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RIGIDITY OF HILBERT METRICS

BRUNO COLBOIS AND PATRICK VEROVIC

We study the groups of isometries for Hilbert metrics on bounded open convex
domains in Kn and show that if C is such a set with a strictly convex boundary, the
Hilbert geometry is asymptotically Riemannian at infinity. As a consequence of this
result, we prove there are no Hausdorff quotients of C by isometry subgroups with
finite volume except when dC is an ellipsoid.

INTRODUCTION

Let C be a bounded open convex domain in R" with boundary dC and || • || be the
canonical Euclidean norm in R". It is then possible to define a distance dc on C, the
so-called Hilbert metric (discovered by D. Hilbert in 1894), as follows. Given two distinct
points p and q in C, let a and b be the intersection points of the straight line defined by
p and q with dC so that p = ta + (1 — t)b and q = sa + (1 — s)b with 0 < s < t < 1.
Then dc{p,p) = 0 and dc(p,q) = \n[a,p,q,b], where [a,p,q,b] = (1 - t)s/({l - s)/t) > 1
is the cross ratio of the ordered collinear points {a,p,q,b}. The fact dc is a distance
comes from basic properties of the cross ratio and the metric space (C, dc) thus obtained
is a complete non-compact geodesic metric space whose topology is the one induced by
the canonical topology of lRn and in which the affine open segments joining two points
of the boundary are geodesies isometric to (K, | • |). On the other hand, the distance
dc is associated to the Finsler metric Fc on C given for p £ C and v £ TpC = Rn

by Fc(p,v) = ||i>||((l/||p - p~||) + (l/ | |p - P + | | ) ) , where p~ (respectively p+) is the
intersection point of the half line p + R~v (respectively p + R+v) with dC. For further
information, we refer to [3, 4, 6, 9] for an introduction to the subject. In the present
paper, we study the subgroups V of the group Isom(C,dc) of isometries of (C, dc) with
proper actions on C (that is, such that the quotient topological space C/T is Hausdorff)
and prove the following rigidity result:

THEOREM. Let C be a bounded open convex domain in Rn whose boundary dC is
a hypersurface of class C3 which is strictly convex (in the sense the Hessian is positive
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24 B. Colbois and P. Verovic [2]

definite). Then ifdC is not an ellipsoid, any subgroup of the isometry group Isom(C, dc)

whose action on C is proper is finite.

We then deduce an important consequence involving the volume measure associated

to the Finsler metric Fc on C which is defined by ji{f) = / f(p)a(p)dp for every contin-
ue

uous function / : C —> K with compact support, where a(p) is the Finsler density for the
metric Fc. Recall here that for any Finsler manifold (F, M) the density function a over
M is defined as follows. Given an arbitrary Riemannian metric g on M, for all p € M
the value a(p) is equal to the square root of the ratio of the Euclidean volume of the ball
{v G TPM : g(p)-(v,v) ^ l } by the Euclidean volume of the ball {v € TPM : F(p,v) ^ l }
in the Euclidean vector space (TpM,g(p)). This definition does not depend on the choice
of g and it generalises the well known Riemannian density (indeed, if F is Riemannian,
then a is nothing else than the famous ^/det(^y)). For more information about the
Finsler density and some problems related to this notion, one can have a look at [14].

COROLLARY. Let C be as above. Then if dC is not an ellipsoid, (C,dc) does not
allow quotients of finite volume (and thus compact quotients) by subgroups of Isom(C, dc)
whose actions on C are proper.

Hilbert metrics are important objects that people have been interested in for many
reasons. First of all, they give a range of basic and rich enough examples of geodesic
metric spaces (see the investigations of Busemann in [3, 4]). They next generalise in
Finsler geometry the Riemannian hyperbolic spaces which are obtained in the case dC
is an ellipsoid and correspond to Klein's model (see [3, 4]). On the other hand, Hilbert
geometries are considered in affine geometry from the 'projective transformation groups'
point of view (see [9] and the recent preprint of Benoist [1]). The question we are dealing
with in the present paper has already been tackled in the literature for the compact case.
Namely, the non-existence of compact quotients has been proved in the framework of
affine geometry by Benzecri in [2] (see also the illuminating Lecture Notes of Goldman
[9]). Using a dynamical systems approach, a proof of this result has also been given
by Egloff ([5, Theorem 3.59]) in dimension two and by Foulon in higher dimensions as
a consequence of a more general rigidity theorem (see [7, 8]). The situation when the
boundary of C is no longer strictly convex has been investigated in [5, Proposition 3.2],
[9] and [10], and it is known that if C is for example a triangle, there exist co-compact
subgroups of Isom(C, rfc)-

The starting point of the present paper was to know whether there are quotients of
Isom(C, dc) with finite volume and the strategy we use here to prove that in general such
quotients do not exist involves very basic tools in metric and Finsler geometry. Indeed,
the key idea of the proof consists in showing that the closer to dC we are, the less the
metric dc on C is different from a Riemannian one (this is given by Proposition 1.3 below).
Therefore, if an infinite group of isometries for dc had a proper action on C, then every
point would be sent to the boundary dC and the Hilbert metric would be as close as
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|3| Rigidity of Hilbert metrics 25

desired to a Riemannian metric and thus Riemannian itself. Then we conclude dC is an
ellipsoid by combining results due to different authors ([3, 11]) in the following general
statement:

THEOREM. Let C be any bounded open convex domain in Rn. If the metric dc is

Riemannian, then dC is an ellipsoid.

To be complete let us point out that in December 1999 we discussed a first version
of this work (see [15]) with Edith Socie-Methou who proposed to use an approach for
this problem that is different from ours and that she later developed in her Ph.D. thesis
([12]) and in [13].

1. GEOMETRY AT INFINITY

In this part, we give two independent technical lemmas before proving that for a
bounded open convex domain C C Rn with a strictly convex boundary of class C3 the
Hilbert metric dc is asymptotically Riemannian at infinity (that is, when moving towards
the boundary dC). Our approach for doing this consists in a local approximation of dC

by a parabola (Lemma 1.1) in order to show the geometry of (C,dc) behaves near dC as
if it were Klein's geometry in the Euclidean unit ball near its boundary (Lemma 1.2).
We then give Proposition 1.3.

Throughout the section, the canonical Euclidean norms in R""1 and Rn will be both
denoted by || • || and the open ball in (R""1, || • ||) centred at 0 with radius r > 0 by
JB(O, r). On the other hand, (e i , . . . , en) will be the canonical basis in R" and (• | •) the
canonical scalar product.

The first lemma shows that for each point w € dC there is a ball in (Rn, || • ||) with
centre w and radius independent of UJ in which the boundary of C can be written as the
graph of a function defined in R""1 (after an appropriate coordinate change depending
on LJ) having the property that its value at x lies between (l - M||x||)||a;||2 and (l +
M||x||)||x||2, where M > 0 is a number which does not depend on w but only on C.

LEMMA 1 . 1 . Let C be a bounded open convex domain in R" whose boundary dC

is a hypersurface of class C3 that is strictly convex (in the sense the Hessian is positive

definite) and denote N : C —• R" the normal vector field over dC pointing inwards.

Then there are positive constants 0 < M and 0 < p < 1/M with a family (Tu)u€dc

of affine isometries in (R", || • ||) together with a family (fu)ueac of functions defined in

5(0, p) C Rn~' such that for each u> £ dC we have the following:

(i) TW(C) C {(x,z) £ R"-1 x R | z > 0}, Tu(w) = 0 and ^U-N(u) = en,

where T w is the linear part of Tw.

(ii) Forall(x,z)e B(0,p)xR, 2 = / u ( i )=) . ( i , z )6T ( J (3C) .

(iii) For all x € B(0, p), (l - M||x||) ||z||2 ^ /„(*) < (l + M\\x\\) \\x\\2.
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26 B. Colbois and P. Verovic [4]

P R O O F : For each u> € dC let us define the 'shape' SU{C) of C with respect to w as
the orthogonal projection of C onto the affine tangent space T^dC) and denote e(w) ^ 0
the Euclidean distance from w to 9(<SW(C)). If there were a sequence of points (u>k)k^o
in dC such that lim e(u>k) = 0, by compactness of dC we could find w in this boundary

k—*+oo

with e(w) = 0. But this is not possible because dC is differentiate at w. So there is a
constant r > 0 such that e(u>) ^ 2r for all <j 6 <9C.

Moreover, if we introduce the ball Bu = {m e TW(<9C) : ||m - w|| < 2r} in Tu(dC),

the intersection of the full open cylinder {rn + SN(UJ) : m S Bu, s £ R} with 3C has
exactly two connected components one of which contains w and that we will denote Uu.

We then immediately get from the convexity of C that for each m S Bw there is a unique
s = 93w(m) € R such that m + sN(cj) S Uw and so we get a map <pu : Bu —> E of class C3.

Let us now fix an open set W in Rn such that F = W n dC is non-empty and
parallelisable.

We can then find a family (T w ) w e r of affine isometries in (Kn,|| • ||) depending
smoothly on u> € F such that Tw(w) = 0 and T w • 7V(w) = en.

Since.C is a star-shaped set with respect to one (arbitrary) of its point and has a
boundary which is a hypersurface of class C3, there exists a function F : R" —> K with the
same smoothness such that dC = F~l(0) and the family (F^^gr defined by Fu = F o T " 1

thus satisfies Tw{dC) = F j^O) .
Next define for each w € F the function gu : B(0,r) c R""1 -> R by gu(u) =

tpu(T~l{u,0))\ as we have Fu{u%gu(u)) = 0 for all u = (ux,.. .,Un-i) € B(0,2r), we

get by differentiation that all the third order partial derivatives of gu with respect to
w l 5 . . . , un_i are rational expressions of the partial derivatives of the function Fu : (u, 2) e
Rn = R"-1 x l n FU(U, Z) with respect to uu..., wn_i, 2 computed at the point (u, z) —
{u,gu(u)).

Therefore, by continuity of these partial derivatives with respect to both u and w, if
O is an open set in Rn whose closure is in W, there is a constant A > 0 such that for all
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u) € O(~\dC and all u e B(Q, r) (closed ball) we have from the Taylor expansion

At(u,)u,2 - A\\u\\3 ^ gu{u) ^ ] T Ai(w)«? + ^IM|3,

where XI(CJ), ..., An_i(w) are the principal curvatures of dC at the point u> € dC.

The strict convexity and the compactness of dC together with the continuity of

A i , . . . , An_i over dC imply there exists a > 0 such that 0 < A*(w) ^ I/a2 for all ui G dC

and a l i i G { 1 , . . . , n - 1}; so we can define fu{x) = g^(y/Xi(^)xi,..., ^Xn^i((j)xn.ij

for each w € O n dC and all x = (xu---,xn-i) in B(0,p) C M""1, where p =

min{ra,a3/A} > 0. We then get a family of functions (/w)weonac t n a t satisfies (ii)

and (iii) of Lemma 1.1 with M = A/a3 > 0.

Finally, as dC is compact, it can be recovered by a finite number of open sets like O

above and this proves Lemma 1.1. D

The aim of the second lemma is to give us an estimate of the value Fc(mo, v) of
the Finsler metric Fc at a point m0 € C for a vector v € Kn in terms of the Euclidean
distance from m0 to dC and the direction of v. More precisely, let us consider a bounded
open convex domain K in R2 such that there exist positive numbers M > 0, r ^ M + 2
and a function £ : (—r,r) —> R which satisfies Graph(£) c dK together with

(1) \a(r)t2 ^ m ^ \b{r)t2 for all \t\ < r,

where a(r) = 1 - M/r > 0 and b(r) = 1 + M/r > 0. For each c e R denote by Vc the
parabola in R2 whose equation is y = ct2/4. Then define H(r) € R so that the point
(r, H(r) + l ) is in Va(r) and let h(r) € R so that h(r) + 1 is the second component of the
intersection point between Vb(r) an<3 the straight line passing through mo = (0,1) and
(r,H{r) + l). Hence,

H(r) = -a(r)r2 - 1 and h(r) = —-ff (#(r) + \/#(r)2 + b(r)rA .
4 o(r)r^ V /

As r ^ M + 2, we have / / ( r ) > 0 and /i(r) > 0, which implies the point m0 is in K
by (1) and the convexity of K.

For 6 € (-7r/2,7r/2) we can therefore consider FK{ma,ue), where wfl = (cos#,sin0),
and control this quantity in terms of r € [M + 2, +oo) uniformly in 0:

LEMMA 1 . 2 . For all 0e (—•TT/2, TT/2) we have

V?(r) < FK-(mo,ufl) ^ ^ ( r ) ,

where </? and ip are functions with the property that lim <z>(r) = lim ib(r) = 1.
r->+oo r-t+oo

R E M A R K . This result asserts that the bigger r is (and then the closer is dK to the
parabola with equation y = t 2 /4 within (-r,r) x R), the closer to the unit canonical
Euclidean sphere is the Finsler sphere {v e R2 : FK(Tn0.v) = l } at the point m0.
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P R O O F : For 6 e (-ir/2,n/2) introduce the half lines AjJ" = mQ + R+ue and
AjJ" = m0 + Mrug and let A+(r, 9) (respectively A~(r, 9)) be the Euclidean distance be-
tween mo and the intersection point A *̂ C\Va(r) (respectively A^ C\Va(r)). Define A "̂(r, 9)
(respectively \^{r, 6)) in a similar way for Vb(T) and denote by X+(9) (respectively A~(0))
the Euclidean distance between m0 and the intersection point A^ n dK (respectively

Using these notations, we then have FK(m0,ue) — (l/A~(0)) + (l/A+(0)) from the

definition of FK (see Introduction) and a straightforward computation gives

(2)

A+(r,g) = - 7 , 2 = and A"(r,0) = - = = = = L =
Vsin2 0 + a(r) cos2 0 - sin 6 Vsin2 0 + a(r) cos2 6 + sin 0

with the analogous formulas for \£(r,9) and A^(r,0) by changing a(r) into 6(r).

There are now three cases to be considered.

F I R S T CASE. | tan01 ^ H(r)/r.

In this situation the half line AjJ" (respectively A^) cuts dK on the curve
: 1*1 < A and we have by (1)

and A+(r,0)

which implies

(3)
VM) '
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[7] Rigidity of Hilbert metrics 29

Since 0 < a(r) ^ b(r), we then have by (2) the inequality

y/l-(M cos2 9)/r

and thus

(4) U ^
On the other hand,

sin2 9 + b(r) cos2 9 = ^b{r) + (l - b(r)) sin2 (9 = v/6(r) - (M cos2 0) / r

which leads to

( 5 ) ^ ^

Finally, from (3), (4) and (5) we get

SECOND CASE. tan0 > H(r)/r.

The convexity of K and (1) imply the intersection point A% l~l dK lies in [0, +00)

x [h{r) + 1, +00) and therefore X+(9) ^ h(r). As the point A^ C\dK is still on the curve

I (*,£(£)) : \t\ < r>, we can write by condition (1) that X~(r, 9) ^ X~~{9) ^ X^(r,9) in

order to get

(6) 1 < ^ _ < ^ _ + _ J _ < ^ + J_< l + _J_
v ; X^(r,9) "- X-(6) ^ X~{6) X+(0) ^ X~(0) h{r) ^ X~(r,6) h(r)'

From tan 9 > H(r)/r (together with 9 € (—TT/2. TT/2)), we have sin 9 > ( l / y / l + H(r)2/rA
and then

(7) — - = - (sin 9 + ,/sin2 f) + Mr) rn^2 9 ) > sin 9 > *
X;{r,0) 2\ V J v/l + H(r)2/r2

On the other hand,

^ ( l + x/l + (a(r) - 1) cos2 6>) = | ( l + y/l - (M cos2 9)/r^J ^ 1.

Hence, (6), (7) and (8) imply

1 ^ 1
+X~{9) X+(0) ^ h(r)
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THIRD CASE. tan# < -H(r)/r.

Applying the same arguments as previously (where the roles of Ajj" and A "̂ have
been exchanged), we also get here

1 1 1 1
^ ^ 1H(r)2/r2 A"(0) \+(0) ^ h(r)

CONCLUSION. If we define <p(r) = mini (1/^/1 + H(r)2/r2) , \ / a ( r ) } ar>d 4>(r) =

maxj 1 4- (l//i(r)) , ^ ( r ) >, the three cases above say that for all 6 6 (—7r/2,7r/2) we
have

( ) < + = FK(m0,ug) ^ ip[r),

which proves Lemma 1.2 since lim <p(r) = lim ip(r) = 1. n
r-»+oo r—>+(» u

Considering a convex set C as described at the beginning of the present section, we
are now able to prove the key idea of this paper which states that the closer to dC we
are, the less the metric dc on C is different from a Riemannian one. In other words, we
show the closer to dC a point p 6 C is, the closer to an ellipsoid centred at p is the unit
sphere { D G R " : Fc(p,v) = l} of the norm Fc(p, •) in TP{C) = K".

PROPOSITION 1 . 3 . Let C be a bounded open convex domain in Rn whose
boundary dC is a hypersurface of class C3 that is strictly convex. For any p € C let
6(p) > 0 be the Euclidean distance from p to dC. Then there exists a family (£p)pec of
linear transformations in K" such that

lim ,,1 ,; = 1 uniformly in v € Rn\{0}.
«P)->O \\ep(v)\\

REMARK. The proposition means that the unit sphere of the norm Fc(p, •) approaches
the ellipsoid defined by the unit sphere of the Euclidean norm || • || o£p in K" as 6(p) goes
to zero.

PROOF: Let p € C sufficiently close to dC such that 5 = S(p) < p (see Lemma 1.1)
and that there is a unique w S dC satisfying \\p - u|| = 6.

Define $„ € GL(R") by $p(x, z) = {X,Z) = {2x/V5,z/6) from R""1 xR to R ^ x R ;
it sends Tw(p) = 5en to m0 = (0, . . . ,0,1) and changes inequality (iii) in Lemma 1.1
applied to u> into

\ ^ fu(y/5X)/S

^ i ( l + M\/^||X||/2)||X||2 for all X G fl(0.1/<51/4).

Hence we deduce

(9) \(l - MSl^)\\X\\2 ^ fu(^X)/S ^^(1 + M6l'4)\\X\\2 for all X € B(0,
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|9| Rigidity of Hilbert metrics 31

Now introduce r = l/S1?4, fix k G { l , . . . , n — 1} and consider the function £(t) =

fu(\/Stek)/6 for t G {-r,r); in restriction to the 2-plane Uk = {tek + Zen : (t, Z) G K2},
condition (9) means

(10) -a(r)t2 ^ £{t) ^ -b(r)t2 for all \t\ < r,
4 4

where a(r) = 1 - M/r and b(r) = 1 + M/r.
If we then define lp G Aff(En) by tp = $ p o Tw and focus on the convex set K =

d(dp(C)) C\Uk, we are exactly in the situation of Lemma 1.2 (where condition (1) is given
by (10) above) from which we get

tp(r) ^ Fp{m0, cos9ek + sinden) ^ ip(r) for all 0 G (—K/2,TT/2),

where Tp is the Finsler metric associated to £P{C) and tp, ijj are functions such that
lim ip(r) = lim ip(r) = 1.

r-»+oo r-»+oo

As Tp(m0, •) is a symmetric, continuous and positive homogeneous function over 1",
the last inequalities mean

) ^ ^(rJUvll for all v € IT*.

But k € { 1 , . . . ,n — 1} has been chosen arbitrarily and so we actually have

(11) ¥>(r)|M| ^ Tv{m0,v) ^ tf(r)||w|| for all « € Kn

because < (̂r) and ip(r) do not depend on k.

Since £p is an affine transformation, it is an isometry from (C, dc) to (?P{C), dep(c)) or
equivalently an isometry from (C, FQ) to {£P(C),TP), that is /p(£p(m),^p(w)) = Fc(m,v)
for all m S C and all u £ I " , where £p is the linear part of £p.

Therefore, as £p(p) = mo, we finally obtain

p W H t o H < Fc(P,v) < V>(r)||fp(t;)|| for all v € Rn

and Proposition 1.3 follows since r = l/61^4 —> +oo as 6 —¥ 0. D

2. P R O O F OF THE THEOREM

We give in this section the proof of the central rigidity result announced in the
Introduction as a consequence of Proposition 1.3 for a bounded open convex domain C
in K" with a strictly convex boundary of class C3.

THEOREM 2 . 1 . If dC is not an ellipsoid, then any subgroup F of the isometry
group lsom(C, dc) with a proper action on C is finite.

Before showing this result, we establish the following lemma:
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32 B. Colbois and P. Verovic |10|

LEMMA 2 . 2 . Let C be any bounded open strictly convex domain in Rn and F any
subgroup of Isom(C, dc) with a proper action on C. Then if there is a point in C with a
finite orbit, F has to be finite too.

PROOF OF LEMMA 2.2: We shall consider C in P(Rn + 1) via the classical imbedding
Rn ^ P(Rn+1) (see for example [9, Section 2]). Then the strict convexity of C implies
that Isom(C, dc) < PGL(Rn+1) according to [10, Proposition 3). Let p0 G C with a finite
orbit F-po and pick n + 1 points p j , . . . ,pn+i inC such that (po,Pi, • • • ,pn+\) is a projective
frame. Next define the sequence (Fjjo^^n+i of subgroups in F by

Fo = Stabr(po) and Tj = Stabrj_, (pj) for all j G { 1 , . . . , n + 1},

where Stabc(a:) denotes the stabiliser of the point x under the action of the group G. We
therefore have F n + 1 < • • • < Fi < Fo < F with F n + 1 = {Idc} because F n + 1 < PGL(Rn+1)
fixes the projective frame (po,p\,. • .,pn+i)-

As for each j € {0, . . . , n } we have dc(pj,i • Pj+i) = dc(pj,Pj+i) for all 7 G r,-,
the orbit F^ • pj+\ lies in a compact set and thus if it were infinite, it would have an
accumulation point; but this is not possible because the action is proper. Hence, Tj -pj+\
is finite for all j € {0 , . . . , n}.

Since F/F o = F -p0 and Tj/Tj+i = F_,- -pj+1 (as sets) for all j e {0 , . . . , n}, we finally
get that all the indexes [F : Fo], [Fo : F ^ , . . . , [Fn : Fn+i] are finite. So, F is finite. D

PROOF OF T H E O R E M 2.1: Consider an infinite subgroup F of the isometry group
Isom(C, dc) whose action on C is proper and choose a point p in C. As F is not finite,
the orbit F • p is infinite by Lemma 2.2 and thus if it where contained in a compact set,
it would have an accumulation point which is not possible since the action is proper. So
the Euclidean distance between F • p and dC is zero, which means there exists a sequence
(ik)k^o in F such that the limit of the Euclidean distance between Pk — Ik ' P and dC
is zero as k goes to infinity. Then, from Proposition 1.3, there is a sequence ( 4 ) A ^ 0 in
GL(En) which satisfies

Fc{puTlk{v)) =
l i m

*-+«, \\Zk{TPklk{v)

where || • || still denotes the canonical Euclidean norm in K".

But since j k € Isom(C,dc), we have Fc(pk,TPkjh(v)) = Fc{p,v) and the equality above
writes

lim |[£fc(u)|| = Fc{p,v) uniformly in v € R"\{0}

As this limit is uniform in v, the sequence (Ck)k^0 is bounded in L(Rn) (the space of
linear endomorphisms of R" endowed with the operator norm associated to || • ||) and we
can therefore assume it converges to a limit C G L(R"). We then obtain Fc{p, v) — ||£(w)||
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|11] Rigidity of Hilbert metrics 33

for all » e t n (hence C S GL(Rn)), which means the Finsler metric Fc is Riemannian at

the point p € C (the norm || • || o £ is indeed Euclidean in Rn) and since this is true for

every choice of p, we get that Fc (or equivalently the corresponding Hilbert metric dc) is

a Riemannian metric on C. D

At this stage, recall the following fact (see for example [3, page 85]):

THEOREM 2 . 3 (E. Beltrami, 1866). Let a connected open set X of the projective

space P{Rn+l) be metrised so that the metric is Riemannian and the geodesies lie on

projective lines. Then the sectional curvature of this Riemannian metric is constant.

Using this, we deduce the very useful result:

THEOREM 2 . 4 . Let C be any bounded open convex domain in Rn. If the metric

dc is Riemannian, then dC is an ellipsoid.

PROOF OF THEOREM 2.4: From Theorem 2.3 with X = C, the sectional curvature
of the Riemannian metric dc is constant and thus non-positive since the space (C, dc) is
not compact. Then, by a theorem of Busemann ([3, page 269, Theorem 41.6]), the metric
space {C,dc) has non-positive curvature in the sense of Busemann (see [3, page 237 for
the definition]) and this finally implies dC is an ellipsoid from a result due to Kelly and
Straus ([11]). D

This ends the proof of Theorem 2.1. D

REMARK. Although Theorem 2.4 seems generally to have been accepted, we are unaware
of any proof in the literature.

We now determine whether there are quotients of Isom(C,dc) with finite volume:

COROLLARY 2 . 5 . Let C be as in Theorem 2.1. Then if dC is not an ellipsoid,

(C, dc) does not allow quotients of finite volume by subgroups of Isom(C, dc) whose actions
on C are proper.

PROOF: The volume here is the one /J, associated to the Finsler metric Fc on C and
described in the Introduction. Now if a subgroup T of Isom(C,<ic) has a proper action
on C, it is finite since dC is not an ellipsoid according to Theorem 2.1. So, if there where
a fundamental domain D C C with fi{D) finite, we would get that /i(C) = J2 ^ ( 7 ' D)

is finite too; but this is not true. (If we indeed use Lemma 1.1 and Lemma 1.2 over the
intersection U of C with a small enough ball in (Kn, || • ||) centred at any given point in
dC. we can get an estimate of the Euclidean volume of the ball {v € Rn : Fc(p,v) < l }
and compute that y,(U) — +00.) D
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