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On the Limit Cycles of Linear Differential
Systems with Homogeneous Nonlinearities

Jaume Llibre and Xiang Zhang

Abstract. We consider the class of polynomial diòerential systems of the form ẋ = λx−y+Pn(x , y),
ẏ = x+λy+Qn(x , y), where Pn and Qn are homogeneous polynomials of degree n. For this class of
diòerential systemswe summarize the known results for the existence of limit cycles, andwe provide
new results for their nonexistence and existence.

1 Introduction and Statement of the Main Results

One of themain problems in the qualitative theory of real planar diòerential systems
is how to control the existence, non-existence, or uniqueness of limit cycles for a given
class of polynomial diòerential systems.

Limit cycles of planar diòerential systemswere deûned byPoincaré [13] and started
to be studied intensively at the end of the 1920s by van der Pol [14], Liénard [7], and
Andronov [1].

In this work we study the real planar polynomial diòerential systems of the form

(1.1) ẋ = λx − y + Pn(x , y), ẏ = x + λy + +Qn(x , y),

where Pn and Qn are homogeneous polynomials of degree n.
In order to bemore precise, we need to introduce some notation and basic results.

_en, in polar coordinates (r, θ) deûned by x = r cos θ, y = r sin θ , system (1.1) can
be written as

(1.2) ṙ = λr + f (θ)rn , θ̇ = 1 + g(θ)rn−1 ,

where

f (θ) = cos θPn(cos θ , sin θ) + sin θQn(cos θ , sin θ),
g(θ) = cos θQn(cos θ , sin θ) − sin θPn(cos θ , sin θ)
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are homogeneous polynomials of degree n + 1 in the variables cos θ and sin θ. In the
region

C = {(r, θ) ∶ 1 + g(θ)rn−1
> 0}

the diòerential system (1.2) is equivalent to the diòerential equation

(1.3)
dr
dθ

=
λr + f (θ)rn

1 + g(θ)rn−1 .

It is known that the periodic orbits surrounding the origin of system (1.2) do not
intersect the curve θ̇ = 0 (see the Appendix of [3]). _erefore, these periodic orbits are
contained in the region C, and, consequently, they are also periodic orbits of equation
(1.3). Moreover, these periodic orbits can be studied via the change of variables

ρ = rn−1

1 + g(θ)rn−1 ,

as inCherkas [4],which in fact goes back to Liouville [9]. In terms of ρ, the diòerential
equation (1.3) becomes

(1.4)
dρ
dθ

= (n − 1)g(λg − f )ρ3
+ ((n − 1)( f − 2λg) − g′)ρ2

+ (n − 1)λρ.

We now summarize previous results on the existence of limit cycles for the poly-
nomial diòerential systems (1.1), using the diòerential equations (1.3) or (1.4).
(i) If the trigonometric polynomial f − λg /≡ 0 does not change sign, then system

(1.1) has at most one limit cycle, and when one exists, it surrounds the origin
(see [5,_eorem A]).

(ii) If the trigonometric polynomial (n−1)g(λg− f ) /≡ 0 does not change sign, then
equation (1.1) has at most one limit cycle in the region r > 0 if n is even, and at
most two limit cycles in the region r > 0 if n is odd, and when they exist, they
surround the origin (see [2,_eorem 1.1(b)]).

(iii) If the trigonometric polynomial (n − 1)( f − 2λg) − g′ /≡ 0 does not change
sign, then equation (1.1) has at most two limit cycles, and when they exist, they
surround the origin (see [6,_eorem C(a)]).

(iv) If either the trigonometric polynomial

(n − 1)g(λg − f ) ≡ 0 or (n − 1)( f − 2λg) − g′ ≡ 0,

then equation (1.1) has at most one limit cycle, and when it exists surrounds the
origin (see [6,_eorem C(b)]).

We remark that all the previous results only provide information on the limit cycles
surrounding the origin of the polynomial diòerential system (1.1).

Wemust mention that (i), which eventually resulted in (ii), was given by Pliss [12]
and Lins Neto [8].
All results (i)–(iv) are about the existence of limit cycles for the polynomial diòer-

ential systems (1.1). Now we provide results on the non-existence of limit cycles for
systems (1.1) and a new result on their existence and uniqueness.

_eorem 1.1 _e polynomial diòerential system (1.1) with n ≥ 2 has no limit cycles
surrounding the origin if one of the following condition holds:
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(i) f = 0;
(ii) f − λg = 0;
(iii) g = 0;
(iv) (2n − 1)2 f − λ(2n − 3)2g = 0;
(v) ( f − λg)(n2 f − λ(n − 2)2g) ≤ 0 for all θ;
(vi) ( f − λg)((2n − 1)2 f − λ(2n − 3)2g) ≤ 0 for all θ.
_e polynomial diòerential system (1.1) has atmost one limit cycle surrounding the origin
if the following condition holds:
(vii) ( f − λg)((2n − 3)2 f − λ(2n − 1)2g) ≤ 0 for all θ.

In some sense, _eorem 1.1 is an extension to any positive integer n of a similar
result for n = 2 (see [10,_eorem 1]) and will be proved in Section 3.

2 Preliminary Results

In this sectionwe recall some basic facts thatwewill need for the proof of_eorem1.1.
_e next two results correspond to Lloyd [11,_eorems 2 and 3].

Lemma 2.1 We have a diòerential system in polar coordinates

(2.1) ṙ = F(r, θ), θ̇ = G(r, θ)

deûned in a simply connected open set U containing the origin, where F and G are C1

2π-periodic functions such that F(0, θ) = 0 for all θ, andG(r, θ) > 0 in U . _en, in U ,
the diòerential system (2.1) is equivalent to the diòerential equation

(2.2)
dr
dθ

=
F(r, θ)
G(r, θ)

= S(r, θ).

_erefore, if

(2.3)
∂S
∂r
/≡ 0

and either

(2.4)
∂S
∂r

≤ 0, or ∂S
∂r

≥ 0

in U , then the diòerential system (2.1) has no limit cycles in U .

Remark 2.2 We note that in [11] the inequalities (2.4) appear without the equality,
but checking theproofof [11,_eorem 2]we see that it alsoworks under the conditions
(2.3) and (2.4).

Lemma 2.3 Consider the diòerential system (2.1) deûned in an annular region A

that encircles the origin and where G(r, θ) > 0. _en in A, the diòerential system (2.1)
is equivalent to the diòerential equation (2.2). If (2.3) and (2.4) hold in A, then the
diòerential system (2.1) has at most one limit cycle in A.

Remark 2.2 applies to Lemma 2.3 using the proof of [11,_eorem 3].
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Lemma 2.4 Under the assumptions of Lemma 2.3 if ∂3S/∂r3 ≥ 0 in A, then the
diòerential system (2.1) has at most three limit cycles in A.

Again Remark 2.2 applies to Lemma 2.4 using the proof of [11,_eorem 8].

3 Proof of Theorem 1.1

We prove_eorem 1.1 statement by statement. _e proof of the ûrst two statements of
_eorem 1.1 are essentially the same as that for the particular case when n = 2 in [10],
but since our proofs are shorter and easier, we provide them here for completeness.

Proof of_eorem 1.1(i) Since f = 0, dr/dθ does not change sign. If λ ≠ 0 the solu-
tion r(θ) of (1.3) increases or decreases, so these solutions cannot be periodic in the
regionC, and consequently the polynomial diòerential system (1.1) has no limit cycles
surrounding the origin.

If λ = 0, then dr/dθ ≡ 0 and all the solutions in the region C are periodic and
circular (except the equilibrium point at the origin), so the system has no isolated
periodic orbits surrounding the origin, i.e., no limit cycles surrounding the origin. So
statement (i) is proved.

Proof of_eorem 1.1(ii) Since f − λg = 0, we have that dr/dθ = λr. Now the proof
ends following the same arguments used in the proof of statement (i).

Proof of_eorem 1.1(iii) If g = 0, then the diòerential equation (1.3) becomes

(3.1)
dr
dθ

= λr + f (θ)rn .

Its general solution r(θ) satisfying that r(0) = r0 > 0 is

r(θ) = ( e(1−n)θλr−n
0 ( r0 + (1 − n)(∫

θ

0
e(n−1)sλ f (s) ds) rn0))

1
1−n

.

_ere are at most two values of r0 such that r(2π) = r0, namely r0 = 0 and

r0 = (
e2(1−n)πλ(n − 1) ∫

2π
0 e(n−1)sλ f (s) ds

e2(1−n)πλ − 1
)

1
1−n

,

if this last expression is real. But the diòerential equation (3.1) is deûned on the cylin-
der {(r, θ) ∈ R×S1} and it is invariant under the symmetry (r, θ)→ (−r, θ+π), so if
we have a periodic solution with r0 > 0, we also have a periodic solution with r0 < 0.
But this is in contradiction with the fact that the diòerential equation has at most a
unique periodic solution with r0 ≠ 0. _is completes the proof of statement (iii).

Proof of_eorem 1.1(iv) From (2n − 1)2 f − λ(2n − 3)2g = 0, we have

f = λ(2n − 3)2g/(2n − 1)2 .

Substituting f into the diòerential equation (1.3) we get

(3.2)
dr
dθ

= λ r + (2n − 3)2grn/(2n − 1)2

1 + grn−1 = S(r, θ),

deûned in the simply connected region C.
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We have
∂S
∂r

=
λ((2n − 3)2g2r2n−2 + 2grn−1 + (2n − 1)2)

(2n − 1)2(1 + grn−1)2
.

_en, since 4g2 − 4(2n − 1)2(2n − 3)2g2 = −g2(n − 1)2(1 + 2n(n − 2)) ≤ 0, we
have that ∂S/∂r satisûes (2.3) and (2.4) in the region S, and consequently, we can
apply Lemma 2.1 to the diòerential equation (3.2), and the proof of statement (iv) is
done.

Proof of_eorem 1.1(v) Consider the diòerential equation (1.3):

(3.3)
dr
dθ

=
λr + f rn

1 + grn−1 = S(r, θ),

deûned in the simply connected region C.
We have

∂S
∂r

=
f gr2n−2 + (n f − (n − 2)λg)rn−1 + λ

(1 + grn−1)2
.

_en, if (n f −(n−2)λg)2−4λ f g = ( f −λg)(n2 f −λ(n−2)2g) ≤ 0,we have that ∂S/∂r
satisûes (2.3) and (2.4) in the region S, and consequently, we can apply Lemma 2.1 to
the diòerential equation (3.3), and the proof of statement (v) is done.

Proof of_eorem 1.1(vi) Introducing the change of variables R =
√

r in the region
C, the diòerential equation (1.3) becomes

(3.4)
dR
dθ

=
λR + f R2n−1

2(1 + gR2n−2)
= S(R, θ).

Clearly the image of the simply connected region C under the map r →
√

r = R is
another simply connected region S containing the origin R = 0.

We have
∂S
∂R

=
f gR4n−4 + ((2n − 1) f + λ(3 − 2n)g)R2n−2 + λ

2(1 + gR2n−2)2
.

_en, if ((2n− 1) f + λ(3− 2n)g)2 − 4 f gλ = ( f − λg)((2n− 1)2 f − λ(2n− 3)2g) ≤ 0,
we have that ∂S/∂R satisûes (2.3) and (2.4) in the region S, and consequently, we can
apply Lemma 2.1 to the diòerential equation (3.4), and the proof of statement (vi)
follows.

Proof_eorem 1.1(vii) With the change of variables R = 1/
√

r in the region C, the
diòerential equation (1.3) becomes

(3.5)
dR
dθ

=
− f R − λR2n−1

2(g + R2n−2)
= S(R, θ).

Now the image of the region C by themap r → 1/
√

r = R is an annular regionA, and
one of the boundaries of this annulus is the inûnity.

We get

∂S
∂R

= −
λR4n−4 + ((3 − 2n) f + λ(2n − 1)g)R2n−2 + f g

2(g + R2n−2)2
.
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_en, clearly, if

((3 − 2n) f + λ(2n − 1)g)2 − 4λ f g = ( f − λg)((2n − 3)2 f − λ(2n − 1)2g) ≤ 0,

we have that ∂S/∂R satisûes conditions (2.3) and (2.4) in the annular region A, and
consequently we can apply Lemma 2.3 to the diòerential equation (3.5), and this com-
pletes the proof of statement (vii).

It was proved in [10] that the system

ẋ = λx − y + 1
5λ
(5λx − y)2 , ẏ = x + λy + 1

5λ
(5λx − y)(x + 5λy)

has a unique limit cycle surrounding the origin. We note that this system satisûes
_eorem 1.1(vii) for n = 2.
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