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COUNTEREXAMPLES 
IN NONSTANDARD MEASURE THEORY 

J. M. ALDAZ AND P. A. LOEB 

ABSTRACT. We show that several "good" properties of the standard part map on 
regular Hausdorff spaces do not hold for arbitrary Hausdorff spaces. 

1. Introduction. Special measures, called Loeb measures in the literature, have of
ten been used to define or represent standard measures on topological Hausdorff spaces. 
For this purpose the measurability properties of the standard part map are crucial. An
derson showed ([An]) that if Xis a Hausdorff space and \i a Radon measure onX, then 
L(*/i) st_1 = fi. In applications, however, one often starts with an internal measure; the 
corresponding Loeb measure is then "pushed down" via the standard part map st. It is 
therefore important to have measurability results for st with respect to general internal 
measures which are not obtained by the transfer of standard measures. Such results were 
obtained by Loeb for compact [LI] and locally compact spaces [L2] (see also [H]). With 
Landers and Rogge's significant extension of these results in [LR1], there is now a good 
theory regarding the measurability of the standard part map when the underlying space 
Xis regular and Hausdorff. The basic ingredients of this theory are: 1) If / C ns(*X) is 
internal, then st(7) is compact ([Lux]). It follows that if st is measurable, then the pushed 
down Loeb measure is Radon. 2) The map st is measurable iff the set ns(*X) is mea
surable ([LR1]). To check the measurability of st, therefore, one only needs to check 
the measurability of one set. 3) The universal Loeb measurability of st is equivalent to 
its measurability with respect to all transfers of standard, countably additive measures 
(see [Al] or [Rl]). This is an immediate consequence of Landers and Rogge's results on 
outer Loeb measures, and it means that the map st is universally Loeb measurable iff X 
is pre-Radon. 

Since the theory of Borel measures is usually developed in the context of Hausdorff 
spaces, it is interesting to know whether any of these results holds for arbitrary Hausdorff 
spaces. It will be shown, by example, that none of them do. It appears, therefore, that 
regular spaces form the right topological setting for the representation of measures via 
Loeb measures. 

The authors are indebted to the referee for pointing out relevant references, as well as 
for some corrections and improvements in the exposition of this paper. 
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2. Examples. Whenever we speak of a measure we mean a finite measure. A count-
ably additive Borel measure \i is Radon if it is inner regular with respect to the compact 
sets, and r-smooth if for every collection of open sets {Oa}, closed under finite unions, 
MUa Oa) — supa /x(Oa). LetXbe a Hausdorff space with topology T. The Borel sets of 
Xare denoted by o^). The space X is Radon if every countably additive Borel measure 
on X is Radon, and pre-Radon if every r-smooth measure on X is Radon. 

It is well known (see Counterexample 5.5.3 of [MH], or Aufgaben 28.4 and 23.3 of 
[LR2]) that for a Hausdorff space X, st(7) may fail to be compact even if the internal set 
/ is contained in the set of near standard points. We present a related example (part i of 
the following theorem) which in addition will allow us to show that the measurability 
of ns(*Z) need not be equivalent to the measurability of st, and that a space can be pre-
Radon (and even Radon) without being universally Loeb measurable (Theorem 1, parts 
ii) and hi)). 

A natural generalization of Radon measures is the notion of a compact measure, i.e., a 
measure that is inner regular with respect to a compact family of sets. (Recall that a family 
of sets is compact if every subfamily with the finite intersection property has nonempty 
intersection.) Since standard measures of the form L(i/) st -1 are inner regular with respect 
to the family {st(7) : / internal, / C ns(*X)}, it is reasonable to ask whether this family 
has to be compact, even if the individual sets st(7) are not compact. The answer is no 
(part iv) of the following theorem). This issue is related to the question as to whether 
the images of Loeb measures must be compact (asked by D. Ross in [Ro] and answered 
negatively in [A2]). 

The standard part map is said to be measurable with respect to an internal measure if 
for every Borel set B, st -1 (B) is measurable with respect to the corresponding completed 
Loeb cr-algebra L(*a(T)). The standard part map is universally Loeb measurable if it is 
measurable with respect to all finite, finitely additive internal measures. We shall assume 
that the saturation of the nonstandard model is larger than the cardinality of the topology 
of any standard space under consideration. Recall that a Borel measure is continuous if 
every point has measure zero, and discrete if there is a countable set with full measure. 
Every Borel measure can be decomposed into a continuous and a discrete part. 

THEOREM 1. i) There exists a Hausdorff space X and an internal set I C ns(*.Y) 
such that st(7) is not compact. 

ii) There is a pre-Radon Hausdorff space X such that ns(*X) is universally Loeb 
measurable, and yet the map st, although measurable with respect to all transfers of 
standard countably additive measures, is not universally Loeb measurable. 

Hi) There exists a Radon spaceXsuch that ns(*X) is not universally Loeb measurable. 
iv) There exists a Hausdorff space X such that the family {st(7) : I internal, I C 

ns(*X)} is not compact. 

PROOF, i) Consider the "half-disk" or "mushroom space" topology (see [S], p. 96) 
on the closed unit square S with vertices (0,0), (1,1). This topology is defined as follows. 
The intersection of the open upper half plane with S (denoted here by U) has the usual 
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euclidean topology, while for x G H := S \ U, a neighborhood basis is given by the sets 
{x} U (jB(x, r)C\Uy (As usual, B(x, r) denotes the disc of radius r centered at x.) The 
internal set Ie = *[0,1] x {e}, where e is a positive infinitesimal, is contained in ns(*»S), 
but st(/e) is an uncountable discrete set and hence not compact. 

ii) It is clear that the "mushroom" square S is pre-Radon since £/has the euclidean and 
H the discrete topology; the only r-smooth measures the latter set admits are discrete. Let 
v be any internal, finite, finitely additive measure on *S. We may assume, without loss 
of generality, that L(y) is continuous. Let E = {(*x, 0): x £ [0,1]}. By the continuity of 
L(y) and saturation (see Theorem 1 of [LR1]), L(y)(E) = 0. Since ns(**S) = EU *U and 
*U is ^-measurable, the set ns(**S) is universally Loeb measurable. 

Next it will be shown that st is measurable with respect to all transfers of standard 
countably additive measures. Let \i be a Borel measure on S. Again we may assume 
that [i is continuous. Note that st_1(//) Pi *£/ is contained in the set *A„, where A„ := 
[0,1] x (0, l/n). Since An j 0, L(*/iX*4i) = P(An) -> 0. Therefore sVl(H) H *C/is 
L(*/x)-measurable, with measure zero. Also Z(*/i)(£) = 0, whence Z,(*/i)st-1(i/) = 0. 
Now let F be a Borel subset of S. On U we have the euclidean topology, so s t - 1(Kn U) 
is universally Loeb measurable. Thus st_1(F) is L(*/immeasurable, since it is the union 
of st"l ( V D U) and the Z(* /x)-null set st"x ( V n / /) . 

Finally, let i/ be the internal linear Lebesgue measure on the segment Ie = * [0,1 ] x {e }, 
where e is a positive infinitesimal. Let stn be the standard part map on * [0,1 ] with respect 
to the euclidean topology, and let À be the Lebesgue measure on [0,1]. It is well known 
that for B C [0,1], s Ç 1 ^ ) is Z,(*A)-measurable iff B is Lebesgue measurable. Hence 
stj^i?) x {e} is L(i/)-measurable iff B is Lebesgue measurable. But st~l(B x {0}) can be 
expressed as the union of stj^Z?) x {e} with an L(i/)-nu\\ set, so st -1(# x {0}) is //(im
measurable iff B is a Lebesgue set. Since the topology on H is discrete, all its subsets are 
open and therefore st is not L(i/)-measurable. 

iii) Again let v be the internal linear Lebesgue measure on {(x,e) : x G *[0, l],e 
a positive infinitesimal}. Let D C [0,1] be a nonmeasurable subset (with respect to 
Lebesgue measure) of the least possible cardinality. By Theorem 14.7ii) of [K], D does 
not admit any finite, continuous measure defined on all its subsets. If we regard D as 
contained in //, thenX := DU U, with the topology inherited from the mushroom square, 
is a Radon space. By the same argument as in part ii), st_1(D) is not L(z/)-measurable. 
Since ns(*X) differs from st_1(D) by the null set st~ *(£/), the result follows. 

iv) Take the plane with the usual topology and add to it two ideal points, a and —a. 
Basic neighborhoods of the ideal points are formed by setting for each n G N, N„(q) = 
{a} U {(*,>>) : x > 0, j > n} and Nn(-a) = {-a} U {(x,y) : x < 0,y > n}. Select a 
positive infinitesimal e and set/„ = |((— \)ne,y) : y > «}. Then for each n G N, /„ is 
an internal set contained in the near standard points. But f|„{st(/„) : n G N} = 0, even 
though the family {st(/w) : n G N} has the finite intersection property. • 

REMARKS. 1) One might hope to obtain better properties if attention is restricted 
to particularly well behaved classes of HausdorfT spaces, such as analytic spaces (con
tinuous images of polish spaces). However, the example given in the proof of part iv) 

https://doi.org/10.4153/CMB-1995-038-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1995-038-5


260 J. M. ALDAZ AND P. A. LOEB 

of the theorem is analytic since it is a continuous image of the plane with two isolated 
points adjoined. (This example is a slight simplification of counterexample 100 in [S]; 
the original example also works here.) 

2) If a Hausdorff space X admits a coarser regular Hausdorff topology, then the family 
{st(7) : / internal, / C ns(*X)} is compact, because the internal sets contained in ns(*X) 
are still contained in the near standard points with respect to the new topology. In partic
ular, this is the case for the mushroom square S, where the euclidean topology is coarser 
and yet regular. 

Landers and Rogge noted ([LR1], Corollary 3iv) that if m(Q is defined as f){*0 : 

C C O and O G T } , then for every closed subset C of a regular Hausdorff space X, 
st~l(C) = m(C) n ns(*X)- This property is useful because it yields the equivalence be
tween measurability of the map st and the set ns(*X). Unfortunately, as we now show, 
this property does not hold for arbitrary Hausdorff spaces; indeed, it is equivalent to reg
ularity for pre-Hausdorff spaces. A space X is pre-Hausdorff if given any two points x, 
j G l , either m(x) = m(y) or m(x) n m(y) = 0. Both regular and Hausdorff spaces are 
pre-Hausdorff (see [R2]). For a general (not necessarily Hausdorff) topological space X, 
ifBcX, then st_1(2?) is defined as the union of monads of points in B. 

PROPOSITION 2. A topological space is regular if and only if it is pre-Hausdorff and 
for every closed set CcX, s r l(Q = m(C) H ns(*X)-

PROOF. The proof that regularity implies the condition st_ 1(Q = m(C) D ns(*JQ 
is the same for a Hausdorff or non-Hausdorff space. To show that for a pre-Hausdorff 
space the condition implies regularity, we fix an arbitrary closed set C C X and a point 
x £ C. For every y G C, m(x) n m(y) = 0 since the complement of C is an open set that 
contains x but not >>, so their monads cannot be equal. It follows from the condition that 
m(x) n m(C) = m(x) (1 st_1(C) = 0. By saturation and downward transfer, there exist 
disjoint open sets U and V that contain x and C respectively, whence X is regular. • 

Finally, we consider the measurability of st with respect to the Baire sets rather than 
the Borel sets; we will show that this measurability is equivalent to the measurability of 
the set ns(*X). Let Z(X) be the collection of zero sets of continuous real valued functions 
defined on X. The smallest a-algebra making all such functions measurable (the Baire 
sets) is precisely <r(ij(X)). Our last result employs an argument of Landers and Rogge 
([LR1] Corollary 3iv) by replacing arbitrary open sets with cozero sets. 

PROPOSITION 3. Let Xbe a Hausdorff space. For an arbitrary set B G cr(Z(X)), 

st_1(Z?) is L\* (J(2J(X)) )-measurable if and only if this is true for ns(*JQ. 

PROOF. Define m(Z) = fl{*0 '. Z G O and O is cozero}. Let Z be a zero set. By 
[LR1] Theorem 1, it suffices to show that m(Z)nns(*X) = st_1(Z). Suppose* ^ st_1(Z) 
and x G ns(*JQ- Then there is a continuous function/ > 0 which vanishes on Z but for 
which/(st(x)) > 0. Therefore the set O = [y :f(y) < 1 /2 -/(st(jc))} is cozero, contains 
Z, andx ^ *0 , whence m(Z) n ns(*X) C st_1(Z). Since the other inclusion is obvious, 
we have equality. • 
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