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On the Bezdek–Pach Conjecture for
Centrally Symmetric Convex Bodies

Dedicated to Ted Bisztriczky, on his sixtieth birthday.

Zsolt Lángi and Márton Naszódi

Abstract. The Bezdek–Pach conjecture asserts that the maximum number of pairwise touching posi-

tive homothetic copies of a convex body in R
d is 2d. Naszódi proved that the quantity in question is

not larger than 2d+1. We present an improvement to this result by proving the upper bound 3 · 2d−1

for centrally symmetric bodies. Bezdek and Brass introduced the one-sided Hadwiger number of a

convex body. We extend this definition, prove an upper bound on the resulting quantity, and show a

connection with the problem of touching homothetic bodies.

1 Introduction

In this paper, R
d denotes the d-dimensional Euclidean space, o is its origin, and S

d−1

is the unit sphere centered at o. A convex body K in R
d is a compact, convex set with

non-empty interior. A positive homothetic copy of K is a set of the form λK + t where

λ > 0 and t ∈ R
d. Two convex sets in R

d are non-overlapping if their relative interiors

are disjoint. Two non-overlapping convex sets with intersecting closures touch each

other.

In 1971, C. M. Petty [8] proved that the maximum cardinality of a family of pair-

wise touching translates of a convex body K is at most 2d with equality if, and only if,

K is an affine image of a cube. As an extension of this problem, K. Bezdek and J. Pach

[2] conjectured in 1988 that the maximum number of pairwise touching positive ho-

mothetic copies of a convex body K in R
d is 2d. They showed that any such family

of homothetic copies has at most 3d elements, and if C is a d-dimensional Euclidean

ball, then the maximum is equal to d + 2. In 2006, M. Naszódi [7] improved the first

estimate of Bezdek and Pach by proving the upper bound 2d+1.

Our main goal is to investigate this problem for o-symmetric convex bodies, that

is, for bodies K satisfying K = −K . First, we introduce some notions.

Definition 1.1 We call a set S ⊂ R
d symmetrically antipodal if for any distinct

points p, q ∈ S, there is a hyperplane H such that p ∈ H, q ∈ −H, and both H and

−H support conv S.
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Definition 1.2 Let K ∈ R
d be an o-symmetric convex body and S ⊂ K . If the

points of S are at pairwise distances 2 in the normed space with unit ball K , we say

that S is a diametral subset of K .

H. Hadwiger [6] formulated the problem of determining the maximum number

of pairwise non-overlapping translates of a convex body K ⊂ R
d touching K . This

number is known as the Hadwiger number H(K) of K . L. Fejes-Tóth [5] extended

this concept to the notion of generalized Hadwiger numbers (see also [3]). Another

variant is the one-sided Hadwiger number [1]. We combine the definitions of [1,5] in

the following manner.

Definition 1.3 Let K ⊂ R
d be an o-symmetric convex body and α > 0. The open

(resp. closed) one-sided generalized Hadwiger number H+
α(K) (resp. H

+
α(K)) of K is the

maximum number of pairwise non-overlapping translates of αK that touch K and

whose translation vectors are in an open (resp. closed) half-space whose boundary

contains the origin. Furthermore, H+
∞(K) (resp. H

+
∞(K)) is the maximum number

of pairwise non-overlapping translates of K that contain the origin and whose trans-

lation vectors are in an open (resp. closed) half-space whose boundary contains the

origin.

Our results are summarized in Theorems 1.4, 1.5, and 1.6. Theorem 1.6 is an

immediate consequence of Theorems 1.4 and 1.5.

Theorem 1.4 The following statements are equivalent.

(i) There is an o-symmetric convex body K ⊂ R
d which has n pairwise touching

homothets.

(ii) There is a symmetrically antipodal set S ⊂ R
d+1 of n points such that o /∈ conv S.

(iii) There is an o-symmetric convex body K ⊂ R
d+1 which contains a diametral set S

of n points such that o /∈ conv S.

(iv) There is an o-symmetric convex body B ⊂ R
d+1 with H+

∞(B) ≥ n.

Theorem 1.5 Let α ∈ (0,∞), d ≥ 2, and K be an o-symmetric convex body in R
d.

Then

(1.1) H
+
α(K) ≤

(1 + 2α)d−1(1 + 3α) − 2

2αd

and

(1.2) H
+
∞(K) ≤ 3 · 2d−2.

Moreover, H
+

∞(K) = 3 · 2d−2 if and only if K is an affine d-cube.

Theorem 1.6 The cardinality of a family of pairwise touching positive homothetic

copies of an o-symmetric convex body in R
d is strictly less than 3 · 2d−1.
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Figure 1 Figure 2

2 Proof of Theorem 1.4

We need the following, rather technical, definition and a lemma.

Definition 2.1 Let K ⊂ R
d be a convex body that contains o in its interior, and let

λ > 0. Furthermore, let L be a hyperplane of R
d and L+ be one of the two closed half-

spaces of R
d bounded by L. Then we call the set Lλ := {t ∈ L+ : λK + t touches L}

the λK-translate of L into L+.

We note that Lλ is a translate of L.

Lemma 2.2 Let K ⊂ R
d be an o-symmetric convex body, and λK + x be a posi-

tive homothet of K touching K. Let L be a supporting hyperplane of K, and Lλ be the

λK-translate of L into the half-space that does not contain K. Then x is in the closed

half-space that is bounded by Lλ and contains K (see Figure 1).

Proof Suppose that x is not in the closed half-space that is bounded by Lλ and con-

tains K . Then by the definition of Lλ we have that λK + x is contained in the open

half-space that is bounded by L and does not contain K . Hence, λK + x does not

touch λK + x, a contradiction.

Proof of Theorem 1.4 Let e1, . . . , ed+2 be the standard basis of R
d+2. To prove the

equivalence of (i) and (ii), we regard R
d+1 and R

d as the affine subspaces

Â := {x ∈ R
d+2 : 〈x, ed+1〉 = 0}

and

A := {x ∈ R
d+2 : 〈x, ei〉 = 0 for i = d + 1, d + 2}
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of R
d+2, respectively. We also need the following affine subspaces:

T1 := {v ∈ R
d+2 : 〈v, ed+2〉 = 1};

T2 := {v ∈ R
d+2 : 〈v, ed+1〉 = 1};

T := {v ∈ R
d+2 : 〈v, ed+2〉 = 1 and 〈v, ed+1〉 = 0}.

Note that T1 and T2 are hyperplanes in R
d+2, T is a d-flat, and T ⊂ T1. (see Figure 2).

First, we prove that (i) implies (ii). Consider a family {λiK + xi : i = 1, 2, . . . , n}
of pairwise touching homothets of the o-symmetric d-dimensional convex body K in

R
d. We let Ki := λiK + xi + ed+2 and note that {Ki : i = 1, 2, . . . , n} is also a family

of pairwise touching homothets of K , which is contained in T. We set

X ′ := {x ′
i := xi + λied+1 + ed+2 ∈ R

d+2 : i = 1, 2, . . . , n}.

Observe that X ′ ⊂ T1.

For any pair of distinct indices i, j, let L(i, j) be an affine (d − 1)-flat which sepa-

rates Ki and K j in T. Furthermore, let Hk(i, j) := aff(L(i, j) ∪ {x ′
k}) for k ∈ {i, j}.

Observe that Hi(i, j), H j(i, j) ⊂ T1, and they partition T1 into four closed convex

cones, exactly one of which contains both x ′
i and x ′

j . We denote this cone by C(i, j).

By Lemma 2.2 and the construction of X ′, we have that X ′ is a subset of C(i, j).

Thus, we have shown the following property of X ′.

(∗) For every pair of distinct indices i, j there is a cone C(i, j) in T1 containing

X ′. The cone C(i, j) is the intersection of two closed half-spaces Zi and Z j

of T1, such that x ′
i ∈ relbd Zi , x ′

j ∈ relbd Z j , and L(i, j) := (relbd Zi) ∩
(relbd Z j) is an affine subspace of T with dim L(i, j) = d − 1. Furthermore,

C(i, j) is symmetric about any line of the form {z + ted+1 : t ∈ R}, where

z ∈ L(i, j).

Let X ′ ′ denote the image of X ′ under the central projection from the origin o onto

the hyperplane T2 of R
d+2. More specifically, let

X ′ ′ :=
{ 1

λi
xi + ed+1 +

1

λi
ed+2 : i = 1, . . . , n

}

.

Note that X ′ ′ is contained in the open half-space {v ∈ T2 : 〈v, ed+2〉 > 0} of T2. Con-

sider the image S of X ′ ′ under the orthogonal projection of T2 onto the hyperplane

Â = R
d+1. From (∗) and the previous remark, S is a symmetrically antipodal set in

R
d+1 such that o /∈ conv S.

Now we prove that (ii) implies (i). Let S ⊂ R
d+1 be a symmetrically antipodal

set of n points such that o /∈ conv S. Reversing our consideration in the previous

part, we may clearly construct a set X ′
= {x ′

i : i = 1, 2, . . . n} such that X ′ ⊂ T1,

λi := 〈x ′
i , ed+1〉 > 0, and X ′ satisfies (∗).

Let xi := x ′
i − λied+1 for i = 1, 2, . . . , n. Clearly, xi ∈ T. Set

K := conv
{ xi − x j

λi + λ j
: i, j = 1, . . . , n

}
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and note that K is an o-symmetric compact, convex set in A = R
d.

Assume that dim K = d. We want to show that {λiK + xi − ed+2 : i = 1, 2, . . . , n}
is a family of pairwise touching positive homothets of the convex body K in A = R

d.

Clearly, it is sufficient to show that Ki := λiK + xi and K j := λ jK + x j touch in T for

every i 6= j.

Since xi + λi

λi +λ j
(x j − xi) = x j +

λ j

λi +λ j
(xi − x j), we obtain that Ki and K j intersect.

It remains to show that, say, K1 and K2 are separated by a (d − 1)-dimensional affine

subspace in T.

Let L := L(1, 2) be the (d − 1)-dimensional affine subspace in T described in (∗).

Then

L = {x ∈ T : 〈x, u〉 = 0} = {x ∈ T1 : 〈x, u〉 = 〈x, ed+1〉 = 0}

for some vector u ∈ A = R
d. We may assume that, say, 〈u, x1〉 > 0. Then the

symmetry of the cone C := C(1, 2) in (∗) yields that 〈u, x2〉 < 0.

Let ui := u − 〈u,xi〉
λi

ed+1 for i = 1, 2. It is simple to check that 〈ui , x〉 = 0 for

any x ∈ L, and 〈ui, x ′
i 〉 = 0. An easy computation yields that 〈u1, x ′

2〉 < 0 and

〈u2, x ′
1〉 > 0, and thus

C = {x ∈ T1 : 〈u1, x〉 ≤ 0 and 〈u2, x〉 ≥ 0}.

Observe that the symmetry of the cone implies that 〈u, x2〉/λ2 = −〈u, x1〉/λ1.

From (∗) it follows that 〈u1, x ′
k〉 ≤ 0 and 〈u2, x ′

k〉 ≥ 0 for k = 1, 2, . . . , n. After

substituting the definitions of u1 and u2, and x ′
k = xk + λked+1, we have that

(2.1) −
〈u, x1〉

λ1
≤

〈u, xk〉

λk

≤
〈u, x1〉

λ1
.

We show that L separates K1 and K2. By symmetry, it is sufficient to show that

〈u, x〉 ≥ 0 for any x ∈ K1. By (2.1), for every j, k we have

〈

u, x1 +
λ1

λ j + λk

(x j − xk)
〉

= 〈u, x1〉 +
λ1

λ j + λk

(

〈u, x j〉 − 〈u, xk〉
)

≥ 〈u, x1〉 +
λ1

λ j + λk

(

−
λ j

λ1
〈u, x1〉 −

λk

λ1
〈u, x1〉

)

= 0,

which yields our statement if dim K = d. If dim K < d, a similar argument may be

applied.

Now we show that (ii) implies (iii). Let S ⊂ R
d+1 be a symmetrically antipodal

set such that o /∈ conv S. For any pair of distinct points p, q ∈ S, let Hp,q denote a

hyperplane such that p ∈ Hp,q, q ∈ −Hp,q, and both Hp,q and −Hp,q support conv S.

Let Sp,q be the strip bounded by Hp,q and −Hp,q, and let C be an o-symmetric cube

with S ⊂ C. Set

K := C ∩
(

⋂

p,q∈S
p 6=q

Sp,q

)

.

https://doi.org/10.4153/CMB-2009-044-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2009-044-8
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Note that K is an o-symmetric convex body in R
d+1, S is a diametral set in K , and

o /∈ conv S. Thus (ii) yields (iii). Since (iii) clearly implies (ii), we have that (ii) and

(iii) are equivalent.

The equivalence of (iii) and (iv) is easy to show, hence we omit it. Observe that S

in (iii) corresponds to the set of translation vectors in (iv).

3 Proof of Theorem 1.5

Our proof is based on the idea of the proof of the theorem of [1]. We begin with a

variant of the lemma of [1].

Lemma 3.1 Let f be a function on [0, 1] with the properties f (0) ≥ 0, f is positive

and monotone increasing on (0, 1], and f (x) = (g(x))k for some concave function g

with k > 0. Then

F(x) :=
1

f (x)

∫ x

0

f (z) dz

is strictly increasing on (0, 1].

Proof of Lemma 3.1 Let 0 < x < y ≤ 1. We want to show that F(x) < F(y) or,

equivalently, that
f (y) − f (x)

f (x)

∫ x

0

f (z) dz <

∫ y

x

f (z) dz.

This inequality trivially holds if f (x) = f (y), and thus we may assume that f (x) <

f (y). Let L(z) :=
g(y)−g(x)

y−x
(z−x) + g(x) for z ∈ [0, y]. Note that since g(z) is concave

and k > 0, we have f (z) ≥ (L(z))k for every z ∈ [x, y], and f (z) ≤ (L(z))k for every

z ∈ (0, x]. Thus, it is sufficient to prove that

(3.1) T :=

∫ y

x

(L(z))k dz −
(g(y))k − (g(x))k

(g(x))k

∫ x

0

(L(z))k dz > 0.

After integrating and simplifying, we obtain that

T =

(g(y))k(y − x)

k + 1
+

(

(g(y))k − (g(x))k
)(

yg(x) − xg(y)
) k+1

(g(x))k(k + 1)(g(y) − g(x))(y − x)k
.

Note that from 0 < f (z), z ∈ (0, 1], we have that L(0) ≥ 0, which yields that

0 < g(y)
y

≤ g(x)
x

. Thus, the second member of T is nonnegative, and the inequality in

(3.1) immediately follows.

Proof of Theorem 1.5. First we present a detailed proof of (1.2) and discuss the case

of equality. Next, we outline the proof of (1.1), which is essentially the same as that

of (1.2).

Let v ∈ S
d−1 and let K+t1, K+t2, . . . , K+tn be pairwise non-overlapping translates

of K such that o ∈ K + ti and ai := 〈ti , v〉 ≥ 0 for i = 1, 2, . . . , n. Set

h(x) := {p ∈ R
d : 〈p, v〉 = x}.
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Figure 3

Without loss of generality, we may assume that h(−1) and h(1) are supporting hy-

perplanes of K . Note that K + ti is between h(−1) and h(2), and it is contained also in

2K , for i = 1, . . . , n (see Figure 3). Let Vd( · ) (resp. Vd−1( · )) denote d-dimensional

(resp. (d − 1)-dimensional) volume. Then

(3.2)

∫ 2

−1

Vd−1

(( n
⋃

i=1

K + ti

)

∩ h(x)
)

dx = n Vd(K).

We separate the above integral into two parts and estimate them separately. First

note that

(3.3)

∫ 2

0

Vd−1

(( n
⋃

i=1

K +ti

)

∩h(x)
)

dx ≤

∫ 2

0

Vd−1 (2K ∩ h(x)) dx = 2d−1 Vd(K).

Set f (x) := Vd−1(K ∩ h(x − 1)), and observe that f (0) ≥ 0, f is positive and

monotone increasing on (0, 1], and f ( · )
1

d−1 is concave by the Brunn–Minkowski

inequality. By Lemma 3.1,

∫ 0

−1

Vd−1

(( n
⋃

i=1

(K + ti)
)

∩ h(x)
)

dx =

n
∑

i=1

∫ 1

0

Vd−1 (K ∩ (h(x − 1) − ti)) dx

=

n
∑

i=1

∫ 1−ai

0

f (x) dx ≤

n
∑

i=1

∫ 1

0

f (x) dx
f (1 − ai)

f (1)

=

Vd(K)

2 f (1)

n
∑

i=1

Vd−1 (K ∩ h(−ai))
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414 Z. Lángi and M. Naszódi

=

Vd(K)

2 f (1)
Vd−1

(( n
⋃

i=1

(K + ti)
)

∩ h(0)
)

≤
Vd(K)

2 f (1)
Vd−1 (2K ∩ h(0))

=

1

2
Vd(K)

Vd−1 (2K ∩ h(0))

Vd−1 (K ∩ h(0))
= 2d−2 Vd(K).

This inequality, combined with (3.2) and (3.3), yields (1.2).

Now we prove the equality part of the theorem. Assume that n = 3 ·2d−2. Then by

Lemma 3.1, we have two possibilities. One is that f (0) = 0, and ai = 0 or ai = 1 for

each i = 1, . . . , n. The other one is that f (0) > 0 and ai = 0 for each i = 1, . . . , n.

If f (0) > 0, then ai = 0 for each i = 1, . . . , n, and hence,

{(K + ti) ∩ h(0) : i = 1, 2, . . . , n}

is a family of pairwise non-overlapping translates of K ∩ h(0) in h(0), each of which

contains o. Thus, [8] implies that n ≤ 2d−1, which contradicts our assumption.

Assume that f (0) = 0, and ai = 0 or ai = 1 for i = 1, . . . , n. Observe that

the family {(K + ti) ∩ h(0) : ai = 0} tiles 2K ∩ h(0), hence ai = 0 for 2d−1 values

of i, and K ∩ h(0) is an affine (d − 1)-cube. There is only the obvious way such

that translates of K ∩ h(0) tile 2K ∩ h(0), and so we obtain that {ti : ai = 0} is

an o-symmetric set. Moreover, {K ± ti : i = 1, 2, . . . , n} is a family of pairwise

non-overlapping translates of K , all containing the origin. By [8], the cardinality of

this family is at most 2d, with equality if and only if K is an affine d-cube. On the

other hand, since n = 3 · 2d−2, we obtain that card{i : ai = 1} = 2d−2. Hence

card{±ti : i = 1, . . . , n} = 2d−1 + 2 · 2d−2
= 2d, and K is an affine d-cube.

Next, let K := [−1, 1]d. Note that there are 3 · 2d−2 vectors (v1, v2, . . . , vn) ∈
{−1, 1}d whose coordinates satisfy the inequality v1 − v2 ≥ 0. The translates of K

by these vectors are pairwise non-overlapping, and each of them contains the origin.

Thus, (1.2) is sharp for the cube.

Finally, we outline the proof of (1.1). Let αK + t1, αK + t2, . . . , αK + tn be pairwise

non-overlapping translates of K that touch K . Let v, ti, ai , h(x) be as above. Note that

αK + ti is between h(−α) and h(1 + 2α), and it is contained also in (1 + 2α)K , for

i = 1, . . . , n. Thus,

(3.4)

∫ 1+2α

−α

Vd−1

(( n
⋃

i=1

αK + ti

)

∩ h(x)
)

dx = nαd Vd(K)

and

∫ 1+2α

0

Vd−1

(( n
⋃

i=1

αK + ti

)

∩ h(x)
)

dx

≤

∫ 1+2α

0

Vd−1 ((1 + 2α)K ∩ h(x)) dx −

∫ 1

0

Vd−1(K ∩ h(x)) dx

=

(1 + 2α)d − 1

2
Vd(K).

(3.5)
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Set f (x) := Vd−1 (αK ∩ h(x − α)), and observe that the conditions of Lemma 3.1

are satisfied by f . We may assume that a1, . . . , am ≤ α < am+1, . . . , an. Then by

Lemma 3.1,
∫ 0

−α

Vd−1

(( n
⋃

i=1

(αK + ti)
)

∩ h(x)
)

dx

=

m
∑

i=1

∫ α−ai

0

f (x) dx ≤

m
∑

i=1

∫ α

0

f (x) dx
f (α − ai)

f (α)

=

αd Vd(K)

2 f (α)

m
∑

i=1

Vd−1 ((αK + ti) ∩ h(0))

=

αd Vd(K)

2 f (α)
Vd−1

(( m
⋃

i=1

(αK + ti)
)

∩ h(0)
)

≤
αd Vd(K)

2 f (α)

[

Vd−1((1 + 2α)K ∩ h(0)) − Vd−1(K ∩ h(0))
]

=

α(1 + 2α)d−1 − 1

2
Vd(K).

This inequality, combined with (3.4) and (3.5), yields (1.1).
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e-mail: zlangi@math.bme.hu

Department of Math. and Statistics, University of Alberta, Edmonton, AB, T6G 2G1
e-mail: mnaszodi@math.ualberta.ca

https://doi.org/10.4153/CMB-2009-044-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2009-044-8

