BULL. AUSTRAL. MATH. SOC. Vol. 45 (1992) [163-170]

ON A CONJECTURE OF Z. JIANZHONG

YASUO MATSUGU

Let φ be a nonnegative, nondecreasing and nonconstant function defined on $[0,\infty)$ such that $\Phi(t) = \varphi(e^t)$ is a convex function on $(-\infty,\infty)$. The Hardy-Orlicz space $H(\varphi)$ is defined to be the class of all those functions f holomorphic in the open unit disc of the complex plane C satisfying $\sup_{0 < r < 1} \int_{-\pi}^{\pi} \varphi(|f(re^{it})|) dt < \infty$. The subclass $H(\varphi)^+$ of $H(\varphi)$ is defined to be the class of all those functions $f \in$ $H(\varphi)$ satisfying $\sup_{0 < r < 1} \int_{-\pi}^{\pi} \varphi(|f(re^{it})|) dt = \int_{-\pi}^{\pi} \varphi(|f^*(e^{it})|) dt$, where $f^*(e^{it}) =$ $\lim_{r \to 1} f(re^{it})$ for almost all points e^{it} of the unit circle. In 1990, Z. Jianzhong conjectured that $H(\varphi)^+ = H(\psi)^+$ if and only if $H(\varphi) = H(\psi)$. In the present paper we prove that it is true not only on the unit disc of C but also on the unit ball of \mathbb{C}^n .

1. INTRODUCTION

Let $n \ge 1$ be an integer. Let H(B) denote the space of all holomorphic functions in the open unit ball B of the complex *n*-dimensional Euclidean space \mathbb{C}^n . We call a nonnegative real-valued function φ defined on $[0,\infty)$ a modulus function if it is a nondecreasing and nonconstant function such that $\Phi(t) = \varphi(e^t)$ is a convex function on $(-\infty,\infty)$. According to Deeb and Marzuq [1], for a given modulus function φ , the Hardy-Orlicz space $H(\varphi)$ is defined as

$$H(\varphi) = \{f \in H(B) : \sup_{0 < r < 1} \int_{S} \varphi(|f(r\zeta)|) \, d\sigma(\zeta) < \infty\},\$$

where $S = \partial B$ is the unit sphere of \mathbb{C}^n and σ is the rotation invariant positive Borel measure on S for which $\sigma(S) = 1$. Let

$$H^+(B) = \{f \in H(B) : \lim_{r \to 1} f(r\zeta) = f^*(\zeta) almost everywhere[\sigma] onS\}.$$

The space $H(\varphi)^+$ is defined to be the class of all those functions $f \in H^+(B) \cap H(\varphi)$ satisfying the condition

$$\sup_{0 < r < 1} \int_{S} \varphi(|f(r\zeta)|) \, d\sigma(\zeta) = \int_{S} \varphi(|f^*|) \, d\sigma.$$

Received 4 March 1991

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/92 \$A2.00+0.00.

Y. Matsugu

164

Let N(B) and $N^+(B)$ denote the Nevanlinna class and the Smirnov class respectively; that is,

$$N(B) = \{f \in H(B) : \sup_{0 < r < 1} \int_{S} \log^{+} |f(r\zeta)| \, d\sigma(\zeta) < \infty\},$$
$$N^{+}(B) = \{f \in N(B) : \lim_{r \to 1} \int_{S} \log^{+} |f(r\zeta)| \, d\sigma(\zeta) = \int_{S} \log^{+} |f^{*}| \, d\sigma\}.$$

In [4, p.32, Remark 4], Jianzhong conjectured (for dimension n = 1) that for two modulus functions φ and ψ , $H(\varphi)^+ = H(\psi)^+$ if and only if $H(\varphi) = H(\psi)$. The main purpose of this paper is to prove that Jianzhong's conjecture is true for any dimension $n \ge 1$.

2. Inclusion relation between the spaces $H(\varphi)$

To prove the Proposition 1 described below, we recall some notations used in Rudin [9]. For $0 , the Lebesgue spaces <math>L^{p}(\sigma)$ have their customary meaning. $L^{0}(\sigma)$ stands for the set of all measurable functions u for which

$$\int_S \log^+ |u| \, d\sigma < \infty.$$

LSC denotes the set of all lower semicontinuous functions on S. The following theorem is proved in Rudin [9, pp.19-20].

THEOREM R. Suppose $u \in LSC \cap L^0(\sigma)$, u > 0 on S. Then there is an $f \in N^+(B)$ whose boundary values f^* satisfy

$$|f^*(\zeta)| = u(\zeta)$$

almost everywhere $[\sigma]$ on S.

The following Proposition 1 is proved in Hasumi and Kataoka [3, Theorem 1.3] for the case n = 1.

PROPOSITION 1. Let φ and ψ be modulus functions. If

$$\overline{\lim_{t\to\infty}}\frac{\varphi(t)}{\psi(t)}=\infty,$$

then there exists an $f \in H(\psi) \cap N^+(B)$ which dose not belong to $H(\varphi)$.

PROOF: The proof for arbitrary dimension *n* closely follows that of Hasumi and Kataoka for n = 1 [3, Proof of Theorem 1.3]. Put $\Phi(t) = \varphi(e^t)$, $\Psi(t) = \psi(e^t)$ for $-\infty \leq t < \infty$. Then Φ and Ψ are nondecreasing nonconstant convex functions on $[-\infty, \infty)$, and

$$\lim_{t\to\infty}\frac{\Phi(t)}{\Psi(t)}=\infty$$

Hence we can choose a sequence $\{t_j\}$ such that $0 < t_1 < t_2 < t_3 < \ldots$, $\lim_{j \to \infty} t_j = \infty$, $\Psi(t_j) > 2^j j^{-2}$ and $\Phi(t_j)/\Psi(t_j) > j$, $j = 1, 2, 3, \ldots$. Set $\varepsilon_j = \{j^2 \Psi(t_j)\}^{-1}$, for each j. Then we see that $\varepsilon_j < 2^{-j}$, $j = 1, 2, 3, \ldots$, and so $\sum \varepsilon_j < 1$. Consequently, there is a sequence $\{E_j\}$ of disjoint open subsets of the unit sphere S of \mathbb{C}^n such that $\sigma(E_j) = \varepsilon_j$, $j = 1, 2, 3, \ldots$. We define a function u on S by

$$u=\sum_{j=1}^{\infty}t_{j}\chi_{j},$$

where χ_j is the characteristic function of the set E_j . Since E_j is an open subset of S, χ_j is lower semicontinuous on S, that is, $\chi_j \in LSC$. Since each number t_j is positive, it follows that $u \in LSC$. The function $\Psi \circ u$ is Borel measurable on S, and it holds that

$$\int_{S} (\Psi \circ u) d\sigma = \sum_{j} \Psi(t_{j})\sigma(E_{j}) + \Psi(0)\{1 - \sum_{j} \sigma(E_{j})\}$$
$$\leq \sum_{j} \Psi(t_{j})\varepsilon_{j} + \Psi(0) = \sum_{j} j^{-2} + \Psi(0) < \infty,$$

so we have $\Psi \circ u \in L^1(\sigma)$. Since Ψ is convex, nondecreasing and nonconstant, $\Psi(t) \ge Ct$ for some constant C > 0 and for all sufficiently large t. Thus we see that $u \in L^1(\sigma)$. On the other hand, the same way as in the case of $\Psi \circ u$ gives that

$$egin{aligned} &\int_{S} \left(\varPhi \circ u
ight) d\sigma &= \sum_{j} \varPhi(t_{j}) arepsilon_{j} + \varPhi(0) \left(1 - \sum_{j} arepsilon_{j}
ight) \ &\geqslant \sum_{j} j \Psi(t_{j}) arepsilon_{j} &= \sum_{j} j^{-1} = \infty. \end{aligned}$$

This means that $\Phi \circ u$ does not belong to $L^1(\sigma)$.

Now we put $v = e^u$ on S. Since $u \in LSC \cap L^1(\sigma)$ and $0 \leq u < \infty$, it follows that $v \in LSC \cap L^0(\sigma)$ and $1 \leq v < \infty$. By Theorem R, there exists an $f \in N^+(B)$ whose boundary values f^* satisfy $|f^*| = v$ almost everywhere $[\sigma]$. Since $f \in N^+(B)$, we have $\log |f| \leq P[\log |f^*|]$ in B, where P is the Poisson kernel in B. (See for example, Stoll [10, Lemma 3.1.]. It follows from Jensen's inequality that

$$\Psi(\log |f|) \leqslant P[\Psi \circ \log |f^*|] = P[\Psi \circ \log v] = P[\Psi \circ u]$$

in B, because Ψ is convex and nondecreasing on $(-\infty,\infty)$. Since $\Psi \circ u \in L^1(\sigma)$, $P[\Psi \circ u]$ is harmonic in B. Noting $\Psi(\log |f|) = \psi(|f|)$, we see that $f \in H(\psi)$. Finally,

we shall show that f does not belong to $H(\varphi)$. By Fatou's lemma, we have

$$\begin{split} \lim_{r \to 1} \int_{S} \varphi(|f(r\zeta)|) \, d\sigma(\zeta) & \geq \int_{S} \varphi(|f^*|) \, d\sigma \\ &= \int_{S} \Phi(\log |f^*|) \, d\sigma \\ &= \int_{S} (\Phi \circ u) \, d\sigma = \infty \end{split}$$

Thus f is not in $H(\varphi)$. This completes the proof.

Now we consider the converse of Proposition 1. In the case of n = 1, the following Proposition 2 is proved in Jianzhong [4, Proposition 5]. (See also [3, Theorem 1.3] and [5, Theorem 2.1.]. The proof is the same for any dimension $n \ge 1$.

PROPOSITION 2. Let φ and ψ be modulus functions. If

$$\lim_{t\to\infty}\frac{\varphi(t)}{\psi(t)}<\infty,$$

then $H(\psi) \subset H(\varphi)$.

Proposition 1 and Proposition 2 give the following

THEOREM 1. Suppose φ and ψ are two modulus functions. Then the following hold:

(1) $H(\psi) \subset H(\varphi)$ if and only if

$$\overline{\lim_{t\to\infty}}\,\frac{\varphi(t)}{\psi(t)}<\infty.$$

(2) $H(\psi) = H(\varphi)$ if and only if

and

(3)
$$H(\psi) \subset H(\varphi)$$
 and $H(\psi) \neq H(\varphi)$ if and only if
$$\lim_{t \to \infty} \frac{\varphi(t)}{\psi(t)} < \infty$$

and

We remark that this is a generalisation of a result of Hasumi and Kataoka. They proved this in the case of the dimension n = 1. See [3, Theorem 1.3 and Corollary 4.1].

 $\lim_{t\to\infty}\frac{\varphi(t)}{\psi(t)}=0.$

0

[4]

3. PROOF THAT
$$H(\varphi) \cap N^+(B) = H(\varphi)^+$$

This equality is conjectured in Jianzhong [4, Remark 4]. In the case of n = 1, Hasumi and Kataoka [3, Theorem 2.1] proved that the equality is valid. To prove the general case we need the following lemmas:

LEMMA 1. Suppose $\{u_j : j = 1, 2, 3, ...\}$ is a sequence of nonnegative $L^1(\sigma)$ functions such that $\lim u_j(\zeta) = u(\zeta)$ almost everywhere $[\sigma]$ on S. Then $\{u_j\}$ is uniformly integrable if and only if

$$\lim_{j\to\infty}\int_S u_j\,d\sigma=\int_S u\,d\sigma<\infty$$

PROOF: See Priwalow [6, Satz 3.2]. He proved the lemma for a compact interval [a, b] in place of the unit sphere S, but the proof is the same for S.

LEMMA 2. Let $f \in H(B)$. Suppose that there is a real function $u \in L^1(\sigma)$ such that $\log |f| \leq P[u]$ in B. Then we have $f \in N^+(B)$.

PROOF: (see Hahn [2, Theorem 4]; Rudin [7, Theorem 3.3.5.]) Put $u^+ = \max\{u, 0\}$. Then $u^+ \ge 0, u \le u^+$ on S, and $u^+ \in L^1(\sigma)$. Since $\log |f| \le P[u]$ in B, it follows that $\log^+ |f| \le P[u^+]$ in B. This shows $f \in N(B)$. Put $v = P[u^+]$ in B. For 0 < r < 1 and $\zeta \in S$, we define $v_r(\zeta) = v(r\zeta)$. Then v is a positive harmonic function in B and $\{v_r : 0 < r < 1\} \subset L^1(\sigma)$. Hence we have

$$\lim_{r\to 1}\int_S v_r\,d\sigma=v(0)=\int_S u^+\,d\sigma.$$

By Fatou's theorem (see for example, Rudin [8, Theorem 5.4.8.]),

$$v^*(\zeta) = \lim_{r \to 1} v_r(\zeta) = u^+(\zeta)$$

almost everywhere on S. Since $v_r \ge 0$ on S (0 < r < 1), it follows from Lemma 1 that $\{v_r\}$ is uniformly integrable. Note that $\log^+ |f_r| \le v_r$ on S (0 < r < 1). We therefore see that $\{\log^+ |f_r| : 0 < r < 1\}$ is uniformly integrable. Consequently, Lemma 1 gives

$$\lim_{r\to 1}\int_S \log^+ |f_r| \ d\sigma = \int_S \log^+ |f^*| \ d\sigma.$$

This completes the proof.

LEMMA 3. For every modulus function φ , $H(\varphi) \subset N(B)$.

PROOF: Put $\Phi(t) = \varphi(e^t)$. Then Φ is a nonnegative nonconstant nondecreasing convex function on $[-\infty,\infty)$, and so $\Phi(t) \ge Ct$ for some positive constant C and for

0

Y. Matsugu

all sufficiently large t. Now we define $\psi(t) = \log^+ t$ for $0 \leq t < \infty$ and $\Psi(t) = \psi(e^t)$ for $-\infty \leq t < \infty$. Then ψ is a modulus function and $H(\psi) = N(B)$. Moreover, it holds that $\Phi(t) \geq C\Psi(t)$ for all sufficiently large t. Hence we have

$$\overline{\lim_{t\to\infty}}\,\frac{\psi(t)}{\varphi(t)}=\overline{\lim_{t\to\infty}}\,\frac{\Psi(t)}{\varPhi(t)}\leqslant C^{-1}<\infty.$$

It follows from Proposition 2 that $H(\varphi) \subset H(\psi) = N(B)$.

Now we prove the following

THEOREM 2. For every modulus function φ , it holds that

$$H(arphi)\cap N^+(B)=H(arphi)^+$$

PROOF: (see Hasumi and Kataoka [3, Theorem 2.1]; Rudin [7, Theorem 3.4.2.]) Suppose that $f \in H(\varphi)^+$. Put $\Phi(t) = \varphi(e^t)$ for $-\infty \leq t < \infty$. Then we have

$$\sup_{0 < r < 1} \int_{S} \Phi(\log |f(r\zeta)|) \, d\sigma(\zeta) = \int_{S} \Phi(\log |f^*|) \, d\sigma < \infty.$$

Since Φ is nonnegative, nonconstant, nondecreasing and convex on $[-\infty,\infty)$, there exists a positive finite Borel measure μ on S such that $\varphi(|f|) = \Phi(\log |f|) \leq P[\mu]$ in B and $\|\mu\| = \int_S \Phi(\log |f^*|) d\sigma$. (See for example, Rudin [8, Theorem 5.6.2.]). We set $u = P[\mu]$ in B. By Fatou's theorem, u has radial limits

$$u^*(\zeta) = \lim_{r \to 1} u(r\zeta)$$

for almost all $\zeta \in S$ [σ] and $d\mu = u^* d\sigma + d\nu$, where $u^* \in L^1(\sigma)$ and ν is a finite positive singular Borel measure on S. Since $f \in H(\varphi)$, Lemma 3 gives $f \in N(B)$. Since $\varphi(|f|) \leq u$ in B, we have $\varphi(|f_i^*|) \leq u^*$ almost everywhere [σ] on S. Consequently,

$$\|\mu\| = \int_{S} \Phi(\log |f^{*}|) \, d\sigma = \int_{S} \varphi(|f^{*}|) \, d\sigma \leqslant \int_{S} u^{*} \, d\sigma$$
$$\leqslant \int_{S} u^{*} \, d\sigma + \int_{S} d\nu = \|\mu\|.$$

This shows $\nu = 0$, and so $\Phi(\log |f|) \leq u = P[u^*]$ in *B*. Since Φ is nonnegative, nonconstant, nondecreasing and convex on $(-\infty, \infty)$, there are two positive constants C_1 and C_2 such that $t \leq C_1 \Phi(t) + C_2$ for all real *t*. Thus we have

$$\log |f| \leq C_1 \Phi(\log |f|) + C_2 \leq C_1 P[u^*] + C_2 = P[C_1 u^* + C_2]$$

in B. Since $C_1u^* + C_2 \in L^1(\sigma)$, it follows from Lemma 2 that $f \in N^+(B)$.

Π

[6]

Conversely, we suppose $f \in H(\varphi) \cap N^+(B)$. Then $\log |f| \leq P[\log |f^*|]$ in B. By Jensen's inequality, we have

$$arphi(|f|) = \varPhi(\log |f|) \leqslant P[\varPhi \circ \log |f^*|] = P[arphi(|f^*|)]$$

in B. Since $\varphi(|f|)$ is subharmonic in B, Fatou's lemma gives

$$\int_{S} \varphi(|f^*|) \, d\sigma \leq \lim_{r \to 1} \int_{S} \varphi(|f(r\zeta)|) \, d\sigma(\zeta) \leq P[\varphi(|f^*|)](0) = \int_{S} \varphi(|f^*|) \, d\sigma(\zeta) \leq P[\varphi(|f^*|)](0) = P[\varphi(|f^*|)]($$

Hence it follows that

$$\sup_{0 < r < 1} \int_{S} \varphi(|f(r\zeta)|) \, d\sigma(\zeta) = \lim_{r \to 1} \int_{S} \varphi(|f(r\zeta)|) \, d\sigma(\zeta) = \int_{S} \varphi(|f^*|) \, d\sigma.$$

This completes the proof.

4. PROOF OF THE MAIN RESULT

Now we can prove the main result of the present paper:

THEOREM 3. Let φ and ψ be modulus functions. Then $H(\varphi)^+ = H(\psi)^+$ if and only if $H(\varphi) = H(\psi)$.

PROOF: If $H(\varphi) = H(\psi)$, we have $H(\varphi)^+ = H(\psi)^+$ as an immediate consequence of Theorem 2. Conversely, suppose $H(\varphi)^+ = H(\psi)^+$. If $\lim_{t \to \infty} \varphi(t)/\psi(t) = \infty$, then it follows from Proposition 1 that there is an $f \in H(\psi) \cap N^+(B)$ such that $f \notin H(\varphi)$. Theorem 2 gives $f \in H(\psi)^+$, but $f \notin H(\varphi)^+$. This contradicts the assumption $H(\varphi)^+ = H(\psi)^+$. So we have $\lim_{t \to \infty} \varphi(t)/\psi(t) < \infty$. Similarly, we have $\lim_{t \to \infty} \psi(t)/\varphi(t) < \infty$. By Theorem 1, we can thus conclude that $H(\varphi) = H(\psi)$. The proof is complete. \Box

References

- [1] W. Deeb and M. Marzuq, ' $H(\phi)$ spaces', Canad. Math. Bull. 29 (1986), 295-301.
- [2] K. T. Hahn, 'Properties of holomorphic functions of bounded characteristic on star-shaped circular domains', J. Reine Angew. Math. 254 (1972), 33-40.
- [3] M. Hasumi and S. Kataoka, 'Remarks on Hardy-Orlicz classes', Arch. Math. 51 (1988), 455-463.
- [4] Z. Jianzhong, 'A note on Hardy-Orlicz spaces', Canad. Math. Bull. 33 (1990), 29-33.
- [5] R. Khalil, 'Inclusions of Hardy Orlicz spaces', J. Math. and Math. Sci. 9 (1986), 429-434.
- [6] I. I. Priwalow, Randeigenschaften analytischer Funktionen (VEB Deutscher Verlag, Berlin, 1956).
- [7] W. Rudin, Function theory in polydiscs (Benjamin, New York, 1969).

0

Y. Matsugu

- [8] W. Rudin, Function theory in the unit ball of Cⁿ (Springer-Verlag, Berlin, Heidelberg, New York, 1980).
- [9] W. Rudin, New construction of functions holomorphic in the unit ball of Cⁿ (NSF-CBMS Regional Conference No.63, 1985).
- [10] M. Stoll, 'Mean growth and Fourier coefficients of some classes of holomorphic functions on bounded symmetric domains', Ann. Polon. Math. 45 (1985), 161-183.

Department of Mathematics Faculty of Science Shinshu University Matsumoto 390 Japan