WARPED PRODUCT SEMI-SLANT SUBMANIFOLDS IN LOCALLY RIEMANNIAN PRODUCT MANIFOLDS

MEHMET ATÇEKEN

(Received 27 March 2007)

Abstract

In this paper, we prove that there are no warped product proper semi-slant submanifolds such that the spheric submanifold of a warped product is a proper slant. But we show by means of examples the existence of warped product semi-slant submanifolds such that the totally geodesic submanifold of a warped product is a proper slant submanifold in locally Riemannian product manifolds.

2000 Mathematics subject classification: 53C15, 53C40.

Keywords and phrases: warped product, slant distribution, semi-slant submanifold, spheric foliation and locally Riemannian product manifold.

1. Introduction

The differential geometry of slant submanifolds has shown an increasing development since B.-Y. Chen defined slant immersion in complex geometry as a natural generalization of both holomorphic and totally real immersions [2–6].

In [7], Lotto introduced the notion of slant immersion of a Riemannian manifold into an almost contact metric manifold. Recently, in [12], Li and Li defined and studied the geometry of a semi-slant submanifold in locally Riemannian product manifolds. The class of proper semi-slant submanifolds appears as a particular case of the class of warped product semi-slant submanifolds because the class of proper semiinvariant submanifolds is a particular case of the proper warped product semi-invariant submanifolds.

Let *M* be an *m*-dimensional manifold with a tensor of type (1, 1) such that $F^2 = I$ and $F \neq \pm I$. Then *M* is said to be an almost product manifold with almost product structure *F*. If an almost product manifold *M* has a Riemannian metric *g* such that g(FX, Y) = g(X, FY), for any $X, Y \in \Gamma(TM)$, then *M* is called an almost Riemannian product manifold. We denote the Levi-Civita connection on *M* by $\overline{\nabla}$ with respect to *g*. If $(\overline{\nabla}_X F)Y = 0$, for any $X, Y \in \Gamma(TM)$, then *M* is called a locally Riemannian product manifold [12].

^{© 2008} Australian Mathematical Society 0004-9727/08 \$A2.00 + 0.00

M. Atçeken

Let *M* be a Riemannian manifold with almost Riemannian product structure *F* and let *N* be an isometrically immersed submanifold in *M*. For each $x \in N$, we denote by D_x the maximal invariant subspace of the tangent space T_xN of *N*. If the dimension of D_x is the same for all x in *N*, then D_x gives an invariant distribution *D* on *N*.

A submanifold N in a locally Riemannian product manifold is called a semiinvariant submanifold if there exists on N a differentiable invariant distribution D whose orthogonal complement D^{\perp} is an anti-invariant distribution, that is, $F(D^{\perp}) \subset TN^{\perp}$. A semi-invariant submanifold is called an anti-invariant (invariant) submanifold if dim $(D_x) = 0$ (dim $(D_x^{\perp}) = 0$). On the other hand, it is called proper semi-invariant if it is neither invariant nor anti-invariant.

A semi-invariant submanifold in the form $N = N_T \times N_\perp$ of a locally Riemannian product manifold M is called a Riemannian product if N_T and N_\perp are totally geodesic submanifolds of N, where N_T is an invariant submanifold and N_\perp is an anti-invariant submanifold of M. The notion of semi-invariance in a locally Riemannian product manifold was introduced in [1, 9, 11].

The above definitions have been generalized as follows.

(1) The submanifold N is called a semi-invariant submanifold if there exists a differentiable distribution $D: x \longrightarrow D_x \subset T_x N$ such that D is invariant and the complementary distribution D^{\perp} is anti-invariant distribution.

(2) The submanifold N is called a slant submanifold if for each nonzero vector field $X \in \Gamma(TN)$, the angle $\theta(x)$ between FX and T_xN is constant, that is, it does not dependent on of the choice $x \in N$ and $X \in \Gamma(T_xN)$.

(3) The submanifold N is referred to as semi-slant if it has two orthogonal distributions such as D and D' such that D is an invariant distribution and D' is a slant distribution.

It is well known that the notion of warped products plays an important role in differential geometry as well as in physics. For a recent survey on warped products as Riemannian submanifolds, we refer to [4, 5, 8].

Let N_1 and N_2 be two Riemannian manifolds with Riemannian metrics g_1 and g_2 , respectively, and f be differentiable function on N_1 . Consider the product manifold $N_1 \times N_2$ with its projection $\pi : N_1 \times N_2 \longrightarrow N_1$ and $\eta : N_1 \times N_2 \longrightarrow N_2$. The warped product manifold $N = N_1 \times f^2 N_2$ is the manifold $N_1 \times N_2$ equipped with the Riemannian metric structure such that

$$||X||^{2} = ||\pi_{*}X||^{2} + f^{2}(\pi(x))||\eta_{*}X||^{2},$$

for any $X \in \Gamma(TN)$. Thus we have $g = g_1 + f^2 g_2$, where *f* is called the warping function of the warped product. The warped product manifold $N = N_1 \times_{f^2} N_2$ is characterized by the fact that N_1 and N_2 are totally geodesic and spheric foliations of *N*, respectively. If the warping function is constant, a warped product is said to be the Riemannian product [10].

The purpose of this paper is to investigate a new class of submanifolds of locally Riemannian product manifolds, that is, warped product semi-slant submanifolds.

178

We shall focus our attention mainly on warped product semi-slant submanifolds which contain warped product semi-invariant submanifolds and Riemannian product semislant submanifolds as a general case.

2. Preliminaries

If N is an isometrically immersed submanifold in a Riemannian manifold M, then the formulas of Gauss and Weingarten for N in M are given, respectively, by

$$\overline{\nabla}_X Y = \nabla_X Y + h(X, Y) \tag{1}$$

and

$$\overline{\nabla}_X V = -A_V X + \nabla_X^{\perp} V, \tag{2}$$

for any $X, Y \in \Gamma(TN)$ and $V \in \Gamma(TN^{\perp})$, where $\overline{\nabla}$ and ∇ denote the Riemannian connections on *M* and *N*, respectively, *h* is the second fundamental form of *N* in *M*, ∇^{\perp} is the normal connection on the normal bundle and *A* is the shape operator of *N* in *M*. The second fundamental form and the shape operator are related by

$$g(A_V X, Y) = g((h(X, Y), V),$$
 (3)

where g denotes the Riemannian metric on M as well as N. For any a submanifold N of a Riemannian manifold M, Gauss's equation is given by

$$\overline{R}(X,Y)Z = R(X,Y)Z + A_{h(X,Z)}Y - A_{h(Y,Z)}X + (\overline{\nabla}_X h)(Y,Z) - (\overline{\nabla}_Y h)(X,Z),$$
(4)

for any $X, Y, Z \in \Gamma(TN)$, where \overline{R} and R denote the Riemannian curvature tensors of M and N, respectively. The covariant derivative of h is defined by

$$(\nabla_X h) (Y, Z) = \nabla_X^{\perp} h(Y, Z) - h(\nabla_X Y, Z) - h(\nabla_X Z, Y).$$
(5)

We recall the following general lemma from [10] for later use.

LEMMA 2.1. Let $N = N_1 \times_f N_2$ be a warped product manifold with warping function f. Then:

(1) $\nabla_X Y \in \Gamma(TN_1)$ for each $X, Y \in \Gamma(TN_1)$;

(2) $\nabla_X Z = \nabla_Z X = X(\ln f)Z$, for each $X \in \Gamma(TN_1)$, $Z \in \Gamma(TN_2)$;

(3) $\nabla_Z W = \nabla_Z^{N_2} W - g(Z, W) ((\text{gradf})/f), \text{ for each } Z, W \in \Gamma(TN_2).$

Here ∇ *and* ∇^{N_2} *denote the Levi-Civita connections on* N *and* N₂*, respectively.*

3. Warped product semi-slant submanifolds of a locally Riemannian product manifold

Now, let $N = N_1 \times_f N_2$ be an immersed submanifold of a locally Riemannian product manifold M and denote the orthogonal complementary of F(TN) in TN^{\perp} by V. Then we have the direct sum

$$TN^{\perp} = F(TN) \oplus V. \tag{6}$$

We can easily see that V is an invariant sub-bundle with respect to F. Furthermore, for any nonzero vector X tangent to N, we put

$$FX = TX + \omega X,\tag{7}$$

where TX and ωX denote the tangential and normal components of FX, respectively. For each nonzero vector X tangent to N at x, the angle $\theta(x)$, $0 \le \theta(x) \le (\pi/2)$, between FX and T_xN is called the slant angle. If the slant angle is constant, then the submanifold is also called the slant submanifold. Invariant and antiinvariant submanifolds are slant submanifolds with slant angle $\theta = 0$ and $\theta = (\pi/2)$, respectively. A slant submanifold is said to be proper slant if it is neither invariant nor anti-invariant.

In the same way, for any vector V normal to N, we put

$$FV = tV + nV, (8)$$

where tV and nV denote the tangential and normal components of FV, respectively.

THEOREM 3.1. Let N be a submanifold of a locally Riemannian product manifold M. Then N is a slant submanifold if and only if there exists a constant $\lambda \in [0, 1]$ such that $T^2 = \lambda I$. In this case, if θ is the slant angle of N, then it satisfies $\lambda = \cos^2 \theta$ [12].

DEFINITION 3.1. N is called a semi-slant submanifold of a locally Riemannian product manifold M if there exist two orthogonal distributions such as D and D' such that:

- (1) TN has the orthogonal direct sum $TN = D \oplus D'$;
- (2) the distribution D is an invariant distribution, that is, F(D) = D;
- (3) the distribution D' is a slant with angle $\theta \neq 0$ and $\theta \neq (\pi/2)$ [2].

THEOREM 3.2. Let D be a distribution on N. Then D is a slant distribution if and only if there exists a constant $\lambda \in [0, 1]$ such that $(P_1T)^2X = \lambda X$ for any $X \in \Gamma(D)$. In this case, if θ is the slant angle of D, then it satisfies $\lambda = \cos^2 \theta$, where P_1 denotes the orthogonal projection on D [12].

Furthermore, if N is a slant submanifold of a locally Riemannian product manifold M with slant angle θ , then

$$g(TX, TY) = \cos^2 \theta g(X, Y)$$
 and $g(\omega X, \omega Y) = \sin^2 \theta g(X, Y)$, (9)

for any $X, Y \in \Gamma(TN)$.

In this section, we study warped product semi-slant submanifolds, with warped product in the form $N = N_1 \times_f N_2$, in a locally Riemannian product manifold M. First, we suppose that N_1 is an invariant and N_2 is a semi-slant of M with slant angle $\theta \neq (\pi/2)$, 0. Later, N_1 will be an anti-invariant submanifold and N_2 will be a semi-slant submanifold of M with respect to F.

THEOREM 3.3. Let M be a locally Riemannian product manifold and N be a submanifold of M. Then there exist no warped product semi-slant submanifolds $N = N_T \times_f N_\theta$ in M such that N_T is an invariant submanifold and N_θ is a proper slant submanifold of M.

PROOF. We suppose that $N = N_T \times_f N_\theta$ is a warped product proper semi-slant submanifold of a locally Riemannian product manifold M such that N_T is invariant and N_θ is a proper slant submanifold of M. We denote the projections onto $\Gamma(TN_T)$ and $\Gamma(TN_\theta)$ by P_1 and P_2 , respectively. Then for any vector $Z \in \Gamma(TN)$, we can put

$$Z = P_1 Z + P_2 Z, \tag{10}$$

and using (7) gives

$$FZ = FP_1Z + FP_2Z = TP_1Z + TP_2Z + \omega P_2Z.$$
 (11)

By using the Gauss–Weingarten formulas, (7), (8) and considering Lemma 2.1(2) we obtain $\overline{\nabla}_{U} F Y = F \overline{\nabla}_{U} Y$

$$\nabla U F X = F \nabla U X,$$

$$T X \ln(f)U + h(U, TX) = X \ln(f)T P_2 U + X \ln(f)\omega P_2 U \qquad (12)$$

$$+ th(U, X) + nh(U, X),$$

for any $X \in \Gamma(TN_T)$ and $U \in \Gamma(TN_\theta)$. Then, comparing tangential and normal components in (12) respectively, we obtain

$$TX\ln(f)U = X\ln(f)TP_2U + th(U, X)$$
(13)

and

$$h(U, TX) = X \ln(f)\omega P_2 U + nh(U, X).$$
⁽¹⁴⁾

In the same way, we arrive at

$$\overline{\nabla}_{X}FU = F\overline{\nabla}_{X}U,$$

$$\overline{\nabla}_{X}TP_{2}U + \overline{\nabla}_{X}\omega P_{2}U = F\nabla_{X}U + Fh(U, X),$$

$$\nabla_{X}TP_{2}U + h(X, TP_{2}U) - A_{\omega}P_{2}UX + \nabla_{X}^{\perp}\omega P_{2}U = F(X\ln(f)U) + Fh(X, U)$$

$$= X\ln(f)TP_{2}U + X\ln(f)\omega P_{2}U + th(X, U) + nh(X, U),$$
(15)

for any $X \in \Gamma(TN_T)$ and $U \in \Gamma(TN_\theta)$. Taking into account the tangential and normal components of (15) respectively, we obtain

$$A_{\omega P_2 U} X = -th(U, X) \tag{16}$$

and

182

$$h(X, TP_2U) + \nabla_X^{\perp}\omega P_2U = X\ln(f)\omega P_2U + nh(X, U).$$
(17)

By using (3) and (16), it is easily seen that

$$g(A_{\omega P_2 U}X, U) = -g(th(U, X), U) = -g(Fh(U, X), U) = -g(h(U, X), FU),$$

$$g(h(U, X), \omega P_2 U) = -g(h(U, X), \omega P_2 U),$$

that is,

$$g(h(U, X), \omega P_2 U) = 0.$$
 (18)

On the other hand, replacing X by TX in (14) and taking into account TN_T being invariant, we obtain

$$TX \ln(f)g(\omega P_2U, \omega P_2U) = g(h(U, X) - nh(U, TX), \omega P_2U)$$

= $g(h(U, X), \omega P_2U) - g(nh(U, X), \omega P_2U)$
= $g(h(U, X), \omega P_2U) = 0$,

for any $X \in \Gamma(TN_T)$ and $U \in \Gamma(TN_\theta)$. Thus,

$$TX\ln(f)\sin^2\theta g(P_2U, P_2U) = 0.$$

Since N_{θ} is a proper slant submanifold, g is a Riemannian metric and P_2U is a nonnull vector, we arrive at $TX \ln(f) = 0$, that is, the warping function f is constant. Hence, the proof is complete.

THEOREM 3.4. Let M be a locally Riemannian product manifold and N be a submanifold of M. Then there exist no warped product semi-slant submanifolds $N = N_{\perp} \times_f N_{\theta}$ in M such that N_{\perp} is an anti-invariant submanifold and N_{θ} is a proper slant submanifold of M.

PROOF. We suppose that $N = N_{\perp} \times_f N_{\theta}$ is a warped product semi-slant submanifold such that N_{\perp} is an anti-invariant submanifold and N_{θ} is a proper slant submanifold of a locally Riemannian product manifold M. Then for any vectors X, Y tangent to N_{\perp} and U tangent to N_{θ} ,

$$\overline{\nabla}_U F X = F \overline{\nabla}_U X,$$

$$-A_{\omega X} U + \nabla_U^{\perp} \omega X = F(X \ln(f)U) + th(U, X) + nh(U, X).$$
(19)

From the tangential components of (19), we obtain

$$-A_{\omega X}U = X\ln(f)TP_2U + th(U, X).$$
⁽²⁰⁾

[6]

$$\overline{\nabla}_{X}FU = F\overline{\nabla}_{X}U,$$

$$\overline{\nabla}_{X}TP_{2}U + \overline{\nabla}_{X}\omega P_{2}U = F\nabla_{X}U + Fh(X, U),$$

$$\nabla_{X}TP_{2}U + h(X, TP_{2}U) - A_{\omega}P_{2}UX + \nabla_{X}^{\perp}\omega P_{2}U = F(X\ln(f)U) + th(X, U)$$

$$+ nh(X, U)$$

$$= X\ln(f)TP_{2}U$$

$$+ X\ln(f)\omega P_{2}U$$

$$+ th(X, U) + nh(X, U).$$
(21)

From the tangential components of (21),

$$A_{\omega P_2 U} X = -th(X, U). \tag{22}$$

In the same way, making use of (1), (2), taking account of N_{\perp} being anti-invariant in M and totally geodesic in N, we obtain

$$\overline{\nabla}_Y F X = F \overline{\nabla}_Y X,$$

$$-A_{\omega X} Y + \nabla_Y^{\perp} \omega X = F \nabla_Y X + th(X, Y) + nh(X, Y),$$

which gives

$$A_{\omega X}Y = -th(X, Y),$$

which is also equivalent to

$$A_{\omega X}Y = A_{\omega Y}X.$$
(23)

On the other hand, (3) and the symmetry of F and A lead to

$$g(A_{\omega X}Y, W) = g(h(Y, W), \omega X) = g(h(Y, W), FX) = g(\nabla_W Y, FX)$$
$$= g(\overline{\nabla}_W FY, X) = g(\overline{\nabla}_W \omega Y, X) = -g(A_{\omega Y}X, W),$$

for any $X, Y \in \Gamma(TN_{\perp})$ and $W \in \Gamma(TN)$, which implies that

$$A_{\omega X}Y = -A_{\omega Y}X. \tag{24}$$

From (23) and (24), we conclude that

$$A_{\omega X}Y = 0 \quad \text{and} \quad th(X, Y) = 0, \tag{25}$$

for any $X, Y \in \Gamma(TN)$. Thus, from (22) and (25), we obtain

$$g(h(U, X), \omega P_2 U) = 0$$
 and $g(h(X, Y), \omega P_2 U) = 0$.

M. Atçeken

Furthermore, making use of (22), by direct calculations, we obtain

$$A_{\omega P_2 U} X = A_{\omega X} T P_2 U = th(X, U) = 0.$$
(26)

From (20) and (26),

$$-X \ln(f)g(TP_2U, TP_2U) = g(A_{\omega X}U, TP_2U) + g(th(U, X), TP_2U)$$
(27)
= $g(h(U, TP_2U), \omega X) + g(th(U, X), TP_2U)$
= $g(th(U, X), TP_2U) = 0.$

From (9) and (27) we conclude that

$$X \ln(f)g(TP_2U, TP_2U) = X \ln(f) \cos^2 \theta g(P_2U, P_2U) = 0.$$

Since N_{θ} is a proper slant submanifold, g is a Riemannian metric and P_2U is a nonzero vector, we can derive $X \ln(f) = 0$, that is, the warping function f is constant. Hence the proof is complete.

CONCLUSION 3.1. It is easy to see from Theorems 3.3 and 3.4 that there exist no warped product semi-slant submanifolds $N = N_1 \times_f N_\theta$ in a locally Riemannian product manifold M such that N_1 is invariant (anti-invariant) and N_θ is proper slant submanifold of M. But we can find the warped product semi-slant submanifolds $N = N_\theta \times_f N_T$ (see Example 3.1) ($N = N_\theta \times_f N_\perp$ (see Example 3.2)) such that N_θ is proper slant and N_T is invariant (N_\perp is anti-invariant) in a locally Riemannian product manifold M.

Next, to illustrate these cases, we shall give two examples.

EXAMPLE 3.1. Let N be a submanifold of $\mathbb{R}^8 = \mathbb{R}^4 \times \mathbb{R}^4$ with coordinates $(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8)$ given by

 $\phi(\beta, \alpha, v, u) = (u + v, u - v, u \cos \alpha, u \sin \alpha, \sqrt{5}u, 2v, u \cos \beta, u \sin \beta).$

It is easy to see that the tangent bundle of N is spanned by

$$Z_{1} = -u \sin \beta \frac{\partial}{\partial x_{7}} + u \cos \beta \frac{\partial}{\partial x_{8}}, \quad Z_{2} = -u \sin \alpha \frac{\partial}{\partial x_{3}} + u \cos \alpha \frac{\partial}{\partial x_{4}},$$
$$Z_{3} = \frac{\partial}{\partial x_{1}} - \frac{\partial}{\partial x_{2}} + 2 \frac{\partial}{\partial x_{6}},$$
$$Z_{4} = \frac{\partial}{\partial x_{1}} + \frac{\partial}{\partial x_{2}} + \cos \alpha \frac{\partial}{\partial x_{3}} + \sin \alpha \frac{\partial}{\partial x_{4}} + \sqrt{5} \frac{\partial}{\partial x_{5}} + \cos \beta \frac{\partial}{\partial x_{7}} + \sin \beta \frac{\partial}{\partial x_{8}}.$$

Then, with respect to the Riemannian product structure *F* and usual metric tensor of $\mathbb{R}^8 = \mathbb{R}^4 \times \mathbb{R}^4$, *F*(*TN*) becomes

$$FZ_1 = -Z_1, \quad FZ_2 = Z_2, \quad FZ_3 = \frac{\partial}{\partial x_1} - \frac{\partial}{\partial x_2} - 2\frac{\partial}{\partial x_6},$$
$$Z_4 = \frac{\partial}{\partial x_1} + \frac{\partial}{\partial x_2} + \cos\alpha \frac{\partial}{\partial x_3} + \sin\alpha \frac{\partial}{\partial x_4} - \sqrt{5}\frac{\partial}{\partial x_6} - \cos\beta \frac{\partial}{\partial x_7} - \sin\beta \frac{\partial}{\partial x_8}.$$

184

It is easily to check that

$$\cos^{-1}\left(\frac{g(FZ_3, Z_3)}{\|FZ_3\| \|Z_3\|}\right) = \cos^{-1}\left(\frac{g(FZ_4, Z_4)}{\|FZ_4\| \|Z_4\|}\right) = \cos^{-1}\left(-\frac{1}{3}\right).$$

Then N_T and N_{θ} can be taken as follows:

 $TN_T = \operatorname{Span}\{Z_1, Z_2\}$ and $TN_\theta = \operatorname{Span}\{Z_3, Z_4\}.$

Thus N_{θ} is a slant submanifold with slant angle $\theta = \cos^{-1}(-1/3)$. Furthermore, the metric tensor of $N = N_T \times_f N_{\theta}$ is given by

$$g_N = (6 \, dv^2 + 9 \, du^2) + u^2 (d\alpha^2 + d\beta^2) = g_{N_\theta} + u^2 g_{N_T}.$$

Thus $N = N_{\theta} \times_{u^2} N_T$ is a warped product semi-slant submanifold of \mathbb{R}^8 with warping function f = u.

EXAMPLE 3.2. We consider the submanifold N in $\mathbb{R}^{10} = \mathbb{R}^4 \times \mathbb{R}^6$ given by

$$\varphi(u, v, \alpha) = \left(\sqrt{3}u, \frac{2kv}{\sqrt{k^2 + 1}}, u\cos\alpha, -u\sin\alpha, -u\cos\alpha, -u\sin\alpha, -k\sin u, -k\sin v, k\cos v, k\cos v\right),$$

where k is a constant which is not zero. We can easily see that the tangent bundle of N is spanned by vectors

$$Z_{1} = \sqrt{3}\frac{\partial}{\partial x_{1}} + \cos\alpha\frac{\partial}{\partial x_{3}} - \sin\alpha\frac{\partial}{\partial x_{4}} - \cos\alpha\frac{\partial}{\partial x_{5}} - \sin\alpha\frac{\partial}{\partial x_{6}}$$
$$-k\cos u\frac{\partial}{\partial x_{7}} - k\sin u\frac{\partial}{\partial x_{9}},$$
$$Z_{2} = \frac{2k}{\sqrt{k^{2} + 1}}\frac{\partial}{\partial x_{2}} - k\cos v\frac{\partial}{\partial x_{8}} - k\sin v\frac{\partial}{\partial x_{10}},$$
$$Z_{3} = -u\sin\alpha\frac{\partial}{\partial x_{3}} - u\cos\alpha\frac{\partial}{\partial x_{4}} + u\sin\alpha\frac{\partial}{\partial x_{5}} - u\cos\alpha\frac{\partial}{\partial x_{6}}.$$

Since FZ_3 is orthogonal TN and

$$\theta = \cos^{-1}\left(\frac{g(FZ_1, Z_1)}{\|Z_1\| \cdot \|FZ_1\|}\right) = \cos^{-1}\left(\frac{g(FZ_2, Z_2)}{\|Z_2\| \cdot \|FZ_2\|}\right) = \cos^{-1}\left(\frac{3-k^2}{5+k^2}\right),$$

 N_{\perp} and N_{θ} can be taken as follows: $TN_{\perp} = \text{Span}\{Z_3\}$ is an anti-invariant distribution and $TN_{\theta} = \text{Span}\{Z_1, Z_2\}$ is a slant distribution. Here *F* and *g* denote the Riemannian product structure and usual metric tensor of $\mathbb{R}^{10} = \mathbb{R}^4 \times \mathbb{R}^6$, respectively. Furthermore, the metric tensor of $N = N_{\theta} \times_f N_{\perp}$ is given by

$$g_N = (5+k^2) \, du^2 + \left(\frac{k^4 + 5k^2}{k^2 + 1}\right) dv^2 + 2u^2 \, d\alpha^2 = g_{N_\theta} + 2u^2 g_{N_\perp}.$$

M. Atçeken

Thus $N = N_{\theta} \times_{\sqrt{2}u} N_{\perp}$ is a warped product semi-slant submanifold with slant angle $\theta = \cos^{-1}((3 - k^2)/(5 + k^2))$ and warping function $f = \sqrt{2}u$.

References

- [1] A. Bejancu, 'Semi-invariant submanifolds of locally product Riemannian manifold', *Ann. Univ. Timisoara S. Math.* **XXII** (1984), 3–11.
- [2] J. L. Cabrerizo, A. Carriazo, L. M. Fernandez and M. Fernandez, 'Semi-slant submanifolds of a Sasakian manifold', *Geom. Dedicata* 78 (1999), 183–199.
- B.-Y. Chen, 'Slant submanifolds of complex projective and complex hyperbolic spaces', *Glasg. Math. J.* 42 (2000), 439–454.
- [4] B.-Y. Chen, 'Geometry of warped product CR-submanifolds in Kaehler manifolds', *Monatsh. Math.* 133 (2001), 177–195.
- [5] B.-Y. Chen, 'CR-warped products in complex projective spaces with compact holomorphic factor', *Monatsh. Math.* 141 (2004), 177–186.
- [6] B.-Y. Chen, Geometry of slant submanifolds (Katholieke Universiteit Leuven, Leuven, 1990).
- [7] A. Lotto, 'Slant submanifolds in contact geometry', Bull. Math. Soc. Roumanie 39 (1996), 183– 198.
- [8] K. Matsumoto and I. Mihai, 'Warped product submanifolds in Sasakian space forms', SUT J. Math. 38(2) (2002), 135–144.
- [9] K. Matsumoto, 'On submanifolds of locally product Riemannian manifolds', *TRU Math.* 18(2) (1982), 145–157.
- [10] B. O'Neill, Semi-Riemannian geometry with applications to relativity (Academic Press, New York, 1983).
- [11] S. Tachibana, 'Some theorems on a locally product Riemannian manifold', *Tohoku Math. J.* 12 (1960), 281–292.
- [12] H. Li and X. Li, 'Semi-slant submanifolds of locally product manifold', *Georgian Math. J.* 12(2) (2005), 273–282.

MEHMET ATÇEKEN, GOP University, Faculty of Arts and Sciences, Department of Mathematics, 60200 Tokat, Turkey e-mail: matceken@gop.edu.tr [10]