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Introduction

We shall determine in this paper groups of types Dn, E6, £7 and E8

generated by SU(3,qYs, q odd, q > 3. These groups are defined in Phan
(1975). [We shall refer to this paper as I]. Acquaintance with the results of I is
assumed. The identification of groups of type D4 is similar to that of SU(n, q).
We actually construct an isomorphism from the universal group of type D4

onto Spin+(8, q). This direct approach does not appear to be feasible for
groups of type Dn with n g 5 . Fortunately Wong's recent result (1974) is
applicable here. But his theorem requires that the characteristic of the field be
odd; hence unlike the unitary case, we assume that q is odd and q > 3. Using
Wong's theorem, we proceed to show by induction that groups of type Dn are
homomorphic images of Spin+(2n, q) or Spin (2n, q) according as n is even or
n is odd.

We then use our result on groups of type Dn and the structure of these
groups to show the existence of Steinberg's generators and relations in groups
of types £6, £7 and E». It turns out that these are either Chevalley groups or
their twisted analogues.

1. Groups of types Dn

Let U be a vector space of dimension m over a field K of odd
characteristic and / a non degenerate symmetric bilinear form on U. The set
of isometries forms the orthogonal group Om(K,f) = O(U). The subgroup of
determinant 1 of the orthogonal group and the commutator subgroup O(U)'
are denoted by SO(K,f) = SO(U) and Cl(U) respectively. When m is even
and K is finite, there are two non equivalent symmetric bilinear forms giving
rise to non isomorphic orthogonal groups. When K is finite of order q and the
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130 Kok-Wee Phan [2]

index of / is w/2, we also denote il(K, f) by fl*(m,q). In the case that the
index of / is m / 2 - 1 and \K\ = q we denote VLm{K,f) by Q,~(m,q). The
corresponding subgroups Spinm(K,/) = Spin((7) of the Clifford group are
denoted by Spin+(m, q) and Spin"(m, q) respectively [Dieudonne (1955)].

We shall next show that Cim (K, f) can be embedded in the special unitary
group of some hermitian space depending on m and /. Let V be a non
degenerate hermitian space of dimension 2 n § 4 over the finite field F of q2

elements. We shall assume throughout this paper that q is odd and q > 3. We
denote the hermitian form by (,). Let B = {vu v2, • • •, v2n} be an orthonormal
basis of V. Let L* (resp. F*), 1 ^ ii ^ n - 1 denote the subgroup of SU(V)
whose restriction to the subspace Vf = {v2i-u v2l, v2i+u v2i+2} is represented by
the matrices

a

0

~P
0

0
a

0

~P

P
0
a

0

0
P
0
a

resp.

a

0
0

-P

0
a

~P
0

0
P
a

0

P
0
0
a

a, /3 G F, ad + /3/3 = 1 (x = xq) and LT(resp. F*) fixes elementwise the
orthogonal complement Vf of V-,. Let H*(resp. K*) denote the diagonal
subgroup of L* (resp. F*). We note that L*, F* are isomorphic to SU(2,q)
and H*, K* are cyclic of order q + 1, and generate an abelian subgroup of
SC/(V).

Let Vo be the subspace of V consisting of vectors whose column
coordinate matrix has the form '(xux,,x2, x2, • • -,xn, xn). Clearly Vo is n-
dimensional over F. But we can also regard Va in the usual way as an
2n-dimensional space over Fo, the subfield of q elements in F. We check that
the hermitian form when restricted to Vo induces a non degenerate symmetric
bilinear form over Fo and the subgroup G* = (L*,r* 11 Si i Si n — 1) is
faithful on Vo. Moreover the elements of G * are isometries of Vo and hence
G* C. O(V0) as each L*, F* is a perfect group. We verify that V, contains two
dimensional totally degenerate subspaces (over Fo) e.g. {xv2i-{ + xv2i +
axv2i+\ + <jx\hi+2i where J t E F and era- = — 1. It also contains an anisotropic
space of dimension 2e.g.{xv2i-l + xv2i}. Therefore Vo has index n when n is
even and index n - 1 when n is odd. We collect these facts in the following

LEMMA 1.1. The space Vo with the form (,)( Vo is a non singular
orthogonal space of dimension 2n over Fo and index nor n — 1 according as n is
even or odd. The group G * = (L *, F* 11 S i Si n — 1) is a subgroup of Cl( Vo).
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[3] Groups generated by unitary groups II 131

REMARK. The space Vo is always regarded as over Fo unless otherwise
specified.

A simple computation produces the following

LEMMA 1.2. Let 5,, r, be elements of F*, L* respectively such that
Si ( i> i )= u4, 5,(1)4)= - u , ; r , ( i ' 2 , - i ) = u 2 i - i , r , ( u 2 l T , ) = - u 2 i - i . W e d e / i n e induc-
tively Si^, = r j s i r i , i s r 1 ' T 1 , 1 = i = n - 2 . Then

(i) H + , = ris,L*rls7'ril and hence G* = <Ff, L* 11 g i g n - 1);
(ii) (L*,L*_,>, <L*,L*^), (L*,r*_,) and (L*,r*.,) are isomorphic to

SU(3,q);
(iii) Statement (ii) vv/r/r L t replaced by FT;
(iv) [L*,L*] = [ L t , n ] = [ r t , n ] = [L* ,n] = i , y y ; - i , i, i + i;
(v) (L*,H1-,), (L*,H*^), (L*,K*^), (L*,K* + I) are isomorphic to

GU(2,q);
(vi) Statement (v) w(7/r Lt replaced by Ft;
(vii) H*H* = H*xH*; H*K* = H*xK*; K*K* = K*xK*, i^ j .

LEMMA 1.3. Let Lh F, be the commutator subgroup of the inverse images of
L*, F* in Spin(Vo) respectively and Ht, Kt the intersection of Lh f, with the
inverse images of H*, K* in Spin(V0) respectively. Set G = (L,, Ft 11 ^ 1 g
n — 1). Lef ft,-, ^ be representatives of inverse images of rh & in Spin(V0)
respectively. Then (i)-(vii) remain valid with L*, Ft, H*, K*, r,, st replaced by
L,, f „ Hi, K,, rii, p, respectively. Moreover L,^ s L * = F* = f,-, H,•= H* = K* =
K{ and G/(z) is isomorphic to G* where z is the product of the involutions in Lx

and f\.

PROOF. First we note that Spin (Vo) is a non splitting central extension of
a subgroup of order 2 by O( V«). Since both SU(2, q) and SU(3,q) have trivial
Schur multipliers (except SU(2,9), whose Schur multiplier has order 3), it
follows the inverse image in Spin(V0) of a subgroup in O(V0) isomorphic to
SU(2,q) or SU(3,q) is a direct product [Griess (1972)]. The assertions are
now clear.

COROLLARY 1.4. The groups G and G* are groups of type Dn generated by
SU(3,q)'s.

LEMMA 1.5. G* = il(V(l) and G = Spin(V0).

PROOF. We shall prove the lemma by induction on n. The ca^es n = 2 and
3 are clear by I. Assume then n > 3. Let I/, = (vt 11 S i S 2n - 2) D Vo;
U2 = (vi\3^i^2n-2)nV0; U} = (v,,\3 g i ^ 2n) D Vo a n d Uo =
(vu u2)n Vo. We shall regard Cl(U,) as a subgroup of Cl(V0) in a natural way.
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132 Kok-Wee Phan [4]

Let gGfl(V0). The projection of g(Ua) into U3 is a subspace of
dimension at most two. As U2 has index at least 2 it contains all possible
symmetric bilinear spaces of dimension § 2. By Witt's theorem, we can
choose suitable elements a Gil(Ui) and b Gfl(£/,) such that ag(Uu)C. U,
and (bag)(U«)Q Uo. Since H*(r,s,) \Vt, = O(Ult), we can assume bag \Vo =
identity. It follows that % e f l ( [ / 3 ) and therefore g e£l(£/,)(!( [/,)ft([/3).
The result now follows by induction.

REMARK. It was Wong (1974) who first identified the group G*.
Since we are assuming that q is odd, we can give a weaker definition of a

group of type X generated by SL/(3, q)'s. That is the set of subgroups L,
satisfies the following

(a) G = (L, | i G X);
(b) [L,, Lj\ = 1 if {(,/} is not an edge;
(c) (L,, L,) = SL/(3, q) if {/,/} is an edge;
(d) [Z{L,),Z(L,)\ = 1 for all i, j in X.
Because there is only one class of four groups in 5(7(3, q), it follows

immediately that there exists cyclic subgroup H, of order q + 1 such that
H.H, = H, x H, and <Lf, H,) = (L,, H,) = GU(2,q) if {/,/} is an edge.

We shall now investigate universal group G of type D4. Clearly universal
groups of types D2 and D} are SU(2, q)x SU(2, q) and 5t/(4, q) respectively
by I. Let the graph of G be

By (1.5) of I we have

<L,, L2, L,> = <L,, L2, L4> = (L4, L2, L,> s SI/(4, q).

Let U be a non degenerate hermitian space over F with orthonormal basis
{«,, M2, M3, M4}- We may then regard SU(U) as generated by the subgroups

A =

lap \

-P a

1 ; B =
- /3 a

; C =

1
\

a 0

P a I

a, /3 G F and ad + /3/3 = 1. Thus we may identify L,, L2, L3 with A, B, C,
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[5] Groups generated by unitary groups II 133

respectively and H,, H2, H3 with the diagonal subgroups of A, B, C
respectively. We have similar identification in the other two cases.

LEMMA 1.6. Let g and g'be in SU(U). Then one of the following holds
(i) g G CBABAC;
(ii) there exists c G C such that gc G ACBCBABA and c ' g 'G

BABCBABA;
(iii) g has the form

\ab/ 1 0 a

0 1 Xa

era

\o~a

X X

\ X X X X

for a suitable a G A and a diagonal element b G B. ( x denotes an unspecified
entry in the matrix).

PROOF. If g(w)G («„ "4) for some u G (w3, U4) of unit length, then there
exist c c2 in C such that c:(w4) = u and Cigc2(w4) = M4- Then g G CBABAC
as the stabilizer of M4 in SU(U) is (A, B) = BABA. Therefore we may assume
g(Ui)&{u3,u4), i =3 ,4 . We now choose an element

1

c = x y

y x

, xx + yy = 1

with y/Q and x = £y. Let pr be the projection map into (u,, u2). Suppose

prg(w,) = fiu2

prg(« 4 )= ywi + 8u2.

Then pr gc (u4)= y{(a + y£)u, + (/3 + 8£)u2} which has length

(1) L = yy{ad + pp + (ay + 08)£ + (ay + P8H + (yy + 88)&}.

For (ii) to hold, we must be able to choose £ such that it does not satisfy the
equations 1 + ££ = 0; L = 0 and a non trivial polynomial in £ of degree at
most q+ 1 which expresses the length of the projection of c~'g'("4) into
(u,, u2, Uy). (See [I; 1.7] for details). Clearly such £ exists if L = 0 is non trivial
and if q2 — 3(q + 1) > 0 that is q > 4. Thus it remains to consider the case when
L is identically zero i.e.
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134 Kok-Wee Phan [6]

(2) ad + j3/3 = yy + 55 = ay + (38 = 0.

We may assume none of a, /3, y, 5 is zero; otherwise we are back to the
situation of (i). Thus /3 = Aa^O where \\ = — 1. Equation (2) shows that
aU\ + (3u2 and y«! + 5u2 are non zero isotropic vectors orthogonal to each
other. Because (uu u2) is not totally degenerate, it follows that y = era and
5 = <x/3 for some er G F. If aef = - 1, then there exists c ' G C such that
prgc'(«4) = 0 and we are again in (i). So era = —1. It follows then the
projections of g~'(wi) and g~'(u2) into («,, M2) are orthogonal vectors of unit
length. It is now clear that (iii) follows. This completes the proof.

LEMMA 1.7. Let G be a universal group of type D4 generated by SU(3,q)'s
with the following graph

Then G = (NLjN where N = (LUL2, L4>.

PROOF. We have already remarked that

(L,, L2, L4> s <L,, L2, L3> = <L4, i-2, L3) s S(7(4, q).

Let M = L2L1L2L4L2LlL2. Then each element g in G belongs to N(L3M)mN
for some integer m > 0 since we have the following identities

(1) <tLuL2)=LlL2L1L2=L2LtL2Ll

and

( 2 ) N = L4(LU L2)LA(LU L2)

= (LuL2)L4(LuL2)L4

by (1.7) of I. We also need the identity

( 3 ) N = (L,,L2)(L2,L4)(L,,L2)

= (L2,L<)(LUL2)(L2,L4).

Let Y = NL3ML3ML3N. We want to show V = G. It suffices to prove
that an element

x = Cim,C2m2c^m?C4

belongs to Y where c< G L?, m( S M. First we may assume that c,£ Hj,

otherwise we are done. Let m, = fr4i_-,a2,_i£>4i 2d,b4,-ia2,b4, where a, G Lu

b, £ L2 and d; G L4.
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V) Groups generated by unitary groups II 135

In the remaining proof we shall use the letters a, b, c, d to denote
arbitrary elements of L,, L2l L3, L4 respectively. Since we shall be interested
in the factorization of G only, we use the same letter in an equation to denote
possible different elements. We use y = z to denote NyN = NzN. On many
occasions, we need to introduce suitably chosen fixed elements in L3. These
will be denoted by c*, c, c etc. We look at different forms of the element x.

(i) We may suppose b,a,b2d,b3a2b4 satisfies either (i) or (ii) of (1.6).
Suppose not. We may identify (L,, L2, L,) (resp. (L,, L2, L4» with SU(U)

so that L is identified with A, L2 with B and L, (resp. L4) with C. After
suitable changes in the ch m> of c2m2Cym?Ci using (1) and (2), we may suppose

/ 1 0 p o-p \

0 1 Ap Acrp

\

X X X X

X X X X

for some p, a, A G F such that AA = acr = — 1. Let

c2 =
TJ T

- f a

and c* =
x y

- y x I

where rjr) + TT = 1 = xx + yy and £y = x/ 0. By (1.7) of Phan (1976), there
exists suitable £ such that

(c*)~'67a.468C.-,2Mi5&io and c2b%aib<,c*

belong to (L,, L2)L>(L,, L2) provided q2- 3(q + l ) > 0 . Suppose

where e , / E ( L , , L ; ) and c G L,. Assume that

(f),a,fc)(((,) = an, + (Su2+

(e)(u,) = 5 M , + £M2+

and
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C =

I 1

\

X V

We note that y ' / 0 as c2gH3. Thus 8 = (y/y')a; e = (y/y')/3 and \ =

(y/y')(VY + T£)- If z e satisfies (i) or (ii) of (1.6), then we are done. Otherwise
we have

(8 = (e

and (5 + px)(8 + Px) + crcrpp = 0. This implies that \8 = e and so XX = 1-
Then the second equation above becomes

(4) ad + d (yi) + r£)p + a(yq + T£)P = 0.

If a = 0 , then /3 = 0 because A(y/y')« =(y/y')P- Therefore b,a3bf,E(Li,H2)
i.e. b5a3b6= db where a G L, and 6 G H2. So

for a suitable m in M and c2 in L3

by (1) and (2).
= (c bab)d(bab c bab c bab)d bab c
= (c bab c)d{c)'\bab c bab c bab)d bab c
= (bab c bab a)d(bab c baba)d bab c by (1.7) of I.

So x G Y. Thus we may suppose a ? 0; that is, (4) is a non trivial equation
in £ of degree at most q. Now if q2 — Aq — 3 > 0, there exist a suitable £ not
satisfying (4) and so this completes the proof of (i).

(ii) We may suppose b1aibtiC7,b9a<,blo satisfies either (i) or (ii) of 1.6.
The proof is the same as in (i).
(iii) If b7a4bgC?ibva5bwG. L^L2LlL2L,L?,, then x G Y.

We have

x = c bab d bab c bab d(bab c bab)d bab c
= c bab d bab c bab d(c baba c)d babe
= (c bab c*)d(c*~l babe babc)d bab a d cbabc
= (c bab a)d(bab c baba) dbaba d cbabc by (1.7) of I
= c bab a d bab c(baba d baba d) cbabc
= cbab a d bab c(d bab d bab a)cbabc
= c(bab a d bab d)c bab d bab a c bab c
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[9] Groups generated by unitary groups II 137

= d c bab d baba c bab d baba a babe by (1) and (2)

= c bab d(baba c bab c)d(c' babacbabc)
= c bab d babe baba d bab c baba by (1.7) of I.

So x S Y

(iv) If b^^bzd^iazbiG LAL2LXL2LXLA, then x G Y.
We have

x = c(bab d bab)c bab d bab c bab d bab c
= c(d baba d)c bab d bab c bab d bab c
= cbaba c dbabdbab c bab d bab c
= cbab c bab d bab c bab d bab c by (1) and (2)
= (cbabc bab c*)d(c*' babe bab)d babe
= bab c baba d bab c baba d bab c
G y

(v) If blalb2d,b3a2biE L^L^L.L.LzLxL.L^L^ then x G Y.
We have

x = c(bab d bab)c bab d bab c babd bab c
= c bdbaba d c bab d babe babd babe
= cbd bab c bab d(bab c bab)d bab c by (1) and (2).

If the bracketed term above belongs to LiLzLiL2L^Li, then we are done
by (iii). In view of (ii), we may suppose it satisfies (ii) of (1.6). Therefore

x = c b d bab c bab d (a cbc baba)d babe
= c b d (bab c babac) dbebaba d bab c
= cbd (cbc aba bebe) dbebaba d babe by (3)
= (cbd cbc)aba(bcbc dbcb )aba d babe by (3)
= cbc (dbdb aba dbd) cbc (dbdb aba dbab)c
= cbc (aba dbd baba)cbc(aba dbd bab)c by (3)
= cbc aba dbd(baba cbc bab)d(bab c) by (1), (2)
= cbc aba dbd(baba cbebab c)d(c^ babe)
= cbc aba dbd bab c baba d bab c
= (cbc bab)d(bab c bab)dbab c by (1), (2)
= c bab d bab c bab d bab c by (1.7) of I
G Y

In view of (i), (iv), (v) and (1.6), the proof is now complete.

THEOREM 1.8. A universal group G of type D4 generated by SU(3,qYs is
isomorphic to Spin(V0) where dim V o = 8 .
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138 Kok-Wee Phan [10]

PROOF. Let the graph of G be as follows

2 3

By (1.4) and (1.4) of I, we have homomorphisms

G - ± » Spin (Vo) - ^

where dim Vo = 8 such that 6(Lt)= L* i = 1,2,3 and 6(L4) = T*l where
0 = x<t>- We observe that ZiZ4 G ker 6 where z-, G Z(L,)*. Suppose g G ker 8.
We consider the following possibilities.

(i) g = «icn2 where n> E N = (Lu L2, L4) and c G L3. Then en £ ker fl
where n = n2nt. Hence 0(c)(t>8) = 0(n)~'(t>8) = i>8- Therefore c = 1 as 0 |Lj is
an isomorphism and the stabilizer of u8 in L* is 1. Therefore g G N. On the
other hand 0 |N has kernel (z,z4). Hence g G(ziZ4).

(ii) g = niCin2c2«3 where n, G JV and c, G L3. Again we have Cin2c2n G
ker 0 where n = n3ni. We may suppose cu c2@. H,, otherwise we are back to
(i). Let x - 6(ci)d(n2)9(c2)= d(n)'1. By comparing the images of u8 (resp.
D7) for both expressions of x, we see that 6(n2) fixes (v6) (resp. (v5)). It follows
that n2G LiL4H2. Therefore n2c2G L3N and so we are in (i).

(iii) g = n1cin2c2n3cini where nt G N, d G L3. We may suppose none of c,
belongs to H3. The proof of (v) in (1.7) shows that either (i) or (ii) of (1.6) or g
has the form in (ii) above. Hence we may assume that n2 = bidb2ab3 where
a G Li, bi G L2 and d G L4. If one of a, b,, b,, d belongs to HiH2HA, then we
may reduce the form of g to case (ii) above using 1.7 of I and bearing
in mind the relation h-sL2.Lt.h2L-!, Q L2L4L}L2L3L4L2 ((2.2) of I. Let
x = d(cibidb2ab3C2)= 0(n3c3n4nly

1. Using the second expression for x, we
see that the projection of x(vs) into (v7) is 0. On the other hand, because none
of d, c2, bu b3, a, d belongs to HxH2H3H4,the projection of 0(c2)(u8)[resp.
6(b3c2)(vg); d(abiC2)(vs); 6{db2ab3c2){v*); e{bldb2ab3c2){vi);
0(c]fc1dft2afc3c2)(u8)] into (vs) [resp. (v4); (v2); (v3); (v5); (v7)] is a non zero
vector. This is a contradiction. Thus we have shown that ker 6 = <ZiZ4> and <f>
is an isomorphism. This completes the proof.

THEOREM 1.9. Let G be a universal group of type Dn generated by
SU(3,q)'s, n s 2. Then G is isomorphic to Spin(V0) where dim V0 = 2n.

PROOF The result holds for 2 ̂  n g 4 as remarked earlier and by (1.7).
We may suppose n s 5. Let the graph of G be as follows
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1
3 n-2 n-l

-O • • •
n
o

By (1.4), we have homomorphisms

G - ^ Spin (Vo) - ^ il{ Vo).

Let d = 4»p andZ = (z,zn) where z, G Z(Li)*.We shall prove by induction on
n that ker 6 = Z. Thus we may suppose that (Ln, Lt\l^ i ^ n —2} =
Spin' (2(n — 1), q) where e = + if n — 1 is even and e = — if n — 1 is odd and
P = (Lm L, 11 § i g 3) = Spin+(8, q).

Let rii be an element of L, which inverts Ht. Set F, = Ln; p] = nn and
Ki = Hn. We define inductively r i+1 = n.iPiLi+lp^ n^ and Kj+1 =
niPtHi+ip~'ni\ From the isomorphism of (L,, L2, F^ onto SU(4, q) we obtain
t h a t [L2, F 2 ] = l ; n 1 p 2 L l p l * n l i = F , a n d n2p2T xp2

% n ^ = L ^ S i n c e
riip,{L2, L3}p71M71 = (F2, L3> and nip,(H2, H3)pi1riil = (K2, H3), we easily ver-
ify that M = (F2, L,- 12 si i S n — 1) is a universal group of type Dn-i (universal
because ZiZn^l in P and z2nlplz2p^n^ = 2i2n). Similarly N = (F4, L , | 4 S
i g n - 1) is a universal group of type Dn-3. We note finally from the
isomorphism of (L2, L3, F2) onto SU(4, q), n3p3 interchanges L2, F2 by
conjugation. Thus (L,,L2, F,) commutes elementwise with F4 as [LuLi] =
n2p2[r1,Ls]p2-1n2-' = l; [ r , , r 3 ] = l and(L1,L2,F1) = (L1,F2,F1).

Let Vi = {xvi + xv2}; V2 = {xv3 + xf4 + yv5 + yv6}; V3 = {xv7 + xvs} and
V4 = (V, + V2+ V3y, x,yGF. We regard il(U) naturally as a subgroup of

however U is a subspace of Vo. We verify that ft(Vi+V2) =
r,,L2»; fl(V3+ V4)=fl(N); fl(V,+ V2+ V,) = 0(P) and

n(V2+ V3+ V4)= 6»(M) and [d(V,+ V2), H(V3+ V4)] = 1. We now apply
Wong's Theorem 3A [Wong (1974)] and get that G/Z = O(V0). Therefore
G =Spin(V0). The proof is now complete.

2. Groups of types E6, E7, Es

The success in identifying groups of types E6, E7 and Es depends on the
fact that groups of type Dn when n is even are also Chevalley groups of type
Dn, and therefore they have Steinberg's generators and relations. For
convenience in discussing the proof we introduce the following terminology.

DEFINITION. Let M,, M2 be subgroups of a group X with Mi = SL(2,q) (q
odd, q>3) such that (M,,M2) = SL(3,q) (respectively SU(3,q)) and
[Z(M,), Z(M2)] = 1. We say M, is joined to M2 linearly (resp. unitarily) in X.
We remark that it follows there exist cyclic subgroups H, C M, of order q — 1
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(resp. q + l) such that <//,, H2) = ff, x H2 and M,H2s H,M2 = GL(2,q)
(respectively GU(2,q)).

Next we need to know the structure of a universal group V of type Dn in
some details. We introduce the following notation. Let the graph of X be as
follows

3 n - 2 n - 1
-O

If Li is joined to Lf unitarily, we can choose generators hh h, of H,, Hs;
elements nh n, in Lh L, which invert hh h, respectively such that

Set F, = Ln; p, = nn; k, = hn and define inductively IV, = xL^,x~'; p^, =
xn,. |X' '; k, + , = xh^tx'; where x = n,p,. Let (y,) = Z{Lt) and (z,) = Z(F,).

LEMMA 2.1. The following hold for the group X defined above.
(i) [u Lt ] = [L,, r, ] = [r,, r, ] = [L,, r, ] = 1 if ; y t -1, /, / +1
(ii) L, 15 joined to rf ,, L,_i, ri+1, L,+, unitarily ;
(iii) T, is joined to F,_,, L,-u F, + 1, L^, unitarily ;
(iv) pihi^p;' = fci/c1+1 = Mi + . t i n ^ i ;

(v) pifc,_1pr1 = fc1-.fcrI = n,-.itr1nr-i;
(vi) fci+1 = hih^tkt;

(vii) y,Zi = y , z , ;

(viii) ni+ip1-J.,LiprJifirH!i = F,-.

PROOF. Identifying Y with Spin (Vo) where dim Vo = In, we verify all the
assertions easily.

DEFINITION We call F< the dual of L, in Y. We note that the dual of L, in Y
is unique if n § 5; when n — 4, there are three subgroups L3, F3, F, which can be
dual of L,. In (2.2)-(2.5), we shall use the notation just introduced without
further comment.

LEMMA 2.2. Let Y be the universal group of type Dn defined above. Then
Cy(yi) contains a perfect group C of index 2 which is the central product of
L, x F, and (Lh F, 13 S i S n - 1) and Z(C) = (yu z,>.

PROOF. The assertions are straightforward [Iwahori (1970)]. (Note that
we are assuming q odd, q >3 . )
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COROLLARY 2.3. Let x be an involution in Y conjugate to y, in Y. Then
there exists a unique subgroup Lx in Y such that Z(LX)= (x).

LEMMA 2.4. Let Y be the universal group of type DA, generated by SU(3)'s
(i) Suppose q=\ (mod 4). Every involution x in Cv(yi)' — Z(CY(y>)) is

conjugate to n,p,n,p^ and the unique subgroup Lx of (2.3) is joined to Lt, I \ , L3,
T, linearly.

(ii) Suppose q = — 1 (mod 4). Every involution x in Cy(yi) — CY(yi)' is
conjugate to h2n,p,n3pi and the unique subgroup Lx of (2.3) is joined to Lu Fu

Ly,, F3 linearly.

PROOF. Since Y = Spin'(8, q), we can regard Y as a universal Chevalley
group of type D4 with the following Dynkin diagram.

a.

a4
O

Corresponding to each root a, we have the one parameter unipotent
subgroup Ua ={xa(t)\tGF0}; na = xa(l)x-a(- 1)JC(1); ha(t) =
xa(t)x~a(- t~')xa(t)na' and Xa=(Ua,U-a). Here we can assume yi =
Jioi(- 1). Then CY(y,) = C(MA)> where C = X^X^X^X^, (A) = F and a0

the longest root. We have hai(\f E C and (Xai,ha2(^))= GL(2,q), i =
0,1,3,4; [Xa,,Xai] = l i/2^j and iV /.

Suppose q = l (mod 4). Then y - l ) £ C and ha2(~ \)€ Z{C) =
(hat(- l),ha,(- \),ha4(- 1)). If x is an involution in C - Z(C), it necessarily
must have the form X0X1X3X4 where x, £ Xa, and 0(x,) = 4. Since SL(2,q)
contains just one class of elements of order 4, all involutions in C - Z(C) are
conjugate to ha2(— 1). The assertions of (i) are now clear.

Next suppose q = - \ (mod 4). Let x be an involution in CV(yi)-
Cy(y,)'. Then x has the form x = ha2{ - l)yz when y G Xai and z G X^X^X^.
As Xat(ha7(\))= GL(2, q), ha2{~^)y is an involution conjugate in Ya, to
ha2(— 1), we may assume y = 1. A similar argument proves that ha2(— l)yz is
conjugate to ha2(- 1) in CY(yi). This completes the proof.

LEMMA. Let Y be the universal group of type D6 generated by SU(3)'s
(i) There are two classes of non central involutions with representatives y,

and y3y5 and Cv(yi)= Cy(y,y5);
(ii) Suppose x, y are commuting involutions conjugate to yi in Y such that

xy is not conjugate to yt in Y. Let Lx and Ly be the unique subgroups Lx and Ly

of (2.3) with Z{LX) = (x), Z{Ly) = (y). Then [Lx, Ly] = 1.

PROOF, (i) The details can be easily computed [Iwahori (1970)].
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To prove (ii), we introduce the usual Chevalley notation as in (2.4) since
Y s Spin*(12,q). We can assume y, = / in ,(- 1) and also x = y,. Then Lx =
L, = Xai. If y G Cv(y,)', then y = x,x2 where xx G L, and x2 G F, x <L>, Ff 13 §
i S 5) by (2.2). Suppose first 0(x,) = 0(x2) = 4. From the structure of SU(2,q),
we get xy = y,x,x2 ~ XiX2 = y, a contradiction to our hypothesis. So we may
suppose 0(x , )S2 i.e. x, = 1 or x1 = yl. We compute that the classes of
involutions in F, x (L,, F, 13 S / § 5) have representatives Zi,Ziy3y5, Ziy^Zs,
Ziy3, y3ys, yjZ5, y5z5, y3. Of these only those with representatives z,, y3 satisfy
our requirement. In these cases we have L, = Fi or L3 and so [Lx,Ly] = 1.

Now suppose y G Cv(yi) — Cy(y,)'. Suppose q = 1 (mod 4). Then y .must
have the form y = y2XiX2 where Xi G Lt and x 2 E r i X (Lt, F, 13 Si i S 5). From
the fact that (L*, h2) = GU(2, q), we find that y2Xi is an involution conjugate in
Li to y2. Therefore we may assume xt = 1. Then xy = yi(y2x2) = ni(y2x2)n7"
^ y in contradiction to our assumption. The case q = — 1 (mod 4) is proved
similarly regarding Y as a Chevalley group and the fact (Luha2{K)) =
GL(2,q) where (A) = F. This completes the proof.

In the proofs of (2.6)-(2.8) we shall encounter certain subgroups which
are homomorphic images Y of Y = SU(m,q) for some integer m > 0 . For
convenience, we introduce the following uniform notation for elements and
subsets of Y. Let U be a non degenerate hermitian space of dimension m on
which y acts naturally. We choose an orthonormal basis {«,, u3, M4, • • •, um+,}.
Let L*, be the subgroup of Y which leaves {u,, Uj)L pointwise fixed. If i < j , let
h*h n*, be the elements of L*> such that /i*,(«,•)= on,-, h*{u,) =
(a')uh n*i(Ui) = Uj and n*,(Uj) = — u, where(cr) is the subgroup of orderq + 1
in F. The images of L *h h *h n *, in Y' will be denoted by Lv, hih n,7
respectively.

Suppose that G is a group of certain type generated by SU(3, q)'s and L,,
Lj are subgroups such that Li is joined to L, unitarily. We can choose
generators h{, h, of Ht, Hjr nh n, of L,, L, respectively such that nh nt inverts ht,
h, and

In particular, if G has a subgroup of type Am_, isomorphic to Y and with
subgraph

1 3 4 m - 1 m

W e m a y t h e n iden t i fy fc13, &,-.,•+!; « i 3 , «,.i+i; Lu+i w i th Aii, / i , ; n , , n , ; L 1 ; L,

respectively.
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THEOREM 2.6. Let G be a universal group of type E6 generated by
SU{3,qYs. Then G is isomorphic to the twisted analogue of the universal
Chevalley group of type JE6 over Fo.

PROOF. Let the graph of G be as follows

1 3 4 5 6

In view of (1.4) and (2.3) of I, the subgroup generated by Li; i = 1,3,4,5,6 is
isomorphic to SU(6,q) and so we can use the notation just introduced. Let
0 = n,4ni7. Then [6, L2] = 1 as n,4 £ (Lu L3) and n51 G (L5, L6). The element 6
interchanges the elements of the sets {Lu L3}; {L5, L6} and {L4,Ll7} by
conjugation. We compute that 6n45d~l = n17 and L,7 is joined to L2 unitariiy as
L4 is. Since L4, L5, L6 commute elementwise with L17, it follows N =
(L,7, U |2s ;§5)s=Spirr(10,<7) as (/i3/t5)"+"V 1 by (1.9). So N s S p i n ( V 0 )
where Vo is the symmetric bilinear space introduced in §1. Set Vt =
{xv2i-i +xv2i +yv2i^i +yv2i~i}, x, y G F, i = 1 ,2,3,4. We may assume

L, x L 5 = Spin(V,); L4C Spin (V2); L2C Spin(V3) and L17C Spin(V4). Since
n,4n^L4n^n^4 = L3(j, L36 is the dual of L4 in N. So the subgroup No =
(L,7,L2, L4, L36)sSpin+(8,<7). Let Ln be the dual of L17 in N. By (2.1),
[Lo, L,] = l i = 3 , 4 , 5 . Since fWofl"1 = No, it follows OLod'1 = Lo by (2.2).
Therefore [Lo, L,] = 1 = [Lo, L6]. In particular [6, Lo] = 1.

Let 2 = n45ni7n3<,no where n0 = n2«45i36n2n36«45 when q = 1 (mod 4) and
z = h2n45ni7n3t,n0 when <7 = — 1 (mod 4). By (2.4), z is an involution and there
exists unique subgroup F2 with Z(F2) = (z) and F2 is joined to LI7, Lo, L36, L4

linearly. Moreover No= (Ll7, L45, L36, Lo,F2). Furthermore L(5XL» =
Spin(V2); Li7x Lo = Spin(V4). Since (F2, Lt7) and (F2, L45) are isomorphic to
SL(3,q), it follows that there exist hyperbolic planes P,, P2 in V2, V4

respectively such that F2 C Spin (Pt + P2). Let P3 be the orthogonal comple-
ment (a hyperbolic plane) of P2 in V4. Thus Q = (P, + P2 + P3)± is a symmetric
bilinear space of dimension 4 and index 1. We note that Q D V2 is a
hyperbolic plane in V2 orthogonal to P,. Let S2 = Spin(Q). Then S 2 s
SL(2,q2) [Dieudonne (1955)]; (S2, L4) = <Lf |3 g i g 5) and [S2,F2] = 1. We
note that (S2, L4) as a subgroup of Spin(V0) is Spin(V, + (xv5+ xvb)). On the
other hand, (S2, L4) regarded as a subgroup of M acts on the hermitian space
{M3, U4, U5, U6}. The isomorphism between Spin(V, + (xvs + xv6)) and SU(4, q)
maps O to a totally degenerate subspace Uo of dimension 2 [Dieudonne
(1955)] in {M3, U4, U5, M6} with l / o n <u4, «5> = (w4)/0 and t/0 (~l <M3, U6) =
( w 3 ) / 0 and Uo = (w3, w4). Let C/i = 6{w3, w4) = (w3\ 6(w4)) since 6 fixes
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elementwise («3, M6). It follows (Uo, I/,) = (w3, w4, 0(w4)) is a 3-dimensional
totally degenerate space as d(w4) £ <«,, u7). Set S, = 0S20~\ Clearly (S,, S2) =
SL(3, <?2) and (Su L36> = (L,, Lx, U) and <S,, S2) L4> = M.

We have shown [6; L2] = 1 = [0, Lo] and 0n40~' = n17. So 020"' = z and
because 0No<T' = No, therefore 0T20 ' = T2 by (2.3). It follows [SUY2] = 1.

We now look at the following chain of subgroups F2, L4t S2, Si. First they
generate G since (S1; S2, L4) = M and L2 C <L4, F2, L36, £17). We also have the
following relations (V2, L4)= SL(3,q); [V2, S2] = 1 = [r2, S,]; (L 4 ,S 2 )s
St/(4, <j); [L4, S,] = 1 (as (L,, L36, L6) centralizes L4); <S2, S,> s SL(3, <?2). It is
now easy to see that the conditions of Curtis' Theorem 1.4 [Curtis (1965)] are
satisfied. So G s 2E6(q

2), the group of fixed points in the universal Chevalley
group of type £ 6 over F of a 'twisting' automorphism.

THEOREM 2.7. Let G be a universal group of type E1 generated by
SU(3, q)'s. Then G is isomorphic to the universal Chevalley group of type E7

over Fo.

PROOF. Let the graph of G be as follows

1 3 4 5 6 7

The subgroup P = (L,, L< |3 S i S 7) is isomorphic to SU(7,q) and R =
(Li 11 g i g 6) = 2E(,(q2). In the proof of (2.6), we have found the subgroup Lo

is joined to L2 unitarily and commutes elementwise with Lu Li 3 § ii ̂  6. The
subgroup No = (L36, L45, L2, Lo, L,7) is universal of type D4. We also found the
element n2ni5ni(,n2niln~is which interchanges Lo and L,7 by conjugation (see
2.1)). Because L!7 is joined to L7 = L78 unitarily, Lo is joined to L78 unitarily.
The subgroup S = (L,, Lo, L,• 13 g i g 7) is a group generated by Sl/(3, <7)'s of
type A7 and so by (2.3) of I S is a homomorphic image of SU(S,q). We now
use the notation introduced just prior to (2.6) and so Lo = L»9. As P is a
subgroup of S, the previous notation for subgroups and elements of P in (2.6)
is consistent with the present one.

Let t/» = ni7n36n45n89. We compute that i\i interchanges the elements of
the sets {L,, L6}; {L3, L5}, {Li9, L-,} and fixes L4, L89 by conjugation. As t/> G No,
we compute that ip fixes L2 by conjugation (see also (2.1) (viii)). Therefore
[L19, L2] = 1 and so L19 commutes elementwise with L,, 2 g i g 5 and is joined
to L, and L89 = Lo unitarily. Thus M, = (L19, L,, L, | 2 § i g 5) s Spin+(12, q).
Similarly M2 = (L, 12 S j g 7> and M3 = (L78, L89, L, 12 g i g 5) are isomorphic
to Spin+(12, q).
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Let T be the dual of L2 in M,. By (2.1), [L,, F] = 1 / = 2,3,5,7 and F is
joined to L4 and Lm unitarily. But F is the dual of L, and L5 in M,, M2

respectively. Hence [L,g, F] = 1 and F is joined to L, and Lh unitarily. Let
<f> = n^n^n^n^. We compute that <t> interchanges the elements of the sets
{L.,, L,,}; {Lt, LK}; {L5,L7} by conjugation. Let t be the involution in L2. Set
N, = (L, 12 § i S 5) and N2 = (L:, LS9, L,g, L7>. These groups are isomorphic to
Spin+(8, q) and ^N.c/)"1 = N2. As CN,(f)' = TL2L,L, and CV2(0 = FL.L^L, it
follows <AF(/r' = F. Let L = n ^ ^ r n ^ ' n i V . Then L = n^nllYn^n^. Since
n13fi«G N(Lt) and n ^ ^ G N(Lh), L is joined to L, and L6 unitarily since
F is.

In G we have defined the elements h,, n, such that njh(n7' = hi"1 and
n,h,ni'= h.h, = n,hinj' if {(',/} is an edge. Let hx = x,/i5x7', «r=xln5A:7';
hi. = x2h7Arj' and n L =X:n 7 x 2 ' where x, = n4n3«2«4n71nT1 and x2 =
nfin5rtr«6«r'«T1. So by (2.1). we have n, h4nr ' = h^hi1; nrh6n," '= h6h, and
nLhf,n7' = ht,hl'. Similarly working with the subgroup (L5, L6, L7, F, L,, L,) we
obtain that nLhi«Z' = h,hL, n,i,h,n^ = h,h^- Also by (2.1) we have the
iden t i t i e s h2hyhlh*= hr; hfhlh] h?= hL a n d h^h2,hrhL = h , 9 .

N o w set 2, = nLnit,nr n, ( r e sp . h,hLnLn^nrn,); z4
= rir'n,n-in2 ( r e sp .

^/tshr'/ir'HiMs/tj) and 26 = n,n^nl'n7 (resp. hh'hr'hLnrnf,nL'n7) when q =
1(4) (resp. q = — 1(4)). We compute that z,, z4, z6 are commuting involutions
such that z,z4, z4Z(,ZiZf, are not conjugate to z,, z4, z6 in M,, Af2 and
(L<,, Lh, L7, F, L,, L,) respectively. Therefore there exist subgroup F,, F4, F6

isomorphic to SL(2,q) with Z(F,) = (z,) ( = 1,4,6 such that [F,,F4] =
[F4, F6] = [F,, F6] = 1; F, is joined to L2 linearly; F4 is joined to L2, LM L5

linearly and F6 joined to L5, L7 linearly by (2.5). Clearly we also have
[F,,L,]= 1 i =2 ,5 ,7 ; [F4, L7] = 1 and [F6, L,-]= 1 / = 2,3,4.

We can now apply Curtis' Theorem 1.4 to the chain of subgroups F,, L2,
L,, F4, L5, F6, L7 which generate G and get that G = E7(q), the universal
Chevalley group of type E7 over F,,.

THEOREM 2.8. Ler G be a universal group of type EH generated by
SU(3,q)'s. Then G is isomorphic to the universal group of type E» over F,,.

PROOF. Let the graph of G be as follows

1 3 4 5 6 7

We shall use the notation in the proof of (2.7) as (L, | 1 S ( S 7) = E7(q). There
we have denned subgroups L,,= Lm, L,<,, F, L and iA = n17nwn«nm. The
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element ip interchanges the elements of the sets {L3, L5}; {L,, L6} and {L19, L7}
by conjugation. Since t/'L8(/'~

1 = L8, L8 is joined to L,9 unitarily. Also
[Lo, L8] = 1 because Lo C (L, 11 g i g 6).

Next we note that O, = (Li9, Lf 12 § i S 8) is a universal group of type D8

with (L, 12 S j g 7) as a subgroup of type D6. In the proof of (2.7), we found
that L is the dual of L7 in Q, and therefore by (2.1), L is joined to L8 unitarily.
Let r 0 be the dual of LX9 in Qu We note that Fo C {Ll9, L, L7, L8), a group of
type D4. Let z,, z4, z6, Fi, F4, F6 be as defined in (2.7). Let z8 =
hshighLtil'n^njno where no= xn7x~\ x = nsnLnl9nsnJ9nll and ho= xh7x~\

We compute that nohsriol = hshau, nLhsnL' = hshL = n8/tLn8'; ni9/i8n791 =

h8h19= h8h19ns\ Together with the relations found in (2.7), we compute that
Zi, z8, z6 are commuting involutions such that zrz», zsz6 are not conjugate to
Zi, z8 in (Ly, Lx, F, L, Ls, L7) and (L5, L6, F, L7, LH, L,9) respectively. It follows
by (2.5). [F,,F8] = [F8, F6] = 1 where F8 is the unique subgroup isomorphic to
SL(2,q) in (L19, Fo, L7, L8, L) and also F8 is joined to L7 linearly. From the
proof of (2.7), (L,Li9) centralizes ( L , | 2 S / g 5 ) ; hence [(L,L19,L8,L7),
(L2, L3, L4, L5)] = 1 and therefore [F8, L,] = 1 = [F8, F4] i = 2,3,4 because F4 C
(L2, L3, L4, L5) and F8 C (L, L,9, L8, L7). Finally we compute that the chain of
subgroups F,, L2, L3, F4, L5, F6, L7, F8 generates G and by Curtis' Theorem
1.4 [Curtis, 1965], G s Ex(q), the universal Chevalley group of type E8 over
Fo. This completes the proof.
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