirsk. Mat. Zh. 46 (2005), 1248-1264. English Translation: Siberian Math. J. 46 (2005), 1005-1019.
[2] C.C. Góes and P.A.Q. Simões, 'The generalized Gauss map of minimal surfaces in H^{3} and H^{4}, Bol. Soc. Brasil Mat. 18 (1987), 35-47.
[3] J. Inoguchi, 'Minimal surfaces in 3-dimensional solvable Lie groups', Chinese Ann. Math. Ser. B 24 (2003), 73-84.
[4] M. Kokubu, 'On minimal submanifolds in product manifolds with a certain Riemannian metric', Tsukuba J. Math. 20 (1996), 191-198.
[5] M. Kokubu, 'Weierstrass representation for minimal surfaces in hyperbolic space', Tôhoku Math. J. 49 (1997), 367-377.
[6] K. Kuwabara, 'Grassmann geometry on the groups of rigid motions on the Euclidean and Minkowski planes', Tsukuba J. Math. (to appear).
[7] F. Mercuri, S. Montaldo and P. Piu, 'A Weierstrass representation formula for minimal surfaces in \mathbb{H}_{3} and $\mathbb{H}^{2} \times \mathbb{R}^{\prime}$, Acta Math. Sin. (to appear).
[8] B. Nelli and H. Rosenberg, 'Minimal surfaces in $\mathbb{H}^{2} \times \mathbb{R}^{\prime}$, Bull. Brazil Math. Soc. (N.S.) 33 (2002), 263-292.
[9] R. Pedrosa and M. Ritoré, 'Isoperimetric domains in the Riemannian product of a circle with a simply connected space form and applications to free boundary problems', Indiana Univ. Math. J. 48 (1999), 1357-1349.
[10] H. Rosenberg, 'Minimal surfaces in $M^{2} \times \mathbf{R}^{\prime}$, Illinois J. Math. 46 (2002), 1177-1195.
[11] W.M. Thurston, Three-dimensional geometry and topology I, Princeton Math. Series. 35 (Princeton University Press, Princeton N.J., 1997).

Department of Mathematics Education
Faculty of Education
Utsunomiya University
Utsunomiya, 321-8505
Japan
e-mail: inoguchi@cc.utsunomiya-u.ac.jp

[^0]: Received 5th January, 2006
 Partially supported by Kakenhi 16740029

