ON A CONJECTURE OF Z. JIANZHONG

Yasuo Matsugu

Let φ be a nonnegative, nondecreasing and nonconstant function defined on $[0, \infty)$ such that $\Phi(t)=\varphi\left(e^{t}\right)$ is a convex function on ($-\infty, \infty$). The Hardy-Orlicz space $H(\varphi)$ is defined to be the class of all those functions f holomorphic in the open unit disc of the complex plane \mathbf{C} satisfying $\sup _{0<r<1} \int_{-\pi}^{\pi} \varphi\left(\left|f\left(r e^{i t}\right)\right|\right) d t<\infty$. The subclass $H(\varphi)^{+}$of $H(\varphi)$ is defined to be the class of all those functions $f \in$ $H(\varphi)$ satisfying $\sup _{0<r<1} \int_{-\pi}^{\pi} \varphi\left(\left|f\left(r e^{i t}\right)\right|\right) d t=\int_{-\pi}^{\pi} \varphi\left(\left|f^{*}\left(e^{i t}\right)\right|\right) d t$, where $f^{*}\left(e^{i t}\right)=$ $\lim _{r \rightarrow 1} f\left(r e^{i t}\right)$ for almost all points $e^{i t}$ of the unit circle. In 1990, Z. Jianzhong conjectured that $H(\varphi)^{+}=H(\psi)^{+}$if and only if $H(\varphi)=H(\psi)$. In the present paper we prove that it is true not only on the unit disc of \mathbf{C} but also on the unit ball of $\mathbf{C}^{\boldsymbol{n}}$.

1. Introduction

Let $n \geqslant 1$ be an integer. Let $H(B)$ denote the space of all holomorphic functions in the open unit ball B of the complex n-dimensional Euclidean space $\mathbf{C}^{\boldsymbol{n}}$. We call a nonnegative real-valued function φ defined on $[0, \infty)$ a modulus function if it a nondecreasing and nonconstant function such that $\Phi(t)=\varphi\left(e^{t}\right)$ is a convex function on $(-\infty, \infty)$. According to Deeb and Marzuq [1], for a given modulus function φ, the Hardy-Orlicz space $H(\varphi)$ is defined as

$$
H(\varphi)=\left\{f \in H(B): \sup _{0<r<1} \int_{S} \varphi(|f(r \zeta)|) d \sigma(\zeta)<\infty\right\}
$$

where $S=\partial B$ is the unit sphere of \mathbf{C}^{n} and σ is the rotation invariant positive Borel measure on S for which $\sigma(S)=1$. Let

$$
H^{+}(B)=\left\{f \in H(B): \lim _{r \rightarrow 1} f(r \zeta)=f^{*}(\zeta) \text { almosteverywhere }[\sigma] o n S\right\}
$$

The space $H(\varphi)^{+}$is defined to be the class of all those functions $f \in H^{+}(B) \cap H(\varphi)$ satisfying the condition

$$
\sup _{0<r<1} \int_{S} \varphi(|f(r \zeta)|) d \sigma(\zeta)=\int_{S} \varphi\left(\left|f^{*}\right|\right) d \sigma .
$$

Received 4 March 1991
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/92 \$A2.00+0.00.

Let $N(B)$ and $N^{+}(B)$ denote the Nevanlinna class and the Smirnov class respectively; that is,

$$
\begin{gathered}
N(B)=\left\{f \in H(B): \sup _{0<r<1} \int_{S} \log ^{+}|f(r \zeta)| d \sigma(\zeta)<\infty\right\} \\
N^{+}(B)=\left\{f \in N(B): \lim _{r \rightarrow 1} \int_{S} \log ^{+}|f(r \zeta)| d \sigma(\zeta)=\int_{S} \log ^{+}\left|f^{*}\right| d \sigma\right\}
\end{gathered}
$$

In [4, p.32, Remark 4], Jianzhong conjectured (for dimension $n=1$) that for two modulus functions φ and $\psi, H(\varphi)^{+}=H(\psi)^{+}$if and only if $H(\varphi)=H(\psi)$. The main purpose of this paper is to prove that Jianzhong's conjecture is true for any dimension $n \geqslant 1$.

2. Inclusion relation between the spaces $H(\varphi)$

To prove the Proposition 1 described below, we recall some notations used in Rudin [9]. For $0<p<\infty$, the Lebesgue spaces $L^{p}(\sigma)$ have their customary meaning. $L^{0}(\sigma)$ stands for the set of all measurable functions u for which

$$
\int_{S} \log ^{+}|u| d \sigma<\infty
$$

$L S C$ denotes the set of all lower semicontinuous functions on S. The following theorem is proved in Rudin [9, pp.19-20].

Theorem R. Suppose $u \in L S C \cap L^{0}(\sigma), u>0$ on S. Then there is an $f \in$ $N^{+}(B)$ whose boundary values f^{*} satisfy

$$
\left|f^{*}(\zeta)\right|=u(\zeta)
$$

almost everywhere $[\sigma]$ on S.
The following Proposition 1 is proved in Hasumi and Kataoka [3, Theorem 1.3] for the case $n=1$.

Proposition 1. Let φ and ψ be modulus functions. If

$$
\varlimsup_{t \rightarrow \infty} \frac{\varphi(t)}{\psi(t)}=\infty
$$

then there exists an $f \in H(\psi) \cap N^{+}(B)$ which dose not belong to $H(\varphi)$.
Proof: The proof for arbitrary dimension n closely follows that of Hasumi and Kataoka for $n=1$ [3, Proof of Theorem 1.3]. Put $\Phi(t)=\varphi\left(e^{t}\right), \Psi(t)=\psi\left(e^{t}\right)$ for $-\infty \leqslant t<\infty$. Then Φ and Ψ are nondecreasing nonconstant convex functions on $[-\infty, \infty)$, and

$$
\varlimsup_{t \rightarrow \infty} \frac{\Phi(t)}{\Psi(t)}=\infty
$$

Hence we can choose a sequence $\left\{t_{j}\right\}$ such that $0<t_{1}<t_{2}<t_{3}<\ldots, \lim _{j \rightarrow \infty} t_{j}=\infty$, $\Psi\left(t_{j}\right)>2^{j} j^{-2}$ and $\Phi\left(t_{j}\right) / \Psi\left(t_{j}\right)>j, j=1,2,3, \ldots$ Set $\varepsilon_{j}=\left\{j^{2} \Psi\left(t_{j}\right)\right\}^{-1}$, for each j. Then we see that $\varepsilon_{j}<2^{-j}, j=1,2,3, \ldots$, and so $\sum \varepsilon_{j}<1$. Consequently, there is a sequence $\left\{E_{j}\right\}$ of disjoint open subsets of the unit sphere S of $\mathbf{C}^{\boldsymbol{n}}$ such that $\sigma\left(E_{j}\right)=\varepsilon_{j}, j=1,2,3, \ldots$ We define a function u on S by

$$
u=\sum_{j=1}^{\infty} t_{j} \chi_{j}
$$

where χ_{j} is the characteristic function of the set E_{j}. Since E_{j} is an open subset of S, χ_{j} is lower semicontinuous on S, that is, $\chi_{j} \in L S C$. Since each number t_{j} is positive, it follows that $u \in L S C$. The function $\Psi \circ u$ is Borel measurable on S, and it holds that

$$
\begin{aligned}
\int_{S}(\Psi \circ u) d \sigma & =\sum_{j} \Psi\left(t_{j}\right) \sigma\left(E_{j}\right)+\Psi(0)\left\{1-\sum_{j} \sigma\left(E_{j}\right)\right\} \\
& \leqslant \sum_{j} \Psi\left(t_{j}\right) \varepsilon_{j}+\Psi(0)=\sum_{j} j^{-2}+\Psi(0)<\infty
\end{aligned}
$$

so we have $\Psi \circ u \in L^{1}(\sigma)$. Since Ψ is convex, nondecreasing and nonconstant, $\Psi(t) \geqslant C t$ for some constant $C>0$ and for all sufficiently large t. Thus we see that $u \in L^{1}(\sigma)$. On the other hand, the same way as in the case of $\Psi \circ u$ gives that

$$
\begin{aligned}
\int_{S}(\Phi \circ u) d \sigma & =\sum_{j} \Phi\left(t_{j}\right) \varepsilon_{j}+\Phi(0)\left(1-\sum_{j} \varepsilon_{j}\right) \\
& \geqslant \sum_{j} j \Psi\left(t_{j}\right) \varepsilon_{j}=\sum_{j} j^{-1}=\infty
\end{aligned}
$$

This means that $\Phi \circ u$ does not belong to $L^{1}(\sigma)$.
Now we put $v=e^{u}$ on S. Since $u \in L S C \cap L^{1}(\sigma)$ and $0 \leqslant u<\infty$, it follows that $v \in L S C \cap L^{0}(\sigma)$ and $1 \leqslant v<\infty$. By Theorem R , there exists an $f \in N^{+}(B)$ whose boundary values f^{*} satisfy $\left|f^{*}\right|=v$ almost everywhere $[\sigma]$. Since $f \in N^{+}(B)$, we have $\log |f| \leqslant P\left[\log \left|f^{*}\right|\right]$ in B, where P is the Poisson kernel in B.(See for example, Stoll [10, Lemma 3.1.]. It follows from Jensen's inequality that

$$
\Psi(\log |f|) \leqslant P\left[\Psi \circ \log \left|f^{*}\right|\right]=P[\Psi \circ \log v]=P[\Psi \circ u]
$$

in B, because Ψ is convex and nondecreasing on $(-\infty, \infty)$. Since $\Psi \circ u \in L^{1}(\sigma)$, $P[\Psi \circ u]$ is harmonic in B. Noting $\Psi(\log |f|)=\psi(|f|)$, we see that $f \in H(\psi)$. Finally,
we shall show that f does not belong to $H(\varphi)$. By Fatou's lemma, we have

$$
\begin{aligned}
\varliminf_{r \rightarrow 1} \int_{S} \varphi(|f(r \zeta)|) d \sigma(\zeta) & \geqslant \int_{S} \varphi\left(\left|f^{*}\right|\right) d \sigma \\
& =\int_{S} \Phi\left(\log \left|f^{*}\right|\right) d \sigma \\
& =\int_{S}(\Phi \circ u) d \sigma=\infty
\end{aligned}
$$

Thus f is not in $H(\varphi)$. This completes the proof.
7
Now we consider the converse of Proposition 1. In the case of $n=1$, the following Proposition 2 is proved in Jianzhong [4, Proposition 5]. (See also [3, Theorem 1.3] and [5 , Theorem 2.1.]. The proof is the same for any dimension $n \geqslant 1$.

Proposition 2. Let φ and ψ be modulus functions. If

$$
\varlimsup_{t \rightarrow \infty} \frac{\varphi(t)}{\psi(t)}<\infty
$$

then $H(\psi) \subset H(\varphi)$.
Proposition 1 and Proposition 2 give the following
Theorem 1. Suppose φ and ψ are two modulus functions. Then the following hold:
(1) $\quad H(\psi) \subset H(\varphi)$ if and only if

$$
\varlimsup_{t \rightarrow \infty} \frac{\varphi(t)}{\psi(t)}<\infty
$$

(2) $\quad H(\psi)=H(\varphi)$ if and only if

$$
\varlimsup_{t \rightarrow \infty} \frac{\varphi(t)}{\psi(t)}<\infty
$$

and

$$
\varliminf_{t \rightarrow \infty} \frac{\varphi(t)}{\psi(t)}>0
$$

(3) $H(\psi) \subset H(\varphi)$ and $H(\psi) \neq H(\varphi)$ if and only if

$$
\begin{aligned}
& \varlimsup_{t \rightarrow \infty} \frac{\varphi(t)}{\psi(t)}<\infty \\
& \varliminf_{t \rightarrow \infty} \frac{\varphi(t)}{\psi(t)}=0
\end{aligned}
$$

We remark that this is a generalisation of a result of Hasumi and Kataoka. They proved this in the case of the dimension $n=1$. See [3, Theorem 1.3 and Corollary 4.1].

3. Proof that $H(\varphi) \cap N^{+}(B)=H(\varphi)^{+}$

This equality is conjectured in Jianzhong [4, Remark 4]. In the case of $n=1$, Hasumi and Kataoka [3, Theorem 2.1] proved that the equality is valid. To prove the general case we need the following lemmas:

Lemma 1. Suppose $\left\{u_{j}: j=1,2,3, \ldots\right\}$ is a sequence of nonnegative $L^{1}(\sigma)$ functions such that $\lim u_{j}(\zeta)=u(\zeta)$ almost everywhere $[\sigma]$ on S. Then $\left\{u_{j}\right\}$ is uniformly integrable if and only if

$$
\lim _{j \rightarrow \infty} \int_{S} u_{j} d \sigma=\int_{S} u d \sigma<\infty
$$

Proof: See Priwalow [6, Satz 3.2]. He proved the lemma for a compact interval $[a, b]$ in place of the unit sphere S, but the proof is the same for S.

Lemma 2. Let $f \in H(B)$. Suppose that there is a real function $u \in L^{1}(\sigma)$ such that $\log |f| \leqslant P[u]$ in B. Then we have $f \in N^{+}(B)$.

Proof: (see Hahn [2, Theorem 4]; Rudin [7, Theorem 3.3.5.]) Put $u^{+}=$ $\max \{u, 0\}$. Then $u^{+} \geqslant 0, u \leqslant u^{+}$on S, and $u^{+} \in L^{1}(\sigma)$. Since $\log |f| \leqslant P[u]$ in B, it follows that $\log ^{+}|f| \leqslant P\left[u^{+}\right]$in B. This shows $f \in N(B)$. Put $v=P\left[u^{+}\right]$in B. For $0<r<1$ and $\zeta \in S$, we define $v_{r}(\zeta)=v(r \zeta)$. Then v is a positive harmonic function in B and $\left\{v_{r}: 0<r<1\right\} \subset L^{1}(\sigma)$. Hence we have

$$
\lim _{r \rightarrow 1} \int_{S} v_{r} d \sigma=v(0)=\int_{S} u^{+} d \sigma
$$

By Fatou's theorem (see for example, Rudin [8, Theorem 5.4.8.]),

$$
v^{*}(\zeta)=\lim _{r \rightarrow 1} v_{r}(\zeta)=u^{+}(\zeta)
$$

almost everywhere on S. Since $v_{r} \geqslant 0$ on $S(0<r<1)$, it follows from Lemma 1 that $\left\{v_{r}\right\}$ is uniformly integrable. Note that $\log ^{+}\left|f_{r}\right| \leqslant v_{r}$ on $S(0<r<1)$. We therefore see that $\left\{\log ^{+}\left|f_{r}\right|: 0<r<1\right\}$ is uniformly integrable. Consequently, Lemma 1 gives

$$
\lim _{r \rightarrow 1} \int_{S} \log ^{+}\left|f_{r}\right| d \sigma=\int_{S} \log ^{+}\left|f^{*}\right| d \sigma
$$

This completes the proof.
Lemma 3. For every modulus function $\varphi, H(\varphi) \subset N(B)$.
Proof: Put $\Phi(t)=\varphi\left(e^{t}\right)$. Then Φ is a nonnegative nonconstant nondecreasing convex function on $[-\infty, \infty)$, and so $\Phi(t) \geqslant C t$ for some positive constant C and for
all sufficiently large t. Now we define $\psi(t)=\log ^{+} t$ for $0 \leqslant t<\infty$ and $\Psi(t)=\psi\left(e^{t}\right)$ for $-\infty \leqslant t<\infty$. Then ψ is a modulus function and $H(\psi)=N(B)$. Moreover, it holds that $\Phi(t) \geqslant C \Psi(t)$ for all sufficiently large t. Hence we have

$$
\varlimsup_{t \rightarrow \infty} \frac{\psi(t)}{\varphi(t)}=\varlimsup_{t \rightarrow \infty} \frac{\Psi(t)}{\Phi(t)} \leqslant C^{-1}<\infty
$$

It follows from Proposition 2 that $H(\varphi) \subset H(\psi)=N(B)$.
Now we prove the following
Theorem 2. For every modulus function φ, it holds that

$$
H(\varphi) \cap N^{+}(B)=H(\varphi)^{+}
$$

Proof: (see Hasumi and Kataoka [3, Theorem 2.1]; Rudin [7, Theorem 3.4.2.]) Suppose that $f \in H(\varphi)^{+}$. Put $\Phi(t)=\varphi\left(e^{t}\right)$ for $-\infty \leqslant t<\infty$. Then we have

$$
\sup _{0<r<1} \int_{S} \Phi(\log |f(r \zeta)|) d \sigma(\zeta)=\int_{S} \Phi\left(\log \left|f^{*}\right|\right) d \sigma<\infty
$$

Since Φ is nonnegative, nonconstant, nondecreasing and convex on $[-\infty, \infty)$, there exists a positive finite Borel measure μ on S such that $\varphi(|f|)=$ $\Phi(\log |f|) \leqslant P[\mu]$ in B and $\|\mu\|=\int_{S} \Phi\left(\log \left|f^{*}\right|\right) d \sigma$. (See for example, Rudin [8, Theorem 5.6.2.]). We set $u=P[\mu]$ in B. By Fatou's theorem, u has radial limits

$$
u^{*}(\zeta)=\lim _{r \rightarrow 1} u(r \zeta)
$$

for almost all $\zeta \in S[\sigma]$ and $d \mu=u^{*} d \sigma+d \nu$, where $u^{*} \in L^{1}(\sigma)$ and ν is a finite positive singular Borel measure on S. Since $f \in H(\varphi)$, Lemma 3 gives $f \in N(B)$. Since $\varphi(|f|) \leqslant u$ in B, we have $\varphi\left(\left|f^{*}\right|\right) \leqslant u^{*}$ almost everywhere $[\sigma]$ on S. Consequently,

$$
\begin{aligned}
\|\mu\|=\int_{S} \Phi\left(\log \left|f^{*}\right|\right) d \sigma & =\int_{S} \varphi\left(\left|f^{*}\right|\right) d \sigma \leqslant \int_{S} u^{*} d \sigma \\
& \leqslant \int_{S} u^{*} d \sigma+\int_{S} d \nu=\|\mu\|
\end{aligned}
$$

This shows $\nu=0$, and so $\Phi(\log |f|) \leqslant u=P\left[u^{*}\right]$ in B. Since Φ is nonnegative, nonconstant, nondecreasing and convex on $(-\infty, \infty)$, there are two positive constants C_{1} and C_{2} such that $t \leqslant C_{1} \Phi(t)+C_{2}$ for all real t. Thus we have

$$
\log |f| \leqslant C_{1} \Phi(\log |f|)+C_{2} \leqslant C_{1} P\left[u^{*}\right]+C_{2}=P\left[C_{1} u^{*}+C_{2}\right]
$$

in B. Since $C_{1} u^{*}+C_{2} \in L^{1}(\sigma)$, it follows from Lemma 2 that $f \in N^{+}(B)$.

Conversely, we suppose $f \in H(\varphi) \cap N^{+}(B)$. Then $\log |f| \leqslant P\left[\log \left|f^{*}\right|\right]$ in B. By Jensen's inequality, we have

$$
\varphi(|f|)=\Phi(\log |f|) \leqslant P\left[\Phi \circ \log \left|f^{*}\right|\right]=P\left[\varphi\left(\left|f^{*}\right|\right)\right]
$$

in B. Since $\varphi(|f|)$ is subharmonic in B, Fatou's lemma gives

$$
\int_{S} \varphi\left(\left|f^{*}\right|\right) d \sigma \leqslant \lim _{r \rightarrow 1} \int_{S} \varphi(|f(r \zeta)|) d \sigma(\zeta) \leqslant P\left[\varphi\left(\left|f^{*}\right|\right)\right](0)=\int_{S} \varphi\left(\left|f^{*}\right|\right) d \sigma
$$

Hence it follows that

$$
\sup _{0<r<1} \int_{S} \varphi(|f(r \zeta)|) d \sigma(\zeta)=\lim _{r \rightarrow 1} \int_{S} \varphi(|f(r \zeta)|) d \sigma(\zeta)=\int_{S} \varphi\left(\left|f^{*}\right|\right) d \sigma
$$

This completes the proof.

4. Proof of the main result

Now we can prove the main result of the present paper:
Theorem 3. Let φ and ψ be modulus functions. Then $H(\varphi)^{+}=H(\psi)^{+}$if and only if $H(\varphi)=H(\psi)$.

Proof: If $H(\varphi)=H(\psi)$, we have $H(\varphi)^{+}=H(\psi)^{+}$as an immediate consequence of Theorem 2. Conversely, suppose $H(\varphi)^{+}=H(\psi)^{+}$. If $\varlimsup_{t \rightarrow \infty} \varphi(t) / \psi(t)=\infty$, then it follows from Proposition 1 that there is an $f \in H(\psi) \cap N^{+}(B)$ such that $f \notin H(\varphi)$. Theorem 2 gives $f \in H(\psi)^{+}$, but $f \notin H(\varphi)^{+}$. This contradicts the assumption $H(\varphi)^{+}=H(\psi)^{+}$. So we have $\varlimsup_{t \rightarrow \infty} \varphi(t) / \psi(t)<\infty$. Similarly, we have $\varlimsup_{t \rightarrow \infty} \psi(t) / \varphi(t)<$ ∞. By Theorem 1, we can thus conclude that $H(\varphi)=H(\psi)$. The proof is complete. []

References

[1] W. Deeb and M. Marzuq, ' $H(\phi)$ spaces', Canad. Math. Bull. 29 (1986), 295-301.
[2] K. T. Hahn, 'Properties of holomorphic functions of bounded characteristic on star-shaped circular domains', J. Reine Angew. Math. 254 (1972), 33-40.
[3] M. Hasumi and S. Kataoka, 'Remarks on Hardy-Orlicz classes', Arch. Math. 51 (1988), 455-463.
[4] Z. Jianzhong, 'A note on Hardy-Orlicz spaces', Canad. Math. Bull. 33 (1990), 29-33.
[5] R. Khalil, 'Inclusions of Hardy Orlicz spaces', J. Math. and Math. Sci. 9 (1986), 429-434.
[6] I. I. Priwalow, Randeigenschaften analytischer Funktionen (VEB Deutscher Verlag, Berlin, 1956).
[7] W. Rudin, Function theory in polydiscs (Benjamin, New York, 1969).
[8] W. Rudin, Function theory in the unit ball of C^{n} (Springer-Verlag, Berlin, Heidelberg, New York, 1980).
[9] W. Rudin, New construction of functions holomorphic in the unit ball of C^{n} (NSF-CBMS Regional Conference No.63, 1985).
[10] M. Stoll, 'Mean growth and Fourier coefficients of some classes of holomorphic functions on bounded symmetric domains', Ann. Polon. Math. 45 (1985), 161-183.

Department of Mathematics
Faculty of Science
Shinshu University
Matsumoto 390
Japan

