Canad. Math. Bull. Vol. 14 (2), 1971

INTEGER-VALUED CONTINUOUS FUNCTIONS II

BY

H. SUBRAMANIAN

We follow [6] and [7] for all terminologies. The purpose of this note is to prove

THEOREM 1. Let X and Y be any two integer-compact spaces. The following are equivalent:

- (1) X is homeomorphic to Y.
- (2) $C(X, \mathbb{Z})$ and $C(Y, \mathbb{Z})$ are isomorphic as rings.
- (3) $C(X, \mathbb{Z})$ and $C(Y, \mathbb{Z})$ are isomorphic as lattices.
- (4) $C(X, \mathbb{Z})$ and $C(Y, \mathbb{Z})$ are isomorphic as p.o. groups.
- (5) $C(X, \mathbb{Z})$ and $C(Y, \mathbb{Z})$ are isomorphic as multiplicative semigroups.

When X and Y are real-compact spaces, the above result is known with \mathbb{Z} replaced by \mathbb{R} [3]. The above theorem itself was proved in [7] under the assumptions that X and Y are compact.

We digress a little in order to prove the theorem. Let R be a commutative *l*-semisimple \not -ring with unit element, and $\mathcal{M}(R)$ its space of maximal *l*-ideals with hull-kernel topology. A (proper) lattice-prime ideal P of R is said to be [6] associated with a point $M \in \mathcal{M}(R)$ if

 $y(M) < x(M), x \in P \Rightarrow y \in P$, for every $x, y \in R$,

where r(M) stands for the canonical homomorphic image of $r \in R$ in R/M. Let [M] denote all the lattice-prime ideals of R which are associated with $M \in \mathcal{M}(R)$. We assemble below some known results to facilitate convenient reading.

(A) $\{[M] \mid M \in \mathcal{M}(R)\}$ defines a partition of the set of all lattice-prime ideals of R [6].

(B) The equivalence relation generated by set inclusion gives the same partition [6].

(C) $\mathcal{M}(R)$ is determined by the lattice R [6].

(D) If $R = C(X, \mathbb{Z})$, $M \in \mathcal{M}(R)$, R/M is either isomorphic to \mathbb{Z} or has no countable cofinal subset [1].

(E) If $R = C(X, \mathbf{R})$, $M \in \mathcal{M}(R)$, R/M is either isomorphic to **R** or has no countable cofinal subset [2].

(F) A subset S of $C(X, \mathbb{Z})$ is a maximal *l*-ideal if and only if it is a minimal prime ideal [7].

Received by the editors June 25, 1970.

Let R be just a commutative ring with unit element in (G) and (H).

(G) A prime ideal M of R is minimal prime if and only if for every $x \in R$, $x \in M$ implies that there exists $y \in R$ such that $y \notin M$ and xy is nilpotent [4].

(H) An ideal of the multiplicative semigroup R is minimal prime if and only if it is a minimal prime ring ideal [4].

Considering each [M], $M \in \mathcal{M}(R)$ as a p.o. set (by set inclusion), we prove

THEOREM 2. The following are equivalent for any $M \in \mathcal{M}(R)$.

(1) [M] has a countable cofinal subset.

(2) [M] has a countable subset, whose set union is R.

(3) R/M has a countable cofinal subset.

Proof. For any $r \in R$, let $P(r) = \{x \in R \mid x(M) \le r(M)\}$. Then $r \in P(r)$ and $P(r) \in [M]$.

(1) \Rightarrow (2). Let $\{P_n\}_{n \in \mathbb{N}}$ be cofinal in [M]. For every $r \in R$, we have some $n \in \mathbb{N}$ such that $P(r) \subseteq P_n$. Thus $\bigcup_{n \in \mathbb{N}} P_n = R$.

(2) \Rightarrow (3). Let $\{P_n\}_{n \in \mathbb{N}} \subseteq [M]$ be such that $\bigcup_{n \in \mathbb{N}} P_n = R$. For each $n \in \mathbb{N}$, take some $x_n \in R$ such that $x_n \notin P_n$. Now for any $x \in R$, $x \in P_n$ for some $n \in \mathbb{N}$; then, $x(M) \leq x_n(M)$. Otherwise, $x_n(M) < x(M)$ will imply that $x_n \in P_n$, because $x \in P_n$. Thus $\{x_n(M)\}_{n \in \mathbb{N}}$ is cofinal in R/M.

(3) \Rightarrow (1). Let $\{x_n(M)\}_{n \in \mathbb{N}}$ be cofinal in R/M. Then $\{P(x_n)\}_{n \in \mathbb{N}}$ is cofinal in [M]. For, if $P \in [M]$, take some $y \notin P$. We see, as in (2) \Rightarrow (3), that for every $x \in P$, $x(M) \leq y(M)$. Now $y(M) \leq x_n(M)$ for some $n \in \mathbb{N}$. So $P \subseteq P_n$ for that particular $n \in \mathbb{N}$.

Using the results (A)-(E) quoted before, we have

COROLLARY 1. If X is an integer-compact space, the lattice $C(X, \mathbb{Z})$ determines X.

COROLLARY 2. If X is a real-compact space, the lattice $C(X, \mathbf{R})$ determines X.

REMARK 1. Corollary 1 was a problem unanswered in [7]. Corollary 2 answers the problem in [6], viz. whether this result of Shirota [5] follows from the main result of [6].

REMARK 2. Similar to Theorem 2, we have proved earlier [7] that R/M is nonarchimedian if and only if there exists $P \in [M]$ such that P contains all of $\{1, 2, ..., n, ...\}$. It should be noted however that the archimedian property of R/M as such is not characterized by the lattice R. The required counter-example is the lattice isomorphism between Q and Q[X].

Let now R be a commutative ring with unit element and without nonzero nilpotent elements; and, M a given minimal prime ideal of R. We have

THEOREM 3. The multiplicative semigroup R/M is determined by the multiplicative semigroup R.

Proof. Consider any $x, y \in R$. By using (G), it can be shown that $x \equiv y$ modulo M if and only if there exists some $r \in R$ such that $r \notin M$ and xr = yr. The desired result is immediate.

Taking $R = C(X, \mathbb{Z})$ and $M \in \mathcal{M}(R)$, we see, using (D), that R/M is either isomorphic to \mathbb{Z} or uncountable. (F) and (H) now imply

COROLLARY. If X is an integer-compact space, the multiplicative semigroup $C(X, \mathbf{Z})$ determines X.

We conclude with

Proof of Theorem 1. Clearly (1) implies all the other conditions. (2) \Rightarrow (1) is known [7]. (3) \Rightarrow (1) and (5) \Rightarrow (1) are proved above. (4) \Rightarrow (3) because any ordergroup isomorphism between two l.o. groups preserves the lattice structures also.

References

1. N. L. Alling, *Rings of continuous integer-valued functions and nonstandard arithmetic*, Trans. Amer. Math. Soc. **118** (1965), 498–525.

2. L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, N.J., 1960.

3. M. Henriksen, On the equivalence of the ring, lattice, and semi-group of continuous functions, Proc. Amer. Math. Soc. 7 (1956), 959–960.

4. J. Kist, Minimal prime ideals in commutative semigroups, Proc. London Math. Soc. 13 (1963), 31-50.

5. T. Shirota, A generalization of a theorem of I. Kaplansky, Osaka J. Math. 4 (1952), 121-132.

6. H. Subramanian, Kaplansky's theorem for f-rings, Math. Ann. 179 (1968), 70-73.

7. -----, Integer-valued continuous functions, Bull. Soc. Math. France 97 (1969).

STATE UNIVERSITY OF NEW YORK, Amherst, New York