INTEGER-VALUED CONTINUOUS FUNCTIONS II

BY
H. SUBRAMANIAN

We follow [6] and [7] for all terminologies. The purpose of this note is to prove
Theorem 1. Let X and Y be any two integer-compact spaces. The following are equivalent:
(1) X is homeomorphic to Y.
(2) $C(X, \mathbf{Z})$ and $C(Y, \mathbf{Z})$ are isomorphic as rings.
(3) $C(X, \mathbf{Z})$ and $C(Y, \mathbf{Z})$ are isomorphic as lattices.
(4) $C(X, \mathbf{Z})$ and $C(Y, \mathbf{Z})$ are isomorphic as p.o. groups.
(5) $C(X, \mathbf{Z})$ and $C(Y, \mathbf{Z})$ are isomorphic as multiplicative semigroups.

When X and Y are real-compact spaces, the above result is known with \mathbf{Z} replaced by \mathbf{R} [3]. The above theorem itself was proved in [7] under the assumptions that X and Y are compact.

We digress a little in order to prove the theorem. Let R be a commutative l-semisimple f-ring with unit element, and $\mathscr{M}(R)$ its space of maximal l-ideals with hull-kernel topology. A (proper) lattice-prime ideal P of R is said to be [6] associated with a point $M \in \mathscr{M}(R)$ if

$$
y(M)<x(M), x \in P \Rightarrow y \in P, \quad \text { for every } x, y \in R
$$

where $r(M)$ stands for the canonical homomorphic image of $r \in R$ in R / M. Let [M] denote all the lattice-prime ideals of R which are associated with $M \in \mathscr{M}(R)$. We assemble below some known results to facilitate convenient reading.
(A) $\{[M] \mid M \in \mathscr{M}(R)\}$ defines a partition of the set of all lattice-prime ideals of R [6].
(B) The equivalence relation generated by set inclusion gives the same partition [6].
(C) $\mathscr{M}(R)$ is determined by the lattice R [6].
(D) If $R=C(X, \mathbf{Z}), M \in \mathscr{M}(R), R / M$ is either isomorphic to \mathbf{Z} or has no countable cofinal subset [1].
(E) If $R=C(X, \mathbf{R}), M \in \mathscr{M}(R), R / M$ is either isomorphic to \mathbf{R} or has no countable cofinal subset [2].
(F) A subset S of $C(X, \mathrm{Z})$ is a maximal l-ideal if and only if it is a minimal prime ideal [7].

Received by the editors June 25, 1970.

Let R be just a commutative ring with unit element in (G) and (H).
(G) A prime ideal M of R is minimal prime if and only if for every $x \in R$, $x \in M$ implies that there exists $y \in R$ such that $y \notin M$ and $x y$ is nilpotent [4].
(H) An ideal of the multiplicative semigroup R is minimal prime if and only if it is a minimal prime ring ideal [4].

Considering each [M], $M \in \mathscr{M}(R)$ as a p.o. set (by set inclusion), we prove
Theorem 2. The following are equivalent for any $M \in \mathscr{M}(R)$.
(1) $[M]$ has a countable cofinal subset.
(2) $[M]$ has a countable subset, whose set union is R.
(3) R / M has a countable cofinal subset.

Proof. For any $r \in R$, let $P(r)=\{x \in R \mid x(M) \leq r(M)\}$. Then $r \in P(r)$ and $P(r) \in[M]$.
(1) \Rightarrow (2). Let $\left\{P_{n}\right\}_{n \in \mathbf{N}}$ be cofinal in [M]. For every $r \in R$, we have some $n \in \mathbf{N}$ such that $P(r) \subseteq P_{n}$. Thus $\bigcup_{n \in \mathbf{N}} P_{n}=R$.
(2) \Rightarrow (3). Let $\left\{P_{n}\right\}_{n \in \mathbf{N}} \subseteq[M]$ be such that $\bigcup_{n \in \mathbf{N}} P_{n}=R$. For each $n \in \mathbf{N}$, take some $x_{n} \in R$ such that $x_{n} \notin P_{n}$. Now for any $x \in R, x \in P_{n}$ for some $n \in \mathbf{N}$; then, $x(M) \leq x_{n}(M)$. Otherwise, $x_{n}(M)<x(M)$ will imply that $x_{n} \in P_{n}$, because $x \in P_{n}$. Thus $\left\{x_{n}(M)\right\}_{n \in \mathbf{N}}$ is cofinal in R / M.
(3) \Rightarrow (1). Let $\left\{x_{n}(M)\right\}_{n \in \mathbf{N}}$ be cofinal in R / M. Then $\left\{P\left(x_{n}\right)\right\}_{n \in \mathbf{N}}$ is cofinal in $[M]$. For, if $P \in[M]$, take some $y \notin P$. We see, as in (2) \Rightarrow (3), that for every $x \in P$, $x(M) \leq y(M)$. Now $y(M) \leq x_{n}(M)$ for some $n \in \mathbf{N}$. So $P \subseteq P_{n}$ for that particular $n \in \mathbf{N}$.

Using the results (A)-(E) quoted before, we have
Corollary 1. If X is an integer-compact space, the lattice $C(X, \mathbf{Z})$ determines X.
Corollary 2. If X is a real-compact space, the lattice $C(X, \mathbf{R})$ determines X.
Remark 1. Corollary 1 was a problem unanswered in [7]. Corollary 2 answers the problem in [6], viz. whether this result of Shirota [5] follows from the main result of [6].

Remark 2. Similar to Theorem 2, we have proved earlier [7] that R / M is nonarchimedian if and only if there exists $P \in[M]$ such that P contains all of $\{1,2, \ldots, n, \ldots\}$. It should be noted however that the archimedian property of R / M as such is not characterized by the lattice R. The required counter-example is the lattice isomorphism between \mathbf{Q} and $\mathbf{Q}[X]$.

Let now R be a commutative ring with unit element and without nonzero nilpotent elements; and, M a given minimal prime ideal of R. We have

Theorem 3. The multiplicative semigroup R / M is determined by the multiplicative semigroup R.

Proof. Consider any $x, y \in R$. By using (G), it can be shown that $x \equiv y$ modulo M if and only if there exists some $r \in R$ such that $r \notin M$ and $x r=y r$. The desired result is immediate.

Taking $R=C(X, \mathbf{Z})$ and $M \in \mathscr{M}(R)$, we see, using (D), that R / M is either isomorphic to \mathbf{Z} or uncountable. (F) and (H) now imply

Corollary. If X is an integer-compact space, the multiplicative semigroup $C(X, \mathrm{Z})$ determines X.

We conclude with
Proof of Theorem 1. Clearly (1) implies all the other conditions. (2) \Rightarrow (1) is known [7]. (3) $\Rightarrow(1)$ and $(5) \Rightarrow(1)$ are proved above. $(4) \Rightarrow(3)$ because any ordergroup isomorphism between two l.o. groups preserves the lattice structures also.

References

1. N. L. Alling, Rings of continuous integer-valued functions and nonstandard arithmetic, Trans. Amer. Math. Soc. 118 (1965), 498-525.
2. L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, N.J., 1960.
3. M. Henriksen, On the equivalence of the ring, lattice, and semi-group of continuous functions, Proc. Amer. Math. Soc. 7 (1956), 959-960.
4. J. Kist, Minimal prime ideals in commutative semigroups, Proc. London Math. Soc. 13 (1963), 31-50.
5. T. Shirota, A generalization of a theorem of I. Kaplansky, Osaka J. Math. 4 (1952), 121132.
6. H. Subramanian, Kaplansky's theorem for f-rings, Math. Ann. 179 (1968), 70-73.
7. -, Integer-valued continuous functions, Bull. Soc. Math. France 97 (1969).

State University of New York, Amherst, New York

