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Shape dynamics and rheology of dilute
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This paper examines the shape dynamics of deformable elastic and viscoelastic particles
in an ambient Newtonian fluid subjected to simple shear. The particles are allowed to
undergo large deformation, with the elastic stress determined using the neo-Hookean
constitutive relation. We first present a method to determine the shape dynamics of initially
ellipsoidal particles that is an extension of the method of Roscoe (J. Fluid Mech., vol. 28,
issue 2, 1967, pp. 273–293), originally used to determine the shape at steady state of
an initially spherical particle. We show that our method recovers earlier results for the
in-plane trembling and tumbling dynamics of initially prolate spheroids in simple shear
flow, obtained by a different approach. We then examine the in-plane dynamics of oblate
spheroids and triaxial ellipsoids in simple shear flow, and show that they too, like prolate
spheroids, exhibit time-periodic tumbling or trembling dynamics, depending on the initial
aspect ratios of the particle and the elastic capillary number G ≡ μγ̇ /η, where μ is the
viscosity of the fluid, η is the elastic shear modulus of the particle and γ̇ is the shear
rate. In addition, we find a novel state wherein the particle extends indefinitely in time and
asymptotically aligns with the flow axis. We demarcate all the dynamical regimes in the
parameter space comprising G and the initial particle aspect ratios. When the particles are
viscoelastic, damped oscillatory dynamics is observed for initially spherical particles, and
the tumbling–trembling boundary is altered for initially prolate spheroids so as to favour
tumbling.
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1. Introduction

The rheology of a suspension of rigid particles in a Newtonian fluid has been well studied
analytically (Einstein 1906; Batchelor & Green 1972; Brenner 1974; Dabade, Marath &
Subramanian 2016), experimentally (Krieger 1972; de Kruif et al. 1985; Van der Werff &
De Kruif 1989; Zarraga, Hill & Leighton 2000; Singh & Nott 2003; Snook et al. 2014) and
computationally (Bossis & Brady 1984; Ladd 1994; Singh & Nott 2000; Gallier et al. 2014;
Butler & Snook 2018). However, there are many examples of suspensions in nature and in
industrial settings wherein the suspended particles are deformable, in the form of fluid
droplets, vesicles, capsules or elastic particles; blood is an example of such a suspension,
comprising cells of a range of deformability. In these cases, an imposed shear flow causes
the particles to change shape, and determination of their evolving shapes is central to
determining the rheology of the suspension. Even for suspensions that are dilute enough
that interaction between particles may be ignored, the rheology is non-Newtonian due to
the deformation of an isolated particle caused by the imposed flow. The shape dynamics
of fluid droplets and its influence on the suspension rheology has been studied for several
decades (Oldroyd 1953; Cox 1969; Stone 1994; Wetzel & Tucker 2001; Jackson & Tucker
2003; Minale 2010; Mwasame, Wagner & Beris 2017). In recent years, more attention has
been devoted to the dynamics of vesicles and capsules (Kraus et al. 1996; Rioual, Biben
& Misbah 2004; Kantsler & Steinberg 2006; Misbah 2006; Danker et al. 2007; Danker &
Misbah 2007; Noguchi & Gompper 2007; Zhao & Shaqfeh 2011; Guedda, Benlahsen &
Misbah 2014).

Most of the studies on deformable elastic and viscoelastic particles are restricted to
the small deformation regime, wherein the constitutive relation for the elastic stress is
effectively linear (Fröhlich & Sack 1946; Cerf 1952; Goddard & Miller 1967). The first
systematic investigation of finite and large deformation of viscoelastic particles suspended
in a Newtonian fluid was presented by Roscoe (1967), who used the neo-Hookean and
Mooney–Rivlin constitutive models for the elastic stress. Roscoe’s study was confined to
the steady conformation (shape and orientation) of particles that are initially spherical
(i.e. before shear is commenced). With the assumption that the particle undergoes
homogeneous deformation in an ambient linear flow (where the undisturbed strain rate
γ̇ is a constant), Roscoe deduced that the particle traverses a sequence of ellipsoidal
shapes with changing aspect ratios and orientation, as shown in figure 1, until a steady
conformation is reached. At steady state, material points within the ellipsoidal particle
execute a ‘tank-treading’ motion. Making use of Jeffery’s result for the fluid velocity field
around a rigid ellipsoid (Jeffery 1922) and imposing continuity of traction at the particle
surface, the particle shape and its contribution to the suspension stress were determined in
terms of the elastic capillary number G ≡ μγ̇ /η, where μ and η are the viscosity of the
suspending fluid and the elastic shear modulus of the particle, respectively. The existence
of the tank-treading steady state was numerically verified in two (circles; see Gao & Hu
2009) and three dimensions (spheres; see Gao, Hu & Castañeda 2011), thereby validating
the assumption of homogeneous deformation by Roscoe (1967).

Gao et al. (2011) developed a semi-analytical method for determining the shape
dynamics of elastic ellipsoids obeying the neo-Hookean constitutive relation, but restricted
attention to initially spherical particles. The analysis was extended to prolate spheroids
whose symmetry axis is in the plane of shear by Gao, Hu & Castaneda (2012). Using the
stress polarization technique introduced by Eshelby (1957, 1959) for an elastic inclusion in
an elastic matrix, the authors related the time derivative of the stress to the strain rate
and vorticity fields inside the elastic particle through fourth-order shape tensors. The
method yields a set of coupled nonlinear ordinary differential equations for the aspect
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Suspensions of elastic and viscoelastic particles
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Figure 1. Soft elastic particle deforming through a series of ellipsoidal shapes due to applied shear. The
intensity of colour indicates the magnitude of the stress along the major axis of the ellipsoid.

ratios, orientation and the (three) stress components, which was solved numerically to
obtain the transient response. An important aspect of this study is that, in addition to
the tumbling motion expected in the near-rigid (small G) limit, the authors showed the
presence of a novel trembling motion that had earlier been observed in vesicles (Kantsler
& Steinberg 2006; Misbah 2006; Zhao & Shaqfeh 2011) and further, determined the
tumbling–trembling phase diagram in the G–ω0 plane.

A key step in the method of Gao et al. (2011, 2012) is to obtain a relation between
the time derivative of the stress and the strain rate by taking the upper convected time
derivative of the neo-Hookean constitutive relation. However, for more general constitutive
relations, such as Mooney–Rivlin, the time derivative of the stress cannot be related to the
strain rate alone – the strain too will appear in the relation, thereby precluding the use of
this method. It is therefore more appropriate to take the conventional approach in elasticity,
where the stress is related to the strain or deformation. We show that the deformation at
each instant of time can be obtained by recognizing that Roscoe’s method (Roscoe 1967)
for determining the stress in the fluid can be extended to dynamically evolving states;
enforcing continuity of the traction at the particle surface gives relations for the strain rate
and vorticity within the particle, which in turn are related to the time evolution of the shape
and orientation. Importantly, this method provides physical insight into the nature of the
shape dynamics. For instance, we see that the rate of change of orientation of the particle
has two contributions, one due to vorticity-induced rotation and the other to stretching
of the particle along a direction different from its principal axes. For simple shear flow,
these two components are of opposite sign for a range of orientations, and their relative
magnitudes decide whether a tumbling or trembling dynamics occurs; a steady state can be
attained only when the two contributions are precisely balanced. Although we restrict our
attention to the in-plane dynamics for the case of simple shear flow, wherein two principal
axes of the spheroid are in the plane of shear, our approach is general enough that the
dynamics resulting from arbitrary initial orientations can be obtained; the latter will be
considered in a subsequent paper.

The following caveat must be made with regard to the solutions we obtain by assuming
the particle to be ellipsoidal at all times (equivalently, assuming the stress and deformation
in the particle to be always uniform). Eshelby (1957, 1959) showed that the ellipsoidal
shape is the only solution for a linear elastic inclusion in a linear elastic medium; this was
later extended to Newtonian drops in a Newtonian fluid by Wetzel & Tucker (2001). In
both cases, the constitutive relations for the dispersed and continuous phases are linear.
When the inclusion is a nonlinear elastic solid, it is not known a priori that the shape will
be ellipsoidal. The only assertion we can make is that the assumption of ellipsoidal shape
yields a solution – however, this need not be the only solution. Nevertheless, the numerical
validation of Gao & Hu (2009); Gao et al. (2011) is an indication that the solutions are
physically relevant ones.

The paper is organized as follows. In § 2, we present our method for determining the
shape dynamics of an isolated ellipsoidal particle suspended in a Newtonian fluid whose
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undisturbed flow is simple shear. The governing equations are then specialized for the
in-plane dynamics of elastic and viscoelastic particles. In § 3, we solve the governing
equations, where we first show that the results of Gao et al. (2012) for elastic spheres and
prolate spheroids are recovered by our method (Appendix C). We then obtain the in-plane
dynamics of elastic particles that are initially oblate spheroids or triaxial ellipsoids and
construct the respective phase diagrams of dynamical states in the G–aspect ratio space.
The effect of viscoelasticity on the shape dynamics is then discussed. We conclude in § 4
with a summary of our main findings, the inferences drawn from them, and the potential
applications of our study.

2. Mathematical formulation

In this section, we derive the equations that govern the dynamics of the particle shape,
orientation and stress. Our interest is in the dynamics of a dilute suspension of small
particles of nominal size �p dispersed in viscous Newtonian liquids of density ρ and
viscosity μ, with the suspension subjected to a uniform macroscopic strain rate. The bulk
properties of such a suspension may be determined from the analysis of a single particle
suspended in the fluid subjected to an undisturbed uniform strain rate of magnitude γ̇ . We
further restrict attention to the flow regime where the Reynolds number Re ≡ ργ̇ 2�2

p/μ is
negligibly small. Therefore, we may ignore the effects of inertia and solve the quasistatic
equations of motion in the fluid and the elastic particle.

Roscoe (1967) considered the steady shape and orientation of elastic and viscoelastic
particles whose stress-free shape is a sphere. When the undisturbed strain rate in the fluid
is spatially uniform, he hypothesized that the particle would approach the steady state by
traversing a series of ellipsoidal shapes wherein the strain rate in the particle is uniform
at every instant. At steady state, every material point must be in continuous motion along
a closed elliptical path, i.e. the deformed particle executes a ‘tank-treading’ motion. We
wish to determine the transient and unsteady dynamics of initially stress-free ellipsoidal
particles, for which Roscoe’s analysis is not directly applicable. However, an aspect of
Roscoe’s analysis, namely the determination of the fluid stress for a given shape and
orientation of the ellipsoid, may be easily extended for dynamical states. We describe
this aspect of Roscoe’s analysis in § 2.1 and its extension to dynamical states in § 2.2.
By enforcing continuity of traction on the particle surface, we relate the strain rate and
vorticity in the particle to the stress at a given instant of time in § 2.2, and from them obtain
relations for the shape dynamics in § 2.3. We then obtain the stress in the particle in terms
of the incremental change in shape from the previous time instant in § 2.4, thereby closing
the problem. The method described in this section for determining the shape dynamics is
applicable for arbitrary linear velocity fields u∞, but we consider only simple shear flow
in this paper.

2.1. Stress in the fluid
Consider a neutrally buoyant deformable ellipsoidal particle suspended in an unbounded
Newtonian fluid subjected to a uniform undisturbed velocity gradient L∞ ≡ ∇u∞. In the
fixed laboratory Cartesian coordinate frame (figure 2), the only non-zero component of L∞
for simple shear is L∞

12 = γ̇ . We restrict attention to initial orientations where two principal
axes of the ellipsoid are in the 1–2 plane; for spheroids one of them is the symmetry axis.
From considerations of symmetry, these two principal axes will always remain in the 1–2
plane. However, our method is general and may also be used for the out-of-plane dynamics
arising from the initial orientation not being in the 1–2 plane.
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Suspensions of elastic and viscoelastic particles
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Figure 2. Schematic depicting the semi-axis lengths and orientations of the principal axes of a particle whose
initial (stress free) shape is (a) an oblate spheroid and (b) prolate spheroid or triaxial ellipsoid. The axes labelled
(1, 2, x3) are the coordinate axes in the fixed laboratory reference frame, and (x1, x2, x3) are the principal axes
of the particle. The aspect ratios of the particle are defined as ω1 = α2/α1, ω2 = α3/α1, where the αi are the
lengths of the principal semi-axes.

Hereafter, all the quantities of interest are quoted or reported in dimensionless form
(unless specifically stated otherwise): the strain rate and vorticity are scaled by γ̇ , time by
γ̇−1 and stress (in the fluid and particle) by μγ̇ . Let D∞ and W∞ denote the undisturbed
strain rate and vorticity tensors, respectively. As argued by Roscoe (1967) (and validated
numerically by Gao et al. 2011), the strain rate D and vorticity W in the particle vary in time
but are spatially uniform. To determine the velocity and stress fields in the fluid, we follow
Roscoe (1967) by subtracting D and W , respectively, from the strain rate and vorticity at
every point in the domain. As a result, the strain and vorticity fields now correspond to a
rigid, non-rotating ellipsoid in a fluid of undisturbed strain rate D′ ≡ D∞ − D and vorticity
W ′ ≡ W ∞ − W . It follows from the linearity of Stokes equations that the velocity and
stress fields in the fluid due to the deformable particle may be obtained by adding to the
respective fields obtained for the above rigid particle problem, the contributions from the
uniform strain rate and vorticity D and W . As a result, the stress field in the fluid is

𝞼 = T ′ + 2D, (2.1)

where T ′ is the stress field around a rigid, non-rotating ellipsoid in a fluid of undisturbed
strain rate and vorticity D′ and W ′, respectively. The expression for T ′ was given by Jeffery
(1922), who studied the motion of rigid ellipsoidal particles in a Newtonian fluid subjected
to homogeneous linear flow. Jeffery’s expression was written compactly (with some errors
in transcription corrected) by Roscoe (1967) as T ′ = −p′I + A′, where p′ is an arbitrary
hydrostatic pressure and A′ depends on the shape and orientation of the ellipsoid and
linearly on D′. Note that A′ is not necessarily traceless. The arguments leading to (2.1)
ensure continuity of velocity on the particle surface.

It is convenient to use a coordinate frame that is instantaneously aligned with the
principal axes of the ellipsoid (see figure 2), in which the equation of the surface is

x2
1

α2
1

+ x2
2

α2
2

+ x2
3

α2
3

= 1, (2.2)

where αi are the lengths of the three principal semi-axes. The axis labels are chosen based
on the initial shape: for oblate spheroids, the x1 axis is the in-plane principal axis of smaller
length. For prolate spheroids and triaxial ellipsoids, the x1 axis is the in-plane principal
axis of larger length. Thus, the x1 axis for spheroids in the stress-free state coincides with
the symmetry axis. The aspect ratios are defined as ω1 = α2/α1 and ω2 = α3/α1.
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In the particle coordinate frame, the undisturbed strain rate and vorticity may be
expressed in terms of the Euler angles measuring the orientation of the principal axes
relative to the axes of the fixed laboratory frame. For the in-plane dynamics in simple
shear, only the Euler angle in the plane of shear varies with time (the other two being
zero) and the undisturbed strain rate and vorticity are

D∞ =

⎡
⎢⎣

1
2 sin 2θ 1

2 cos 2θ 0
1
2 cos 2θ −1

2 sin 2θ 0
0 0 0

⎤
⎥⎦ , W ∞ =

⎡
⎢⎣

0 1
2 0

−1
2 0 0
0 0 0

⎤
⎥⎦ , (2.3a,b)

where θ is the angle subtended by the x1 axis with the flow direction in the anti-clockwise
direction (figure 2).

2.2. Strain rate and vorticity in the particle
To proceed further, we enforce continuity of traction at the particle surface

𝞼p · n = 𝞼 · n, (2.4)

where 𝞼p is the (spatially uniform) stress in the particle and n is a unit vector normal to
the surface. As 𝞼p is uniform, it suffices to enforce continuity of traction at the intersection
of the ellipsoidal surface with each principal axis. From (2.1) and (2.4), continuity of the
normal component of the traction n · 𝞼 · n at the intersection with the i axis gives


p
ii = −p′ + Â′

ii + 2Dii, (2.5)

where Â′
ij is the value of A′

ij at xi = αi, xk = 0 (k /= i). The pressures p′ in the fluid and
p in the particle (see (2.18)) may be eliminated by taking differences between the normal
traction at the intersections of the principal axes with the surface of the ellipsoid,


p
11 − 

p
22 = (Â′

11 − Â′
22)+ 2(D11 − D22), (2.6a)


p
11 + 

p
22 − 2p

33 = (Â′
11 + Â′

22 − 2Â′
33)+ 6(D11 + D22). (2.6b)

The expression for Â′
11 is (Roscoe 1967)

Â′
11 = 4

3
2g′′

1(D
′
11 − D11)− g′′

2(D
′
22 − D22)− g′′

3(D
′
33 − D33)

g′′
1g′′

2 + g′′
2g′′

3 + g′′
3g′′

1
. (2.7)

The expressions for Â′
22 and Â′

33 are obtained by cyclic permutation of indices in (2.7).
Here, g′′

i are functions of the semi-axis lengths αi defined by Roscoe (1967); they are
reproduced in Appendix A for the convenience of the reader. For the state of steady
orientation and shape, the terms Dii in (2.5)–(2.7) should be set to zero (see (2.16)); this
was the state considered by Roscoe. As we wish to determine the transient and unsteady
dynamics, we must retain these terms.
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Substituting the expressions for Â′
ii in (2.6) and rearranging the terms, we get


p
11 − 

p
22 = 5((I12 + J12)

(
D∞

11 − D11
)

+ (I12 − J12)
(
D∞

22 − D22
)
)+ 2 (D11 − D22) , (2.8a)


p
11 + 

p
22 − 2p

33 = 5((I12 + J12)
(
D∞

11 − D11
)+ (I12 − J12)

(
D∞

22 − D22
)

+ 2 (I23 − J23)
((

D∞
11 − D11

)+ (
D∞

22 − D22
))
)

+ 6 (D11 − D22) , (2.8b)

where,

I12 = 2
5

g′′
1 + g′′

2
g

, J12 = 2
5

g′′
1 − g′′

2
g

, (2.9a)

I23 = 2
5

g′′
2 + g′′

3
g

, J23 = 2
5

g′′
2 − g′′

3
g

, (2.9b)

and g = g′′
2g′′

3 + g′′
3g′′

1 + g′′
1g′′

2. Explicit expressions for D11 and D22 are obtained by solving
(2.8a,b) and are provided in Appendix B.

Continuity of the tangential component of the traction t · 𝞼 · n, where t is a unit tangent
on the 1-axis, gives


p
12 = Â′

12 + 2D12, (2.10)

where

Â′
12 = 8[g1(D∞

12 − D12)+ α2
2g′

3(W
∞
12 − W12)]

2g′
3(α

2
1g1 + α2

2g2)
. (2.11)

The factors gi and g′
i are functions of the semi-axis lengths αi (Roscoe 1967) and are

defined in Appendix A. Similarly, Â′
21 can be obtained by interchanging the indices 1 and

2 in (2.11). Symmetry of 𝞼p requires that Â′
12 = Â′

21, which yields the relation

(g1 − g2)(D∞
12 − D12) = −(α2

1 + α2
2)g

′
3(W

∞
12 − W12). (2.12)

Noting that g1 − g2 = (α2
1 − α2

2)g
′
3, (2.12) results in the following relation between the

strain rate and the vorticity fields inside the particle:

(W∞
12 − W12) = (α2

1 − α2
2)

(α2
1 + α2

2)
(D∞

12 − D12). (2.13)

Substituting (2.13) into the expression for Â′
12 and subsequently into (2.10) yields the

expression for the shear stress in the 1–2 plane


p
12 =

8

[
g1 + α2

2g′
3

(
α2

1 − α2
2

α2
1 + α2

2

)]
(D∞

12 − D12)

2g′
3(α

2
1g1 + α2

2g2)
+ 2D12. (2.14)

Expressions for p
23 and 

p
13 (needed only for the off-plane dynamics) may be obtained by

cyclic permutation of indices in (2.14). Equations (2.13) and (2.14) provide the required
relations for D12 and W12; the expressions are lengthy and given in Appendix B.

Thus, with knowledge of the particle stress 𝞼p, we can determine D and W in the particle.
The determination of 𝞼p from the instantaneous orientation and shape of the particle,
starting from the stress-free configuration at t = 0, is discussed in § 2.4.
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2.3. Evolution of particle shape and orientation
The evolution of the shape and orientation can be obtained in terms of the strain rate
and vorticity in the particle using the formulation of Wetzel & Tucker (2001). In the
coordinate system instantaneously aligned with the particle principal axes at time t (but not
co-rotating with it), the surface of the ellipsoid satisfies the equation S : xx = 1, where S
is the diagonal shape tensor with components Sii = 1/α2

i . Applying the material derivative
to this equation and using the definition of the instantaneous velocity field inside the
particle, v = L · x, where L is the uniform velocity gradient in the particle, the following
relation can be obtained:

dS

dt
+ LT · S + S · L = 0. (2.15)

Note that dS/dt is not diagonal, as a result of particle rotation; it is obtained by replacing
S by S′ = R(θ) · S · RT(θ), where R(θ) is the rotation tensor corresponding to a rotation
by angle θ in the 1–2 plane, taking the time derivative of S′, and then setting θ to zero.
Equation (2.15) is the only aspect of the analysis of Wetzel & Tucker (2001) that we use.
In particular, we eschew using their method of writing the deformation rate and vorticity
in the particle in terms of fourth rank ‘concentration tensors’, and use instead the more
direct method described in § 2.2.

Substituting L = D + W , the diagonal components of (2.15) give relations for the time
evolution of the semi-axis lengths,

1
αi

dαi

dt
= Dii, (2.16)

and the off-diagonal 1–2 component yields the evolution equation for the orientation

dθ
dt

= α2
1 + α2

2

α2
1 − α2

2
D12 − W12. (2.17)

At steady state, (2.17) yields the linear relation between D12 and W12 obtained by Roscoe
(1967).

2.4. Stress in the particle
We model the particle as an incompressible neo-Hookean solid, satisfying the constitutive
relation

𝞼p = −pI + 𝞽 = −pI + η (B − I), (2.18)

where p is the pressure in the solid that varies so as to enforce incompressibility, B is the
configuration dependent finger tensor (or the left Cauchy–Green deformation tensor) and
η is the elastic modulus. The finger tensor is defined as B = F · F T, where F = ∂x/∂X
is the deformation gradient tensor relating the configuration at time t to the stress-free
initial configuration. Note that (2.18) gives the stress in dimensional form; when scaled by
μγ̇ (see § 2.1), the dimensionless extra stress is 𝞽 = (1/G)(B − I), where G ≡ μγ̇ /η is
the elastic capillary number. Determination of the stress requires F , which we determine
below from the deformation history of the particle.

2.4.1. Particle deformation in a small time interval δt
Consider a time ti at which the shape (α1, α2, α3) and orientation (θ ) of the particle are
known (figure 3a). We determine the deformation in the time interval δt that is small
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Figure 3. Sequence of steps involved in mapping a material point from time ti to ti+1. All angles are positive
in the anti-clockwise direction. (a) Particle at initial orientation θ . (b) In-plane rotation of the particle due to
the (uniform) vorticity field in the particle by an angle −ζ . After rotation, the extensional stretch axis (λ1 axis)
subtends an angle ϕ with the x1 axis of the particle. (c) Stretching of the particle due to the (uniform) strain rate
at an angle ϕ from its principal axes. After stretching, the extensional stretch axis subtends an angle ψ with the
x1 axis. (d,e) Virtual transformations to effect stretching: in (d) the particle is rotated by −(θ − ζ + ϕ) so that
the stretch axes are aligned with the laboratory axes; in (e) the particle undergoes stretches of λ1, λ2, λ3 along
the laboratory axes. After stretching, it is rotated by (θ − ζ + ϕ). ( f ) The conformation of the particle at ti+1,
after rotation and stretching.

enough that the stress in the particle can be assumed to remain constant. The particle
undergoes an in-plane rotation through an angle −ζ due to vorticity (see figure 3b). It
also undergoes deformation by in-plane stretches λ1 and λ2 (λ1 > λ2) (ratios of deformed
lengths to original lengths of a differential material element) oriented at angles ϕ and ϕ +
π/2, respectively, to the x1 axis of the particle (see figure 3c); incompressibility requires
the particle to be stretched by λ3 = 1/(λ1λ2) in the 3-direction. Due to the misalignment
between the directions of stretch and the particle axes, the orientation further changes such
that the extensional stretch axis (λ1 axis) subtends an angle ψ with the x1 axis (figure 3f ).
All angles are defined as positive in the anti-clockwise direction. Note that the angles of
rotation ζ and ψ − ϕ, and the deviations of the stretches from unity λ1 − 1 and λ2 − 1 are
all proportional to δt. As a result of the changes in orientation due to vorticity and stretch,
the orientation θ ′ at ti+1 = ti + δt is

θ ′ = θ − ζ + ϕ − ψ. (2.19)

Following the rotation and stretch, the mapping between positions of a material point,
expressed in the laboratory reference frame, at times ti and ti+1 is

yi+1 = R(θ − ζ + ϕ) · T · R(−θ + ζ − ϕ) · R(−ζ ) · yi, (2.20)

where T is the diagonal stretch tensor with components Tii = λi and R is the rotation
tensor defined in § 2.3. The combination R(θ − ζ + ϕ) · T · R(−θ + ζ − ϕ) serves to
transform the diagonal stretch tensor to the laboratory reference frame by accounting for
the angle θ − ζ + ϕ between the λ1 axis of stretch and the flow direction (see figure 3c).
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Equation (2.20) may be written as

yi+1 = F i · yi, (2.21)

where F i is the deformation gradient tensor in the laboratory reference frame whose
components have the values

Fi
11 = 1

2 {(λ1 + λ2) cos ζ + (λ1 − λ2) cos(2θ + 2ϕ − ζ )},

Fi
12 = 1

2 {(λ1 + λ2) sin ζ + (λ1 − λ2) sin(2θ + 2ϕ − ζ )},

Fi
21 = 1

2 {−(λ1 + λ2) sin ζ + (λ1 − λ2) sin(2θ + 2ϕ − ζ )},

Fi
22 = 1

2 {(λ1 + λ2) cos ζ − (λ1 − λ2) cos(2θ + 2ϕ − ζ )}

Fi
13 = Fi

23 = Fi
31 = Fi

32 = 0; Fi
33 = λ3.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.22)

2.4.2. Relating the shape and orientation to the strain rate and vorticity
To evaluate F i, we need the values of λ1, λ2, ζ , ϕ andψ . From (2.17) and (2.19), the change
in orientation due to vorticity and stretching, respectively, are given by

ζ = W12 δt, (2.23a)

ϕ − ψ =
(
α2

1 + α2
2

α2
1 − α2

2

)
D12 δt, (2.23b)

with errors of O(δt2). An additional equation comes from the condition that there is no
shear along the principal stretch directions. It then follows from Mohr’s circle for the
strain rate that

ϕ = 1
2

tan−1 2D12

D11 − D22
. (2.24)

The relations (2.16) and (2.23) over the time step δt along with (2.24) give us updated
lengths αi of the semi-axes and the orientation θ ′, and the angles ζ , ϕ and ψ .

It now remains to calculate the stretches λ1 and λ2 to obtain the deformation gradient
tensor. For this, we consider the shape of the particle after it is stretched by the principal
stretch tensor T . Consider the particle in figure 3(d), where it has been rotated so that
the principal stretch axes align with the laboratory axes. The equation of the in-plane
cross-section of the particle in laboratory coordinates before stretching is that of an ellipse
at an angle −ϕ to the 1-axis. Stretching transforms each point (y1, y2, y3) in the ellipsoid
to (λ1y1, λ2y2, λ3y3), whence the equation of the cross-section after stretching is

y2
1

(
cos2 ϕ

λ2
1α

2
1

+ sin2 ϕ

λ2
1α

2
2

)
+ y2

2

(
sin2 ϕ

λ2
2α

2
1

+ cos2 ϕ

λ2
2α

2
2

)
− 2y1y2

λ1λ2

(
1
α2

1
− 1
α2

2

)
sinϕ cosϕ = 1.

(2.25)

The principal axis of the particle is now at an angle −ψ to the 1-axis (figure 3e), and its
semi-axis lengths have changed to (α′

1, α′
2, α′

3), which are obtained by integrating (2.16)
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over the time interval δt. The equation of the cross-section can therefore be equivalently
be written as

y2
1

(
cos2 ψ

α′2
1

+ sin2 ψ

α′2
2

)
+ y2

2

(
sin2 ψ

α′2
1

+ cos2 ψ

α′2
2

)
− 2y1y2

(
1
α′2

1
− 1
α′2

2

)
sinψ cosψ = 1.

(2.26)

Comparing the coefficients of y2
1 and y2

2 in (2.25) and (2.26), we get the required
expressions for λ1 and λ2

λ1 =

⎛
⎜⎜⎜⎝

cos2 ϕ

α2
1

+ sin2 ϕ

α2
2

cos2 ψ

α′2
1

+ sin2 ψ

α′2
2

⎞
⎟⎟⎟⎠

1/2

, λ2 =

⎛
⎜⎜⎜⎝

sin2 ϕ

α2
1

+ cos2 ϕ

α2
2

sin2 ψ

α′2
1

+ cos2 ψ

α′2
2

⎞
⎟⎟⎟⎠

1/2

. (2.27)

2.4.3. Particle stress in terms of the kinematic variables
The deformation gradient tensor F i in (2.22) relates positions of material points in the
laboratory coordinate system between times ti+1 and ti. However, the constitutive relation
for the elastic stress requires the deformation gradient F that relates the configuration
at time ti+1 to the stress-free configuration at t0 = 0. This is simply the time-ordered
contraction of F i at all intermediate states

F = F i · F i−1 . . . · F 1 · F 0. (2.28)

The finger tensor in the fixed laboratory coordinate frame then is Blab = F · F T. As we
require the particle stress in the coordinate system aligned with its principal axes (which
subtend an angle of θ ′ with fixed laboratory coordinates),

B = R(−θ ′) · Blab · R(θ ′) (2.29)

is the appropriate finger tensor to determine the stress in (2.18).

2.5. Extension to viscoelastic particles
For a viscoelastic solid, the total stress is the sum of elastic and viscous contributions,
𝞼p = 𝞼e + 𝞼v . Determination of the elastic stress 𝞼e has already been outlined in § 2.4;
the viscous contribution is 𝞼v = 2κD, where κ is the viscosity ratio of the particle to the
fluid. Balancing the normal and tangential components of the traction at the surface of the
particle, and following the same procedure as in § 2.2 to eliminate the pressure, we get the
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following equations that extend (2.8) and (2.14) for a viscoelastic particle:


p
11 − 

p
22 = (e

11 − e
22)+ 2κ (D11 − D22)

= 5
(
(I12 + J12)

(
D∞

11 − D11
)+ (I12 − J12)

(
D∞

22 − D22
))

+ 2 (D11 − D22) , (2.30a)


p
11 + 

p
22 − 2p

33 = (e
11 + e

22 − 2e
33)+ 6κ (D11 − D22)

= 5((I12 + J12)
(
D∞

11 − D11
)+ (I12 − J12)

(
D∞

22 − D22
)

+ 2 (I23 − J23)
((

D∞
11 − D11

)+ (
D∞

22 − D22
))
)

+ 6 (D11 − D22) , (2.30b)


p
12 = e

12 + 2κD12

=
8

[
g1 + α2

2g′
3

(
α2

1 − α2
2

α2
1 + α2

2

)]
(D∞

12 − D12)

2 g′
3(α

2
1g1 + α2

2g2)
+ 2D12. (2.30c)

Again, cyclic permutation of indices in 
p
12 provides the expressions for p

23 and 
p
13. The

components of the strain rate and vorticity fields in the viscoelastic particle can be obtained
by solving (2.30) and are given in § B.2 of Appendix B.

2.6. Calculation of rheological properties
The bulk stress in the suspension is 〈𝞼〉 = φ〈𝞼〉p + (1 − φ)〈𝞼〉 f , where φ is the particle
volume fraction and the angle brackets represent volume averages. Similarly, the bulk
strain rate of the suspension can be expressed in terms of the respective averages in the
two phases, 〈D〉 = φ〈D〉p + (1 − φ)〈D〉 f . Therefore, the suspension stress is

〈〉 = −〈p〉I + 2〈D〉 + φ(〈𝞽〉p − 2〈D〉p). (2.31)

Note that the bulk strain rate and vorticity are identical to the externally imposed flow
quantities, i.e. 〈D〉 = D∞ and 〈W 〉 = W ∞.

We consider the suspension to be composed of ellipsoids of identical size but different
orientations in the initial (stress-free) state. As the suspension is dilute enough that
particles do not interact, the undisturbed flow experienced by each particle is the imposed
linear flow, for which the strain rate and stress within each particle at each instant of time
are uniform. As a result, 〈𝞽p〉 and 〈Dp〉 represent averages over the orientation of a single
particle. We find that the long-time orientation dynamics for initial ellipsoidal particles
is identical, to within a phase lag, regardless of the initial orientation; the phase lag is a
residual signature of the short transient associated with the stress-free initial orientation.
Therefore, the long-time average for ellipsoids over all initial orientations is identical to
the average over a time period of tumbling or trembling; for initially spherical particles it
is trivially the steady state.

The rheological properties of interest then are the intrinsic shear viscosity

[μ]s =
〈〉12

2D∞
12

− 1

φ
= 〈τ 〉p

12 − 2〈D〉p
12, (2.32)
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Figure 4. Dynamics of an initially oblate spheroid exhibiting trembling and tumbling dynamics at ω0 = 2.5.
(a) In-plane and out-of-plane aspect ratios. (b) Orientation of the x1 axis. The stress polarization results were
obtained using the method of Gao et al. (2011).

and the intrinsic normal stress differences in simple shear flow

N1 = 〈〉11 − 〈〉22

φ
= (〈τ 〉p

11 − 〈τ 〉p
22)− 2(〈D〉p

11 − 〈D〉p
22), (2.33a)

N2 = 〈〉22 − 〈〉33

φ
= (〈τ 〉p

22 − 〈τ 〉p
33)− 2(〈D〉p

22 − 〈D〉p
33). (2.33b)

3. Results and discussion

3.1. Dynamics of an elastic particle in simple shear flow
We study the shape dynamics of neutrally buoyant elastic particles whose initial
(stress-free) shape is a sphere, a spheroid and, more generally, a triaxial ellipsoid,
suspended in an unbounded Newtonian fluid subjected to simple shear. As mentioned in
§ 1, the shape dynamics of an initial sphere and prolate spheroid were reported earlier
by Gao et al. (2011, 2012). We validate our solution method by a comparison with their
results; the comparison is provided in Appendix C, where it is shown that the two sets
of results are identical. Thus, the primary new results reported here concern the in-plane
dynamics of oblate spheroids and triaxial ellipsoids.

3.1.1. Dynamics of oblate spheroids and triaxial ellipsoids
As in the case of prolate spheroids (Gao et al. 2012), oblate spheroids and triaxial ellipsoids
too exhibit trembling and tumbling dynamics. We first discuss the shape dynamics of
oblate spheroids. For a given initial aspect ratio ω1,0 = ω2,0 = ω0, the particle deforms to
resemble a thin disk for part of its tumbling/trembling cycle as the elastic capillary number
G increases. Since G may be thought of as the inverse of the dimensionless stiffness,
increasing G implies increasing deformability. The transition from tumbling to trembling
occurs at a critical value of G that depends on ω0. Figures 4 and 5 show the results for
two values of G for ω0 = 2.5 on either side of the tumbling–trembling transition for an
initial orientation of θ0 = π/2 (i.e. the symmetry axis pointing in the velocity gradient
direction). It is evident from figure 4(b) that the particle tumbles for G = 0.4 and trembles
for G = 0.5.

Figure 5(a,b) shows the variations with time of the orientation θ and the angle ϕ
between the x1 axis and tensile stretch axis. Recall from § 2.1 that the x1 axis (which
characterizes the orientation θ ) for an oblate spheroid is the in-plane principal axis of
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Figure 5. (a,b) The time variation of the direction of stretch (ϕ) for the two cases shown in figure 4, namely
G = 0.4 (a) and G = 0.5 (b). The particle orientation from figure 4(b) is superposed. (c,d) The contributions to
the change in orientation due to the vorticity (−ζ ) and stretch (ϕ − ψ), and the net change (ϕ − ψ − ζ ) during
each time step corresponding to panels (a,b). Refer to figure 3 for the definitions of the angles ζ , φ and ϕ. The
time step δt is not constant, as it has to be adaptively changed to accurately compute sharp changes.

smaller length. For the stiffer particle (G = 0.4), ϕ changes sign twice during a revolution
(figure 5a), implying tumbling motion. The transition may be understood by considering
the contributions to rotation from stretching and vorticity in every time step δt, shown in
figure 5(c). We see that, although the orientation change due to stretching ϕ − ψ is positive
for part of each cycle, it is smaller in magnitude than the orientation change due to vorticity
−ζ ; the net change in orientation (ϕ − ψ)− ζ is therefore always negative, resulting in
tumbling. For the softer particle (G = 0.5), ϕ is always negative (figure 5b), implying that
the x1 axis lies between the flow direction and the direction of extensional stretch (λ1); the
orientation change due to stretch is therefore always positive (figure 5d); it is also larger in
magnitude that the orientation change due to vorticity. As a result, the particle trembles –
the orientation oscillates about an angle that depends on G and ω0. The sharp peaks in
figure 5(c,d) correspond to instances when the in-plane aspect ratio (ω1) is close to unity
(figure 4a), about which there is rapid variation in ϕ (figure 5a,b). The results presented
in figures 4 and 5 are for an initial orientation wherein the x1 axis is aligned with the
gradient direction. Any other initial orientation in the plane of shear simply leads to the
same dynamics at large time, apart from a short initial transient. Thus, the only signature
of the initial orientation is a phase difference in the universal long-time dynamics.

For very stiff particles, such as G = 0.01, the orientation of the principal stretch axis
exhibits the same qualitative dynamics as that in figure 5(a) for G = 0.4. The transition
from tumbling to trembling (for a fixed ω0) occurs with increasing G due to the particle
deforming into an increasingly anisotropic shape that causes it to spend enough time in
orientations where the longer in-plane axis is close to the flow direction and the rate of
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Figure 6. Dynamics of an initially ellipsoidal elastic particle in the trembling and tumbling regimes at
G = 0.2. (a) In-plane and out-of-plane aspect ratios. (b) Orientation of the major axis.

rotation is the lowest, allowing the deformed particle to ‘spring back’. It is relevant to
contrast the dynamics of elastic and rigid particles (G = 0). As there is no stretch dynamics
for the latter, they only tumble. Further, a key difference is that while the stress within the
elastic particle remains uniform in the limit G → 0, there is no requirement for the stress
to be uniform at G = 0; indeed the stress in the latter case is indeterminate. However, we
show below that the orientation dynamics of very stiff particles is virtually identical to a
rigid one, implying that the stress indeterminacy is not of relevance to the dynamics.

We now come to the shape dynamics of triaxial ellipsoids. Recall from § 2.1 that the x1
axis in this case is the larger in-plane principal axis in the initial state. Figure 6 displays
results for two ellipsoids of different initial aspect ratios with G = 0.2, one exhibiting
tumbling dynamics and the other trembling. As the stiffness is reduced, there is always
a tumbling to trembling transition, no matter what the initial aspect ratios are, which we
discuss below. An interesting aspect of elastic triaxial ellipsoids is that the orientation
dynamics depends on the initial out-of-plane aspect ratio ω2,0; this is in contrast to rigid
ellipsoids, where the dynamics is independent of ω2, as shown by Jeffery (1922). This
difference between rigid and elastic ellipsoids is shown in figure 7; while the orientation
dynamics for rigid ellipsoids of different out-of-plane aspect ratios is identical (figure 7a),
there is a slow down of the tumbling dynamics for elastic particles with decreasing ω2,0,
for small G, and a transition from tumbling to trembling with decreasing ω2,0 at the highest
G (figure 7b–d).

3.1.2. Phase diagrams of dynamical states for spheroids and triaxial ellipsoids
As already discussed, for a particle that is initially an oblate spheroid of aspect ratio
ω0, the transition from tumbling to trembling occurs at a critical value of G. Thus,
the tumbling–trembling transition can be shown in a G–ω0 plot, as in the case of
prolate spheroids (Gao et al. 2012). Figure 8 shows the combined phase diagram for
prolate and oblate spheroids. We know from Roscoe (1967) that an initially spherical
particle (ω0 = 1) reaches a steady shape and orientation, regardless of G; this state is
represented by the blue vertical line. As the shape deviates from ω0 = 1 on either side,
the particle exhibits a tumbling dynamics for small G and trembling above a critical
value of G, which increases as ω0 progressively deviates from unity on either side. Thus,
extreme-aspect-ratio spheroids (slender rods or thin disks) transition to the trembling
regime at a large shear rate for a given stiffness. The phase boundary separating the
trembling and tumbling regimes is identified at a (G, ω0) where the dynamics includes
an instant of time when the cross-section in the plane of shear is circular (ω1 = 1).
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Figure 7. Effect of out-of-plane aspect ratio on the dynamics of an initially ellipsoidal elastic particle with
ω1,0 = 0.4. (a) Perfectly rigid particle (G = 0). (b) Slightly soft particle with G = 0.01. (c) Softer particle
with G = 0.1. (d) Soft particle with G = 0.4.

The principal axes are interchanged at this instant, resulting in a jump in θ by ±π/2;
the marginal trajectory on the phase boundary may therefore be regarded as a trembling
or tumbling trajectory. Although the trembling–tumbling phase boundaries appear to be
symmetric about the ω0 = 1 axis (suggesting an ω0 → 1/ω0 equivalence), they are not
(see inset of figure 8). This is a departure from the phase diagram for two-dimensional
elliptical particles (infinitely long cylinders of elliptical cross-section), where the equations
governing the shape dynamics are invariant under the transformation ω0 → 1/ω0 (Gao
et al. 2012); indeed, the transformation in the two-dimensional case corresponds trivially
to a rotation of the ellipse by π/2.

For a triaxial ellipsoid in simple shear flow, the phase boundary for the
tumbling–trembling transition is a two-dimensional surface in (ω1,0, ω2,0,G) space. As
accurate resolution of the phase boundary in the three-dimensional parameter space is
computationally prohibitive, we only determine, for discrete values of G and ω2,0, the
upper and lower bounds of ω1,0 for tumbling and trembling that deviate from the true
phase boundary by at most 0.05. They are represented by the light and dark grey surfaces
in figure 9(a). Thus, for a given set of (G, ω2,0), the lower (light grey) surface represents
the lower bound of ω1,0 at which the particle trembles, and the upper (dark grey) surface
represents the upper bound of ω1,0 at which it tumbles. Figure 9(b–d) shows sections of
the phase diagram at fixed values of G, ω1,0 and ω2,0, respectively, so that features of
the transition may be seen in greater detail. The vertical edges of the graph in figure 9(a)
represent the following initial configurations of the particle: a sphere (ω1,0 = ω2,0 = 1), a
circular disk whose normal is in the vorticity direction (ω1,0 = 1, ω2,0 = 0), an infinitely
slender rod (ω1,0 = ω2,0 = 0) in the plane of shear, and a circular disk with its normal in
the plane of shear (ω1,0 = 0 and ω2,0 = 1), respectively. The vertical planes represent
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Figure 8. Phase diagram of spheroids in simple shear flow. The types of dynamics exhibited are denoted by
the labels SS for steady state, TR for trembling and TU for tumbling.

the following initial configurations: the ω1,0 = 1, ω2,0 < 1 plane represents an oblate
spheroid whose symmetry axis is aligned in the vorticity direction, the ω1,0 = 0, ω2,0 < 1
plane represents an elliptical disk whose normal is in the plane of shear, the ω2,0 = 1,
ω1,0 < 1 plane represents an oblate spheroid whose symmetry axis is in the plane of shear,
and the ω2,0 = 0, ω1,0 < 1 plane represents an elliptical disk whose normal is along
the vorticity axis. Thus, the ω2,0 = 1, ω1,0 < 1 plane contains the in-plane dynamics
of oblate spheroids, and corresponds to the right half of figure 8. Finally, the diagonal
vertical plane ω2,0 = ω1,0 represents a prolate spheroid whose symmetry axis is in the
plane of shear, and corresponds to the left half of figure 8. We see from figure 9(a) that
thin elliptical disks in the plane of shear (ω2,0 → 0) and oblate spheroids whose normal is
in the plane of shear (ω2,0 → 1) exhibit a tumbling–trembling transition as G is increased,
but thin elliptical disks with normal in the plane of shear (ω1,0 → 0) exhibit either a
tumbling or flow-aligning dynamics (see below) for the range of G we have studied. An
interesting point to note from figure 9(b,c) is that the tumbling–trembling transition is not
significantly influenced by the out-of-plane aspect ratio ω2,0 beyond 0.5; indeed, we find
the threshold curve at ω2,0 = 1 to be quite close to that for ω2,0 → ∞, which corresponds
to elliptical cylinders aligned with the vorticity direction, examined by Gao et al.
(2012).

Below the lower (light grey) surface in figure 9(a), there are some points represented
by the blue circles that denote states where the long axis of the particle does not cross
the flow axis. The shape dynamics corresponding to one such point is shown in figure 10,
where it is clear that the lengths of the in-plane semi-axes vary as α1 ∼ t, α2 ∼ 1/t in
the limit t → ∞, and the orientation θ decays to zero as 1/t. The continuous stretching
of the particle along its major axis slows down its rotation, leading to an asymptotic
flow-aligning behaviour. For any G > 0, there is an interval of small ω1,0 for which the
particle extends indefinitely in time and asymptotically aligns with the flow axis. We have
not attempted to compute accurately the boundary between such flow-aligning states and
the tumbling states, due to the long computation time required. While the flow-aligning
state may be physically unrealistic – real elastic particles will undergo plastic deformation
beyond a critical stress and eventually rupture – it still is an interesting feature, as it is likely
to be present in any continuum elastic model that allows arbitrarily large deformation,
and indicates the parameter regime for which particles are likely to rupture. We note
that an indefinitely stretching flow-aligning state has also been predicted for an initially

949 A22-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

70
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.704


P.K. Sanagavarapu, G. Subramanian and P.R. Nott

G

ω1,0

0

0.2

0.4

0.6

0.8

0

0

0.5

1.0

SS

TR

TU

0.2

0.5

1.0

0.4

0.6

1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
ω2,0

ω2,0

ω2,0 ω1,0

G

(a)

(b) (c) (d)

Figure 9. Tumbling–trembling phase diagram of a triaxial ellipsoid in simple shear flow. (a) The filled red
and green circles represent tumbling (TU) and trembling (TR) dynamical states, respectively. The filled blue
circles represent flow-aligning states wherein the long axis of the particle asymptotically approaches the flow
axis. The light and dark grey surfaces represent the upper and lower bounds in ω1,0 for tumbling dynamics
and trembling dynamics, respectively; the true phase boundary lies between them. (b–d) Sections of the phase
diagram at (b) G = 0.5, (c) ω1,0 = 0.5 and (d) ω2,0 = 0.5.

spherical liquid drop in a Newtonian fluid subjected to shear above a critical capillary
number Ca ≡ μγ̇ �p/ ( being the interfacial tension) by Wetzel & Tucker (2001). Such
an elongated drop will ultimately break up (Barthes-Biesel & Acrivos 1973). There will,
however, be differences in the mechanism of breakup between drops and elastic particles,
as the Stokes equations governing motion in the former remain valid until breakup, while
the neo-Hookean constitutive relation will cease to be valid beyond the point of plastic
yield. Further discussion on the similarity and differences in the dynamics of drops,
capsules and elastic particles is given in § 4.
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Figure 10. Trajectory of an initial triaxial ellipsoid that asymptotically aligns with the flow direction. The
parameter values are G = 1.0, ω1,0 = 0.01, ω2,0 = 0.05. Time variation of (a) the orientation and (b) lengths
of the principal semi-axes αi.

The rheological responses of dilute suspensions of initially oblate spheroids of aspect
ratio ω0 = 2 and triaxial ellipsoids of aspect ratios ω1,0 = 0.7, ω2,0 = 0.8 are shown in
figure 11. As mentioned in § 2.6, the rheological properties were obtained by averaging
over a cycle of the long-time oscillatory response, which is equivalent to averaging over
different initial orientations. As G may be thought of as a dimensionless shear rate, it
is apparent from figure 11(a,c) that the suspension is shear thinning. The reason for
this is straightforward to understand: with increasing G, the particle tends to extend and
align towards the flow direction, thereby offering less resistance to deformation. The
intrinsic shear viscosity [μ]s becomes negative for sufficiently large G (which for the cases
considered is ∼ 1), as found by Gao et al. (2011, 2012) for initially spherical and prolate
spheroidal particles. This is a result of the extra dissipation in the fluid due to the presence
of particles becoming small enough to be more than compensated by the lack of dissipation
within the particles. An analogous change in sign of the intrinsic viscosity as a function
of the capillary number Ca is known for magmas containing highly deformable bubbles
(Manga & Loewenberg 2001). Figure 11(b,d) shows that the first and second normal stress
differences are positive and negative, respectively; as N1/G and N2/G are proportional to
the corresponding normal stress coefficients, the figure shows mild shear thinning of these
coefficients too. A positive N1 arises from the greater alignment of the longest axis, which
is under tension, with the flow direction; a negative N2 arises from the shortest axis, that
is under compression, beginning to align with the gradient direction. The overall response
is similar to that of a dilute suspension of rigid spheroids (Brenner 1974).

Our analysis and results consider the particle to be in an initial stress-free state before
shear is commenced. We briefly comment on what the dynamics might be if the particle
were to have a residual stress in the initial state. The simplest case is when the initial
state corresponds to one of the uniformly stressed configurations accessed in the dynamics
across any of the steady tank-treading, trembling, tumbling or flow-aligning regimes
described above: the dynamics of such an ellipsoid would correspond to that particular
configuration, with the only difference being the absence of an initial transient. However,
it is unlikely that the dynamics over the entire range of ω1,0, ω2,0 and G covers uniformly
stressed ellipsoids of all possible orientations: for example, we do not see a sufficiently
slender ellipsoid (that exhibits flow-aligning behaviour in the absence of an initial residual
stress) having a finite stress in the compressional quadrant of the simple shear flow arising
from a stress-free initial configuration. We may nevertheless make the following plausible
speculation: we know that an ellipsoid with a uniform residual stress must relax, in the
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Figure 11. Rheological response of a dilute non-interacting suspension of elastic particles as a function of G.
The top row shows the (a) intrinsic viscosity and (b) normal stress differences for initial oblate spheroids of
aspect ratio ω0 = 2. The bottom row shows the same quantities for initial ellipsoids of aspect ratios ω1,0 = 0.7,
ω2,0 = 0.8.

absence of an imposed shear, to a stress-free state through a sequence of ellipsoidal
configurations; this suggests a close relation between the dynamics of such an ellipsoid and
the (hypothetical) stress-free ellipsoid that it would relax to. It is then tempting to conclude
that these two initial ellipsoidal configurations would converge to the same long-time
dynamics, with differences restricted to an initial transient that is similar to initially
stress-free configurations with differing orientations converging to the same long-time
dynamics (see the discussion in § 2.6). If this were the case, the analysis in the manuscript
subsumes the long-time dynamics of initially uniformly stressed ellipsoids. The long-time
shape-cum-orientation dynamics of an ellipsoid with a non-uniform residual stress field in
the initial state is beyond the scope of the present analysis. However, if the amplitude of
the non-uniformity is small, then the shape dynamics would be accessible to a perturbative
approach. As this weakly non-uniform residual stress would drive an approach to a
marginally non-ellipsoidal stress-free state in the absence of an imposed shear, the analysis
of such an initial state is likely to be equivalent to a stability analysis of initially ellipsoidal
stress-free configurations to small-amplitude shape perturbations.

3.2. Effect of particle viscoelasticity
We now discuss the dynamics of viscoelastic particles in simple shear flow. The shape
dynamics of initial spheres and spheroids, and the resulting dilute suspension rheology,
are now influenced by G and κ , the ratio of the viscosity of the particle to that of the
suspending fluid. As already discussed, an initially spherical elastic particle (κ = 0) attains
a steady ellipsoidal shape with its longest axis orientated between the extensional and
flow directions. For non-zero κ , an initial spherical particle exhibits a damped oscillatory
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Figure 12. Effect of the viscosity ratio κ on the dynamics of an initially spherical viscoelastic particle for
G = 0.4. (a) Particle orientation. (b) In-plane aspect ratio. (c) Out-of-plane aspect ratio. (d) Intrinsic viscosity.
(e) First normal stress difference and ( f ) second normal stress difference.

approach to the eventual steady state, with the amplitude of the oscillations increasing
with κ to begin with (compare κ = 0 and 10 in figure 12). However, in the limit κ → ∞,
the dynamics must approach that of a rigid sphere. This implies that the amplitude
of shape oscillations must eventually decrease with increasing κ (compare κ = 10 and
50 in figure 12). Further, since a rigid sphere rotates with a uniform angular velocity
(equalling half the ambient vorticity), the orientation dynamics must transition to a
tumbling behaviour for sufficiently large κ , with θ continuously decreasing with time (not
shown). In figure 12(d), the intrinsic shear viscosity increases with κ until it reaches 2.5,
the Einstein coefficient for the limit κ → ∞. On the other hand, the magnitudes of the
first and second normal stress differences decrease with increasing κ (figure 12e, f ); they
understandably tend to zero in the limit κ → ∞, as in a dilute suspension non-interacting
rigid particles is Newtonian.

It is useful to consider the analogy between the dynamics of the initially spherical
viscoelastic particle, discussed above, and that of a drop with interfacial tension; the
elasticity in the latter case is characterized by Ca. It is known from the work of
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Figure 13. Effect of the viscosity ratio κ on the dynamics of a viscoelastic particle whose initial shape is a
prolate spheroid (ω0 = 0.5) for G = 0.4. (a) Particle orientation and (b) intrinsic viscosity.

Cox (1969) that the dynamics of a drop in simple shear flow, for Ca 	 1, changes
qualitatively with increasing κCa. For small κCa, the initially spherical drop exhibits an
overdamped approach to a steady ellipsoidal shape whose longest axis is approximately
aligned with the extensional axis of the ambient simple shear. With increasing κCa, the
approach to the deformed steady shape transitions to an underdamped one, with the time
scale of the damped oscillatory behaviour eventually diverging as O(κCa) for κCa 
 1;
the deformed drop is now nearly aligned with the flow direction at steady state. For
the viscoelastic particle, we expect κG to play a role analogous to κCa for the drop.
However, a key difference, illustrated in figure 12, is that the transition from overdamped to
underdamped oscillations upon increasing κG is not restricted to small values of G. From
the insets of figure 12(d–f ), the time scale characterizing the damping of the oscillations
is seen to clearly increase with increasing κ , consistent with the aforementioned drop
analogy; the eventual steady shape also aligns more closely with the flow direction. Note
that the time period of the oscillations, for both the particle and the drop, remains finite,
and of order the inverse shear rate, for large κ .

As already seen, an initially prolate spheroidal elastic particle exhibits a periodic
oscillatory dynamics after a short initial transient. A typical result for a viscoelastic
prolate spheroid is shown in figure 13, where we observe a dependence of the nature
of the dynamics on κ: the purely elastic particle (κ = 0) exhibits trembling, but it
changes to tumbling as κ is increased. Thus, the particle viscosity tends to shift the
trembling–tumbling phase boundary upwards in figure 8. This is not surprising in light
of the fact that a rigid spheroid (κ = ∞) must exhibit a tumbling dynamics. We did not
observe damping of the oscillations for the range of parameter space we explored, but it
is reasonable to expect damped oscillations that settle at large time to periodic oscillations
of constant amplitude (corresponding to tumbling or trembling) as ω0 approaches unity.
The variation of the intrinsic viscosity with time is shown for different κ in figure 13(b).
The viscosity variation over a cycle is greater for the trembling particle (κ = 0) than the
tumbling ones (κ = 1, 10) owing to the amplitude of shape variation decreasing with
increasing κ .

4. Summary and conclusions

We have described a method to determine the shape dynamics of elastic and
viscoelastic particles whose initial (stress-free) shape is ellipsoidal, suspended in a
Newtonian fluid subjected to a simple shear. The particle is allowed to undergo an
arbitrarily large deformation, with the elastic stress being governed by the neo-Hookean

949 A22-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

70
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.704


Suspensions of elastic and viscoelastic particles

constitutive model. We determine the stress in the particle by extending the method of
Roscoe (1967) to dynamically evolving states. Our method is conceptually and analytically
simpler than the stress polarization technique of Gao et al. (2011), and importantly, also
applicable to any constitutive model for the elastic stress.

For initially spherical elastic particles we recover the steady shape and orientation
derived by Roscoe (1967); for initially prolate spheroids we recover the trembling and
tumbling dynamics shown by Gao et al. (2012). We find that initial oblate spheroids and
triaxial ellipsoids also exhibit tumbling and trembling dynamics, and have computed the
tumbling–trembling phase diagram in the G–aspect ratio parameter space, where G is
the elastic capillary number (inverse of the dimensionless stiffness); unlike their rigid
counterparts, the dynamics of elastic triaxial ellipsoids depends on the out-of-plane aspect
ratio. In addition to the steady, tumbling and trembling dynamical states, we have found
the existence of a novel flow-aligning state, in which the particle extends indefinitely and
asymptotically aligns with the flow direction. For given initial aspect ratios (ω1,0, ω2,0),
an ellipsoid exhibits a trembling dynamics above a critical value of the elastic capillary
number G, and a tumbling dynamics below this critical value. Flow-aligning states are only
seen when ω1,0 is sufficiently small. While such states must transition to tumbling beyond
a threshold ω1,0, for a fixed G, we have not accurately determined this boundary between
the flow-aligning and the tumbling states due to limitations in computation time. Initially
spherical viscoelastic particles in simple shear flow exhibit damped oscillations as they
approach a steady shape, provided the ratio of particle to fluid viscosity κ is sufficiently
large. For initial prolate spheroids, increasing κ expands the tumbling regime in the G–ω0
plane.

We have obtained the rheological properties for a dilute suspension of non-interacting
randomly oriented elastic particles, of a given ellipsoidal shape, by averaging over the
shape dynamics corresponding to all initial orientations. The intrinsic shear viscosity
exhibits shear thinning, and is negative for sufficiently large G, implying that the
suspension has a lower viscosity than the suspending fluid. The first normal stress
difference is found to be positive, and the second normal stress is negative and much
smaller in magnitude, as for dilute suspensions of rigid spheroids.

Our results are amenable to experimental verification using polymer gel particles,
where one can tune the stiffness by controlling the degree of cross-linking. We have
focused on the in-plane dynamics of ellipsoidal elastic particles in this paper, but the
shape-cum-orientation dynamics of particles starting from out-of-plane orientations is
also of interest – we plan to address this in a later paper. Earlier studies on capsules
(Dupont, Salsac & Barthes-Biesel 2013) and vesicles (Zhao & Shaqfeh 2011) suggest that
the off-plane dynamics can differ qualitatively from those of rigid ellipsoids.

A comparison of our results for elastic particles in an ambient shear flow with those
reported earlier for drops, capsules and vesicles is in order. As discussed in § 3.1.2,
drops too exhibit a transition to an indefinitely stretching flow-aligning state above a
critical capillary number. The key difference is that the initial stress-free state can only
be spherical for drops with finite interfacial tension, while it can be ellipsoidal for elastic
particles. However, a more detailed analogy can be made if we consider the limit of
zero interfacial tension. Although interfacial tension is unavoidable between dissimilar
liquids, this limit is useful to consider as drops may assume initial non-spherical shapes.
Moreover, it is a useful limit for considering the case of Ca 
 1 at time scales of O(γ̇−1),
as weak interfacial forces become important only at longer time (Jackson & Tucker 2003).
Wetzel & Tucker (2001) found that an initially ellipsoidal drop of a given (sufficiently
large) viscosity ratio exhibits steady flow-aligned tank treading at a critical value of the
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initial in-plane aspect ratio (ω1,0 = ωc < 1). As ω1,0 is decreased from ωc, there is a
transition to trembling, and then to tumbling; there are similar transitions to trembling
and tumbling when ω1,0 is increased from ωc. These transition sequences are analogous
to the ones we see for prolate and oblate spheroidal elastic particles, respectively, for a
fixed G and varying ω1,0, but with the differences that the tank-treading steady state for an
elastic particle is achieved only for an initial sphere, and it is not oriented along with the
flow direction. Moreover, for drops in the absence of interfacial tension, the reversibility
constraints associated with the Stokes equations imply that there can be no transient
dynamics preceding the steady flow-aligned tank-treading state; for elastic particles, the
combination of elastic and viscous forces allow for a transient evolution to the steady
state.

Spheroidal elastic capsules (liquid drops enclosed by an elastic membrane) also exhibit
steady tank-treading, trembling and tumbling regimes, depending on the initial aspect
ratio, viscosity ratio and the capillary number (defined based on the membrane elastic
modulus) (Walter, Salsac & Barthes-Biesel 2011). Red blood cells, which are capsules
whose membrane is elastic and area preserving, also exhibit steady tank-treading, tumbling
and trembling shape dynamics, but not the indefinitely stretching flow-aligned state owing
to the large energy cost associated with any change in the membrane area. Moreover, for a
fixed excess area (that quantifies the departure from spherical shape in the stress-free state)
there is a transition from tumbling to trembling to steady tank treading as the capillary
number increases. A notable point is that the relatively complex biconcave equilibrium
shape of red blood cells can result in a steady tank-treading state, owing to the combination
of the bending elasticity and the constraint of constant area of the membrane (Vlahovska,
Podgorski & Misbah 2009).

We conclude with some remarks on the potential applications of our study. Soft particle
suspensions are widely encountered in living systems, blood being a prominent example.
While red blood cells have only an elastic membrane and are highly deformable, most
other blood cells have a cytoskeleton that imparts elasticity to the cell body. Cancer cells
are significantly stiffer than normal cells, which is thought to aid their margination to the
walls of blood vessels, thereby leading to metastasis (Fedosov & Gompper 2014; Czaja
et al. 2020). Suspensions of elastic and viscoelastic particles are also widely encountered
in large-scale industrial fermentation processes, such as brewing of alcoholic beverages
using suspensions of yeast cells. A relatively recent technology is mammalian cell culture
for the production of drugs and vaccines, where it has been found to be beneficial to grow
the cells on elastic hydrogels particles (Wei et al. 2020). All these systems are without
doubt much more complex than the simple problems we have considered: the cytoskeleton
in living cells is active, and yeast cells typically form agglomerates in fermentation tanks.
Nevertheless, the rheology and dynamics (such as segregation and margination) of these
suspensions is important in some stages of their processing. This paper is a first step in our
effort to understand the rheology and dynamics of suspensions of elastic and viscoelastic
particles. The assumption of uniform deformation in the particles also limits the utility
of our results to uniformly dispersed dilute suspensions, but in the forthcoming paper we
consider interactions between elastic particles in close proximity, which will be useful in
understanding the rheology of dense suspensions.
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Appendix A. Expressions for gi, g′
i and g′′

i

The quantities gi, g′
i and g′′

i that appear in § 2.1 in the expression for the deviatoric stress in
the fluid A′ are elliptic integrals that depend on the semi-axis lengths αi. They were given
by Jeffery (1922), and reproduced in the notation used in this paper by Roscoe (1967). The
expressions for g1, g′

1 and g′′
1 are

g1 =
∫ ∞

0

dλ

(α2
1 + λ)Δ, (A1a)

g′
1 =

∫ ∞

0

dλ

(α2
2 + λ)(α2

3 + λ)Δ, (A1b)

g′′
1 =

∫ ∞

0

λdλ

(α2
2 + λ)(α2

3 + λ)Δ, (A1c)

where Δ = [(α2
1 + λ)(α2

2 + λ)(α2
3 + λ)]1/2. Expressions for g2, g3, g′

2, g′
3, g′′

2 and g′′
3 are

obtained by cyclic permutation of indices in (A1).

Appendix B. Particle strain rate and vorticity fields

Here, we provide the final expressions for the strain rate and vorticity fields inside the
particle obtained by solving the equations derived from the continuity of the traction on
the particle surface.

B.1. Elastic particles
The diagonal components of the strain rate and vorticity fields inside an elastic particle
can be obtained by solving (2.8a,b). They are expressed in the following quotient form for
convenience:

Dp
11 = Pp

11

Qp
11
, Dp

22 = Pp
22

Qp
22
, (B1a,b)

where

Pp
11 = (4p

11 − 2(p
22 + 

p
33)+ 5(2D∞

22(I12 − I23 − J12 + J23)

+ D∞
11 (−2I23 − J12(4 + 5J12)+ I12(−4 + 5I12 + 10I23 − 10J23)+ 2J23)

− (I12 + I23 − J12 − J23)
p
11 + (I23 − J23)

p
22 + (I12 − J12)

p
33)), (B2a)

Pp
22 = (10D∞

11 (I12 − I23 + J12 + J23)+ 5(D∞
22(−2I23 + (4 − 5J12)J12

+ I12(−4 + 5I12 + 10I23 − 10J23)+ 2J23)+ I23(
p
11 − 

p
22)

+ J23(−
p
11 + 

p
22)− (I12 + J12)(

p
22 − 

p
33))− 2(p

11 − 2p
22 + 

p
33)), (B2b)

Qp
11 = Qp

22 = (12 − 20I23 − 25J2
12 + 5I12(−8 + 5I12 + 10I23 − 10J23)+ 20J23). (B2c)

Here, 
p
ij are the components of the elastic particle stress, D∞

ij are the strain rate
components of the externally imposed flow and Iij and Jij are functions of the shape of
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the particle, defined in (2.9). The incompressibility constraint on the particle provides the
relation Dp

33 = −(Dp
11 + Dp

22).
The expressions for the shear components of the strain rate and vorticity fields inside

the particle can be obtained by solving (2.13) and (2.14). They can be expressed in quotient
form as

Dp
12 = Pp

12

Qp
12
, (B3)

where

Pp
12 = (−4D′

12(g
′
3α

2
2(α

2
1 − α2

2)+ g1(α
2
1 + α2

2))+ g′
3(α

2
1 + α2

2)(g1α
2
1 + g2α

2
2)

p
12),

(B4a)

Qp
12 = (2((−2 + g2)g′

3α
2
1α

2
2 + (2 + g2)g′

3α
4
2 + g1(−2 + g′

3α
2
1)(α

2
1 + α2

2))), (B4b)

and

Wp
12 = W ′

12 −
(
α2

1 − α2
2

α2
1 + α2

2

)
(D∞

12 − Dp
12). (B5)

The αi values are the lengths of the semi-axes of the particle and gi and g′
i are functions of

αi, defined in Appendix A. Expressions for Dp
23, Dp

13, Wp
23 and Wp

13 are obtained by cyclic
permutation of the indices in (B3) and (B5).

B.2. Viscoelastic particles
In a similar manner, the components of the strain rate and vorticity fields of a viscoelastic
particle can be obtained by solving (2.30). For convenience, they are expressed in the
following quotient forms:

Dp
11 = Pp

11

Qp
11
, Dp

22 = Pp
22

Qp
22
, Dp

12 = Pp
12

Qp
12
, (B6a–c)

where

Pp
11 = ((−6 + 5I12 + 10I23 − 5J12 − 10J23 + 6κ)(5D∞

22(−I12 + J12)+ 5D∞
11 (I12 + J12)

− e
11 + e

22)+ (−2 + 5I12 − 5J12 + 2κ)(5D∞
22(I12 + 2I23 − J12 − 2J23)

+ 5D∞
11 (I12 + 2I23 + J12 − 2J23)− e

11 − e
22 + 2e

33)), (B7a)

Pp
22 = (−10D∞

11 (I12 − I23 + J12 + J23)(κ − 1)+ 5D∞
22(−2I23 + (4 − 5J12)J12

+ I12(−4 + 5I12 + 10I23 − 10J23)+ 2J23 + 2κ(2I12 + I23 − 2J12 − J23))

+ (−2 + 5I23 − 5J23 + 2κ)e
11 + (4 − 5I12 − 5I23 − 5J12 + 5J23 − 4κ)e

22

+ (−2 + 5I12 + 5J12 + 2κ)e
33), (B7b)

Q11 = 2Q22, Qp
22 = (25I2

12 − 25J2
12 − 4(3 − 5I23 + 5J23 − 3κ)(κ − 1)

+ 10I12(−4 + 5I23 − 5J23 + 4κ)), (B7c)

Pp
12 = (−8g1D∞

12 + ((8 g′
3D∞

12α
2
2(−α2

1 + α2
2))/(α

2
1 + α2

2))

+ 2 g′
3(g1α

2
1 + g2α

2
2)

e
12), (B7d)

Qp
12 = (−8g1 + ((8 g′

3α
2
2(−α2

1 + α2
2))/(α

2
1 + α2

2))− 4 g′
3(κ − 1)(g1α

2
1 + g2α

2
2)),

(B7e)
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Our method
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Figure 14. Transient response of an initial spherical particle at G = 0.4. (a) In-plane and out-of-plane aspect
ratios. (b) Particle major axis orientation. (c) Particle principal stress components. The shear component of
stress remains zero independent of time.
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Figure 15. Steady state properties of an initial spherical particle as a function of G. (a) In-plane and
out-of-plane aspect ratios. (b) Particle major axis orientation. (c) Normal stress component differences,
N1 ≡ τ11 − τ22 and N2 ≡ τ22 − τ33.

and

Wp
12 = W∞

12 −
(
α2

1 − α2
2

α2
1 + α2

2

)
(D∞

12 − Dp
12). (B8)

Expressions for Dp
23, Dp

13, Wp
23 and Wp

13 are obtained by cyclic permutation of the indices
in (B6a–c) and (B8).

Appendix C. Validation of our method

As noted in § 3.1, we validated our method for computing the shape dynamics of elastic
particles by comparing with the results obtained from the stress polarization technique of
Gao et al. (2011, 2012) for elastic particles that are initially spherical or prolate spheroidal
in shape. The results for stress polarization technique were computed by us.

C.1. Elastic sphere in shear flow
The transient dynamics of an initially spherical particle for G = 0.4 in shear flow is shown
in figure 14, where the particle reaches a steady shape and orientation in a dimensionless
time of O(1). The shape, orientation and stress in the particle at steady state as a function
of G are shown in figure 15. At steady state the particle is a prolate spheroid whose major
axis is in the plane of shear, oriented between the flow and tensile directions of the imposed
flow, i.e. at 0 < θ < π/4. It is clear that the two methods yield identical results.
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Figure 16. Orientation dynamics of an initial prolate spheroidal particle at G = 0.2. (a) Trembling and
(b) tumbling regimes.
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Figure 17. Intrinsic viscosity of a suspension initially prolate spheroids (ω0 = 0.6) as a function of G. The
viscosity is averaged over a tumbling or trembling cycle. The stress polarization data are taken from Gao et al.
(2012).

C.2. Elastic prolate spheroid in shear flow
The dynamics of a prolate spheroidal particle at G = 0.2. Figure 16 shows results for a
range of initial aspect ratio ω0; the dynamics corresponds to trembling for 1 > ω0 ≥ 0.7
(figure 16a), and tumbling for ω0 ≤ 0.6 (figure 16b). The trembling–tumbling transition
is close to ω0 = 0.6, for which a sharp change in the orientation by π/2 is seen. The
phase diagram for prolate spheroids shown in figure 8 is in exact agreement with the same
obtained by Gao et al. (2012) using the stress polarization technique.

C.3. Intrinsic viscosity
The intrinsic viscosity of a dilute suspension of initially prolate spheroids of aspect ratio
ω0 = 0.6 (which exhibit a tumbling dynamics) as a function of the elastic capillary number
G is shown in figure 17. The intrinsic viscosity is averaged over a tumbling cycle to
represent the mean rheological property of a dilute suspension. Here again, we find that
the results of our method are in exact agreement with the data of Gao et al. (2012).
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