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Abstract

In this paper, we prove that there are no warped product proper semi-slant submanifolds such that the
spheric submanifold of a warped product is a proper slant. But we show by means of examples the
existence of warped product semi-slant submanifolds such that the totally geodesic submanifold of a
warped product is a proper slant submanifold in locally Riemannian product manifolds.
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1. Introduction

The differential geometry of slant submanifolds has shown an increasing development
since B.-Y. Chen defined slant immersion in complex geometry as a natural
generalization of both holomorphic and totally real immersions [2–6].

In [7], Lotto introduced the notion of slant immersion of a Riemannian manifold
into an almost contact metric manifold. Recently, in [12], Li and Li defined and
studied the geometry of a semi-slant submanifold in locally Riemannian product
manifolds. The class of proper semi-slant submanifolds appears as a particular case of
the class of warped product semi-slant submanifolds because the class of proper semi-
invariant submanifolds is a particular case of the proper warped product semi-invariant
submanifolds.

Let M be an m-dimensional manifold with a tensor of type (1, 1) such that F2
= I

and F 6= ±I . Then M is said to be an almost product manifold with almost product
structure F . If an almost product manifold M has a Riemannian metric g such
that g(F X, Y ) = g(X, FY ), for any X, Y ∈ 0(T M), then M is called an almost
Riemannian product manifold. We denote the Levi-Civita connection on M by ∇

with respect to g. If (∇X F)Y = 0, for any X, Y ∈ 0(T M), then M is called a locally
Riemannian product manifold [12].
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Let M be a Riemannian manifold with almost Riemannian product structure F and
let N be an isometrically immersed submanifold in M . For each x ∈ N , we denote by
Dx the maximal invariant subspace of the tangent space Tx N of N . If the dimension
of Dx is the same for all x in N , then Dx gives an invariant distribution D on N .

A submanifold N in a locally Riemannian product manifold is called a semi-
invariant submanifold if there exists on N a differentiable invariant distribution
D whose orthogonal complement D⊥ is an anti-invariant distribution, that is,
F(D⊥) ⊂ T N⊥. A semi-invariant submanifold is called an anti-invariant (invariant)
submanifold if dim(Dx ) = 0 (dim(D⊥

x ) = 0). On the other hand, it is called proper
semi-invariant if it is neither invariant nor anti-invariant.

A semi-invariant submanifold in the form N = NT × N⊥ of a locally Riemannian
product manifold M is called a Riemannian product if NT and N⊥ are totally geodesic
submanifolds of N , where NT is an invariant submanifold and N⊥ is an anti-invariant
submanifold of M . The notion of semi-invariance in a locally Riemannian product
manifold was introduced in [1, 9, 11].

The above definitions have been generalized as follows.
(1) The submanifold N is called a semi-invariant submanifold if there exists

a differentiable distribution D : x −→ Dx ⊂ Tx N such that D is invariant and the
complementary distribution D⊥ is anti-invariant distribution.

(2) The submanifold N is called a slant submanifold if for each nonzero vector
field X ∈ 0(T N ), the angle θ(x) between F X and Tx N is constant, that is, it does not
dependent on of the choice x ∈ N and X ∈ 0(Tx N ).

(3) The submanifold N is referred to as semi-slant if it has two orthogonal
distributions such as D and D′ such that D is an invariant distribution and D′ is a
slant distribution.

It is well known that the notion of warped products plays an important role in
differential geometry as well as in physics. For a recent survey on warped products as
Riemannian submanifolds, we refer to [4, 5, 8].

Let N1 and N2 be two Riemannian manifolds with Riemannian metrics g1 and
g2, respectively, and f be differentiable function on N1. Consider the product
manifold N1 × N2 with its projection π : N1 × N2 −→ N1 and η : N1 × N2 −→ N2.
The warped product manifold N = N1 × f 2 N2 is the manifold N1 × N2 equipped with
the Riemannian metric structure such that

‖X‖
2
= ‖π∗X‖

2
+ f 2(π(x))‖η∗X‖

2,

for any X ∈ 0(T N ). Thus we have g = g1 + f 2g2, where f is called the warping
function of the warped product. The warped product manifold N = N1 × f 2 N2 is
characterized by the fact that N1 and N2 are totally geodesic and spheric foliations of
N , respectively. If the warping function is constant, a warped product is said to be the
Riemannian product [10].

The purpose of this paper is to investigate a new class of submanifolds of locally
Riemannian product manifolds, that is, warped product semi-slant submanifolds.
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We shall focus our attention mainly on warped product semi-slant submanifolds which
contain warped product semi-invariant submanifolds and Riemannian product semi-
slant submanifolds as a general case.

2. Preliminaries

If N is an isometrically immersed submanifold in a Riemannian manifold M , then
the formulas of Gauss and Weingarten for N in M are given, respectively, by

∇X Y = ∇X Y + h(X, Y ) (1)

and

∇X V = −AV X + ∇
⊥

X V, (2)

for any X, Y ∈ 0(T N ) and V ∈ 0(T N⊥), where ∇ and ∇ denote the Riemannian
connections on M and N , respectively, h is the second fundamental form of N in M ,
∇

⊥ is the normal connection on the normal bundle and A is the shape operator of N
in M . The second fundamental form and the shape operator are related by

g(AV X, Y ) = g((h(X, Y ), V ), (3)

where g denotes the Riemannian metric on M as well as N . For any a submanifold N
of a Riemannian manifold M , Gauss’s equation is given by

R(X, Y )Z = R(X, Y )Z + Ah(X,Z)Y − Ah(Y,Z)X + (∇X h) (Y, Z) − (∇Y h) (X, Z),

(4)

for any X, Y, Z ∈ 0(T N ), where R and R denote the Riemannian curvature tensors
of M and N , respectively. The covariant derivative of h is defined by

(∇X h) (Y, Z) = ∇
⊥

X h(Y, Z) − h(∇X Y, Z) − h(∇X Z , Y ). (5)

We recall the following general lemma from [10] for later use.

LEMMA 2.1. Let N = N1 × f N2 be a warped product manifold with warping
function f . Then:
(1) ∇X Y ∈ 0(T N1) for each X, Y ∈ 0(T N1);
(2) ∇X Z = ∇Z X = X (ln f )Z, for each X ∈ 0(T N1), Z ∈ 0(T N2);
(3) ∇Z W = ∇

N2
Z W − g(Z , W ) ((gradf)/ f ), for each Z , W ∈ 0(T N2).

Here ∇ and ∇
N2 denote the Levi-Civita connections on N and N2, respectively.

3. Warped product semi-slant submanifolds of a locally Riemannian
product manifold

Now, let N = N1 × f N2 be an immersed submanifold of a locally Riemannian
product manifold M and denote the orthogonal complementary of F(T N ) in T N⊥

by V . Then we have the direct sum

T N⊥
= F(T N ) ⊕ V . (6)
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We can easily see that V is an invariant sub-bundle with respect to F . Furthermore,
for any nonzero vector X tangent to N , we put

F X = T X + ωX, (7)

where T X and ωX denote the tangential and normal components of F X , respectively.
For each nonzero vector X tangent to N at x , the angle θ(x), 0 ≤ θ(x) ≤ (π/2),
between F X and Tx N is called the slant angle. If the slant angle is constant,
then the submanifold is also called the slant submanifold. Invariant and anti-
invariant submanifolds are slant submanifolds with slant angle θ = 0 and θ = (π/2),
respectively. A slant submanifold is said to be proper slant if it is neither invariant nor
anti-invariant.

In the same way, for any vector V normal to N , we put

FV = tV + nV, (8)

where tV and nV denote the tangential and normal components of FV , respectively.

THEOREM 3.1. Let N be a submanifold of a locally Riemannian product manifold M.
Then N is a slant submanifold if and only if there exists a constant λ ∈ [0, 1] such that
T 2

= λI . In this case, if θ is the slant angle of N , then it satisfies λ = cos2 θ [12].

DEFINITION 3.1. N is called a semi-slant submanifold of a locally Riemannian
product manifold M if there exist two orthogonal distributions such as D and D′ such
that:
(1) T N has the orthogonal direct sum T N = D ⊕ D′;
(2) the distribution D is an invariant distribution, that is, F(D) = D;
(3) the distribution D′ is a slant with angle θ 6= 0 and θ 6= (π/2) [2].

THEOREM 3.2. Let D be a distribution on N. Then D is a slant distribution if and
only if there exists a constant λ ∈ [0, 1] such that (P1T )2 X = λX for any X ∈ 0(D).
In this case, if θ is the slant angle of D, then it satisfies λ = cos2 θ , where P1 denotes
the orthogonal projection on D [12].

Furthermore, if N is a slant submanifold of a locally Riemannian product manifold
M with slant angle θ , then

g(T X, T Y ) = cos2 θg(X, Y ) and g(ωX, ωY ) = sin2 θg(X, Y ), (9)

for any X, Y ∈ 0(T N ).
In this section, we study warped product semi-slant submanifolds, with warped

product in the form N = N1 × f N2, in a locally Riemannian product manifold M .
First, we suppose that N1 is an invariant and N2 is a semi-slant of M with slant angle
θ 6= (π/2), 0. Later, N1 will be an anti-invariant submanifold and N2 will be a semi-
slant submanifold of M with respect to F .
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THEOREM 3.3. Let M be a locally Riemannian product manifold and N be a
submanifold of M. Then there exist no warped product semi-slant submanifolds
N = NT × f Nθ in M such that NT is an invariant submanifold and Nθ is a proper
slant submanifold of M.

PROOF. We suppose that N = NT × f Nθ is a warped product proper semi-slant
submanifold of a locally Riemannian product manifold M such that NT is invariant
and Nθ is a proper slant submanifold of M . We denote the projections onto 0(T NT )

and 0(T Nθ ) by P1 and P2, respectively. Then for any vector Z ∈ 0(T N ), we can put

Z = P1 Z + P2 Z , (10)

and using (7) gives

F Z = F P1 Z + F P2 Z = T P1 Z + T P2 Z + ωP2 Z . (11)

By using the Gauss–Weingarten formulas, (7), (8) and considering Lemma 2.1(2) we
obtain

∇U F X = F∇U X,

T X ln( f )U + h(U, T X) = X ln( f )T P2U + X ln( f )ωP2U

+ th(U, X) + nh(U, X),

(12)

for any X ∈ 0(T NT ) and U ∈ 0(T Nθ ). Then, comparing tangential and normal
components in (12) respectively, we obtain

T X ln( f )U = X ln( f )T P2U + th(U, X) (13)

and

h(U, T X) = X ln( f )ωP2U + nh(U, X). (14)

In the same way, we arrive at

∇X FU = F∇XU,

∇X T P2U + ∇XωP2U = F∇XU + Fh(U, X),

∇X T P2U + h(X, T P2U ) − AωP2U X + ∇
⊥

X ωP2U = F(X ln( f )U ) + Fh(X, U )

= X ln( f )T P2U

+ X ln( f )ωP2U

+ th(X, U ) + nh(X, U ),

(15)
for any X ∈ 0(T NT ) and U ∈ 0(T Nθ ). Taking into account the tangential and normal
components of (15) respectively, we obtain

AωP2U X = −th(U, X) (16)
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and

h(X, T P2U ) + ∇
⊥

X ωP2U = X ln( f )ωP2U + nh(X, U ). (17)

By using (3) and (16), it is easily seen that

g(AωP2U X, U ) = −g(th(U, X), U ) = −g(Fh(U, X), U ) = −g(h(U, X), FU ),

g(h(U, X), ωP2U ) = −g(h(U, X), ωP2U ),

that is,

g(h(U, X), ωP2U ) = 0. (18)

On the other hand, replacing X by T X in (14) and taking into account T NT being
invariant, we obtain

T X ln( f )g(ωP2U , ωP2U ) = g(h(U, X) − nh(U, T X), ωP2U )

= g(h(U, X), ωP2U ) − g(nh(U, X), ωP2U )

= g(h(U, X), ωP2U ) = 0,

for any X ∈ 0(T NT ) and U ∈ 0(T Nθ ). Thus,

T X ln( f ) sin2 θg(P2U, P2U ) = 0.

Since Nθ is a proper slant submanifold, g is a Riemannian metric and P2U is a
nonnull vector, we arrive at T X ln( f ) = 0, that is, the warping function f is constant.
Hence, the proof is complete. 2

THEOREM 3.4. Let M be a locally Riemannian product manifold and N be a
submanifold of M. Then there exist no warped product semi-slant submanifolds
N = N⊥ × f Nθ in M such that N⊥ is an anti-invariant submanifold and Nθ is a
proper slant submanifold of M.

PROOF. We suppose that N = N⊥ × f Nθ is a warped product semi-slant submanifold
such that N⊥ is an anti-invariant submanifold and Nθ is a proper slant submanifold of
a locally Riemannian product manifold M . Then for any vectors X, Y tangent to N⊥

and U tangent to Nθ ,

∇U F X = F∇U X,

−AωXU + ∇
⊥

U ωX = F(X ln( f )U ) + th(U, X) + nh(U, X). (19)

From the tangential components of (19), we obtain

−AωXU = X ln( f )T P2U + th(U, X). (20)
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Furthermore, from equations (1), (2), (7), (8), (11) and considering Lemma 2.1,

∇X FU = F∇XU,

∇X T P2U + ∇XωP2U = F∇XU + Fh(X, U ),

∇X T P2U + h(X, T P2U ) − AωP2U X + ∇
⊥

X ωP2U = F(X ln( f )U ) + th(X, U )

+ nh(X, U )

= X ln( f )T P2U

+ X ln( f )ωP2U

+ th(X, U ) + nh(X, U ).

(21)
From the tangential components of (21),

AωP2U X = −th(X, U ). (22)

In the same way, making use of (1), (2), taking account of N⊥ being anti-invariant in
M and totally geodesic in N , we obtain

∇Y F X = F∇Y X,

−AωX Y + ∇
⊥

Y ωX = F∇Y X + th(X, Y ) + nh(X, Y ),

which gives

AωX Y = −th(X, Y ),

which is also equivalent to

AωX Y = AωY X. (23)

On the other hand, (3) and the symmetry of F and A lead to

g(AωX Y, W ) = g(h(Y, W ), ωX) = g(h(Y, W ), F X) = g(∇W Y, F X)

= g(∇W FY, X) = g(∇W ωY, X) = −g(AωY X, W ),

for any X, Y ∈ 0(T N⊥) and W ∈ 0(T N ), which implies that

AωX Y = −AωY X. (24)

From (23) and (24), we conclude that

AωX Y = 0 and th(X, Y ) = 0, (25)

for any X, Y ∈ 0(T N ). Thus, from (22) and (25), we obtain

g(h(U, X), ωP2U ) = 0 and g(h(X, Y ), ωP2U ) = 0.
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Furthermore, making use of (22), by direct calculations, we obtain

AωP2U X = AωX T P2U = th(X, U ) = 0. (26)

From (20) and (26),

−X ln( f )g(T P2U, T P2U ) = g(AωXU, T P2U ) + g(th(U, X), T P2U ) (27)

= g(h(U, T P2U ), ωX) + g(th(U, X), T P2U )

= g(th(U, X), T P2U ) = 0.

From (9) and (27) we conclude that

X ln( f )g(T P2U, T P2U ) = X ln( f ) cos2 θg(P2U, P2U ) = 0.

Since Nθ is a proper slant submanifold, g is a Riemannian metric and P2U is a
nonzero vector, we can derive X ln( f ) = 0, that is, the warping function f is constant.
Hence the proof is complete. 2

CONCLUSION 3.1. It is easy to see from Theorems 3.3 and 3.4 that there exist no
warped product semi-slant submanifolds N = N1 × f Nθ in a locally Riemannian
product manifold M such that N1 is invariant (anti-invariant) and Nθ is proper slant
submanifold of M . But we can find the warped product semi-slant submanifolds
N = Nθ × f NT (see Example 3.1) (N = Nθ × f N⊥ (see Example 3.2)) such that
Nθ is proper slant and NT is invariant (N⊥ is anti-invariant) in a locally Riemannian
product manifold M .

Next, to illustrate these cases, we shall give two examples.

EXAMPLE 3.1. Let N be a submanifold of R8
= R4

× R4 with coordinates
(x1, x2, x3, x4, x5, x6, x7, x8) given by

φ(β, α, v, u) = (u + v, u − v, u cos α, u sin α,
√

5u, 2v, u cos β, u sin β).

It is easy to see that the tangent bundle of N is spanned by

Z1 = −u sin β
∂

∂x7
+ u cos β

∂

∂x8
, Z2 = −u sin α

∂

∂x3
+ u cos α

∂

∂x4
,

Z3 =
∂

∂x1
−

∂

∂x2
+ 2

∂

∂x6
,

Z4 =
∂

∂x1
+

∂

∂x2
+ cos α

∂

∂x3
+ sin α

∂

∂x4
+

√
5

∂

∂x5
+ cos β

∂

∂x7
+ sin β

∂

∂x8
.

Then, with respect to the Riemannian product structure F and usual metric tensor of
R8

= R4
× R4, F(T N ) becomes

F Z1 = −Z1, F Z2 = Z2, F Z3 =
∂

∂x1
−

∂

∂x2
− 2

∂

∂x6
,

Z4 =
∂

∂x1
+

∂

∂x2
+ cos α

∂

∂x3
+ sin α

∂

∂x4
−

√
5

∂

∂x6
− cos β

∂

∂x7
− sin β

∂

∂x8
.
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It is easily to check that

cos−1
(

g(F Z3, Z3)

‖F Z3‖.‖Z3‖

)
= cos−1

(
g(F Z4, Z4)

‖F Z4‖.‖Z4‖

)
= cos−1

(
−

1
3

)
.

Then NT and Nθ can be taken as follows:

T NT = Span{Z1, Z2} and T Nθ = Span{Z3, Z4}.

Thus Nθ is a slant submanifold with slant angle θ = cos−1(−1/3). Furthermore, the
metric tensor of N = NT × f Nθ is given by

gN = (6 dv2
+ 9 du2) + u2(dα2

+ dβ2) = gNθ + u2gNT .

Thus N = Nθ ×u2 NT is a warped product semi-slant submanifold of R8 with warping
function f = u.

EXAMPLE 3.2. We consider the submanifold N in R10
= R4

× R6 given by

ϕ(u, v, α) =

(
√

3u,
2kv

√
k2 + 1

, u cos α, −u sin α, −u cos α, −u sin α, −k sin u,

− k sin v, k cos u, k cos v

)
,

where k is a constant which is not zero. We can easily see that the tangent bundle of
N is spanned by vectors

Z1 =
√

3
∂

∂x1
+ cos α

∂

∂x3
− sin α

∂

∂x4
− cos α

∂

∂x5
− sin α

∂

∂x6

− k cos u
∂

∂x7
− k sin u

∂

∂x9
,

Z2 =
2k

√
k2 + 1

∂

∂x2
− k cos v

∂

∂x8
− k sin v

∂

∂x10
,

Z3 = −u sin α
∂

∂x3
− u cos α

∂

∂x4
+ u sin α

∂

∂x5
− u cos α

∂

∂x6
.

Since F Z3 is orthogonal T N and

θ = cos−1
(

g(F Z1, Z1)

‖Z1‖.‖F Z1‖

)
= cos−1

(
g(F Z2, Z2)

‖Z2‖.‖F Z2‖

)
= cos−1

(
3 − k2

5 + k2

)
,

N⊥ and Nθ can be taken as follows: T N⊥ = Span{Z3} is an anti-invariant distribution
and T Nθ = Span{Z1, Z2} is a slant distribution. Here F and g denote the
Riemannian product structure and usual metric tensor of R10

= R4
× R6, respectively.

Furthermore, the metric tensor of N = Nθ × f N⊥ is given by

gN = (5 + k2) du2
+

(
k4

+ 5k2

k2 + 1

)
dv2

+ 2u2 dα2
= gNθ + 2u2gN⊥

.
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Thus N = Nθ ×√
2u N⊥ is a warped product semi-slant submanifold with slant angle

θ = cos−1((3 − k2)/(5 + k2)) and warping function f =
√

2u.
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