ON GROUPS GENERATED BY THREE-DIMENSIONAL SPECIAL UNITARY GROUPS II

KOK-WEE PHAN
(Received 19 November 1974; revised 30 October 1975)

Introduction

We shall determine in this paper groups of types D_{n}, E_{6}, E_{7} and E_{8} generated by $S U(3, q)$'s, q odd, $q>3$. These groups are defined in Phan (1975). [We shall refer to this paper as I]. Acquaintance with the results of I is assumed. The identification of groups of type D_{4} is similar to that of $S U(n, q)$. We actually construct an isomorphism from the universal group of type D_{4} onto $\operatorname{Spin}^{+}(8, q)$. This direct approach does not appear to be feasible for groups of type D_{n} with $n \geqq 5$. Fortunately Wong's recent result (1974) is applicable here. But his theorem requires that the characteristic of the field be odd; hence unlike the unitary case, we assume that q is odd and $q>3$. Using Wong's theorem, we proceed to show by induction that groups of type D_{n} are homomorphic images of $\operatorname{Spin}^{+}(2 n, q)$ or $\operatorname{Spin}^{-}(2 n, q)$ according as n is even or n is odd.

We then use our result on groups of type D_{n} and the structure of these groups to show the existence of Steinberg's generators and relations in groups of types E_{6}, E_{7} and E_{8}. It turns out that these are either Chevalley groups or their twisted analogues.

1. Groups of types D_{n}

Let U be a vector space of dimension m over a field K of odd characteristic and f a non degenerate symmetric bilinear form on U. The set of isometries forms the orthogonal group $O_{m}(K, f)=O(U)$. The subgroup of determinant 1 of the orthogonal group and the commutator subgroup $O(U)^{\prime}$ are denoted by $S O(K, f)=S O(U)$ and $\Omega(U)$ respectively. When m is even and K is finite, there are two non equivalent symmetric bilinear forms giving rise to non isomorphic orthogonal groups. When K is finite of order q and the

[^0]index of f is $m / 2$, we also denote $\Omega(K, f)$ by $\Omega^{+}(m, q)$. In the case that the index of f is $m / 2-1$ and $|K|=q$ we denote $\Omega_{m}(K, f)$ by $\Omega^{-}(m, q)$. The corresponding subgroups $\operatorname{Spin}_{m}(K, f)=\operatorname{Spin}(U)$ of the Clifford group are denoted by $\operatorname{Spin}^{+}(m, q)$ and $\operatorname{Spin}^{-}(m, q)$ respectively [Dieudonné (1955)].

We shall next show that $\Omega_{m}(K, f)$ can be embedded in the special unitary group of some hermitian space depending on m and f. Let V be a non degenerate hermitian space of dimension $2 n \geqq 4$ over the finite field F of q^{2} elements. We shall assume throughout this paper that q is odd and $q>3$. We denote the hermitian form by (,). Let $B=\left\{v_{1}, v_{2}, \cdots, v_{2 n}\right\}$ be an orthonormal basis of V. Let $L_{\text {: }}^{*}$ (resp. Γ_{i}^{*}), $1 \leqq i \leqq n-1$ denote the subgroup of $\operatorname{SU}(V)$ whose restriction to the subspace $V_{i}=\left\{v_{2 i-1}, v_{2 i}, v_{2 i+1}, v_{2 i+2}\right\}$ is represented by the matrices

$$
\left(\begin{array}{rrrr}
\alpha & 0 & \beta & 0 \\
0 & \bar{\alpha} & 0 & \bar{\beta} \\
-\bar{\beta} & 0 & \bar{\alpha} & 0 \\
0 & -\beta & 0 & \alpha
\end{array}\right) \quad \text { resp. } \quad\left(\begin{array}{rrrr}
\alpha & 0 & 0 & \beta \\
0 & \bar{\alpha} & \bar{\beta} & 0 \\
0 & -\beta & \alpha & 0 \\
-\bar{\beta} & 0 & 0 & \bar{\alpha}
\end{array}\right)
$$

$\alpha, \beta \in F, \alpha \bar{\alpha}+\beta \bar{\beta}=1\left(\bar{x}=x^{q}\right)$ and $L_{i}^{*}\left(\right.$ resp. $\left.\Gamma_{i}^{*}\right)$ fixes elementwise the orthogonal complement V_{i}^{\perp} of V_{i}. Let H_{i}^{*} (resp. K_{i}^{*}) denote the diagonal subgroup of L_{i}^{*} (resp. Γ_{i}^{*}). We note that $L_{i}^{*}, \Gamma_{i}^{*}$ are isomorphic to $\operatorname{SU}(2, q)$ and H_{i}^{*}, K_{i}^{*} are cyclic of order $q+1$, and generate an abelian subgroup of $S U(V)$.

Let V_{0} be the subspace of V consisting of vectors whose column coordinate matrix has the form ' $\left(x_{1}, \bar{x}_{1}, x_{2}, \bar{x}_{2}, \cdots, x_{n}, \bar{x}_{n}\right)$. Clearly V_{0} is n dimensional over F. But we can also regard V_{0} in the usual way as an $2 n$-dimensional space over F_{0}, the subfield of q elements in F. We check that the hermitian form when restricted to V_{0} induces a non degenerate symmetric bilinear form over F_{0} and the subgroup $G^{*}=\left\langle L_{i}^{*}, \Gamma_{i}^{*} \mid 1 \leqq i \leqq n-1\right\rangle$ is faithful on V_{0}. Moreover the elements of G^{*} are isometries of V_{0} and hence $G^{*} \subseteq \Omega\left(V_{0}\right)$ as each $L_{i}^{*}, \Gamma_{i}^{*}$ is a perfect group. We verify that V_{i} contains two dimensional totally degenerate subspaces (over F_{0}) e.g. $\left\{x v_{2 i-1}+\bar{x} v_{2 i}+\right.$ $\left.\sigma x v_{2 i+1}+\overrightarrow{\sigma x} v_{2 i+2}\right\}$ where $x \in F$ and $\sigma \bar{\sigma}=-1$. It also contains an anisotropic space of dimension 2 e.g. $\left\{x v_{2 i-1}+\bar{x} v_{2 i}\right\}$. Therefore V_{0} has index n when n is even and index $n-1$ when n is odd. We collect these facts in the following

Lemma 1.1. The space V_{0} with the form (,)| V_{0} is a non singular orthogonal space of dimension $2 n$ over F_{0} and index n or $n-1$ according as n is even or odd. The group $G^{*}=\left\langle L_{i}^{*}, \Gamma_{i}^{*} \mid 1 \leqq i \leqq n-1\right\rangle$ is a subgroup of $\Omega\left(V_{0}\right)$.

REmark. The space V_{0} is always regarded as over F_{0} unless otherwise specified.

A simple computation produces the following
Lemma 1.2. Let s_{1}, r_{i} be elements of $\Gamma_{i}^{*}, L_{i}^{*}$ respectively such that $s_{1}\left(v_{1}\right)=v_{4}, s_{1}\left(v_{4}\right)=-v_{1} ; r_{i}\left(v_{2 i-1}\right)=v_{2 i+1}, r_{i}\left(v_{2 i+1}\right)=-v_{2 i-1}$. We define inductively $s_{i+1}=r_{i} s_{i} r_{i+1} s_{i}^{-1} r_{i}^{-1}, 1 \leqq i \leqq n-2$. Then
(i) $\quad \Gamma_{i+1}^{*}=r_{i} s_{i} L_{i+1}^{*} s_{i}^{-1} r_{i}^{-1}$ and hence $G^{*}=\left\langle\Gamma_{1}^{*}, L_{i}^{*} \mid 1 \leqq i \leqq n-1\right\rangle$;
(ii) $\left\langle L_{i}^{*}, L_{i-1}^{*}\right\rangle,\left\langle L_{i}^{*}, L_{i-1}^{*}\right\rangle,\left\langle L_{i}^{*}, \Gamma_{i-1}^{*}\right\rangle$ and $\left\langle L_{i}^{*}, \Gamma_{i+1}^{*}\right\rangle$ are isomorphic to $S U(3, q)$;
(iii) Statement (ii) with L_{i}^{*} replaced by Γ_{i}^{*};
(iv) $\left[L_{i}^{*}, L_{j}^{*}\right]=\left[L_{i}^{*}, \Gamma_{j}^{*}\right]=\left[\Gamma_{i}^{*}, \Gamma_{j}^{*}\right]=\left[L_{i}^{*}, \Gamma_{i}^{*}\right]=1, j \neq i-1, i, i+1$;
(v) $\left\langle L_{i}^{*}, H_{-1}^{*}\right\rangle,\left\langle L_{i}^{*}, H_{i+1}^{*}\right\rangle,\left\langle L_{i}^{*}, K_{i-1}^{*}\right\rangle,\left\langle L_{i}^{*}, K_{i+1}^{*}\right\rangle$ are isomorphic to $G U(2, q)$;
(vi) Statement (v) with L_{i}^{*} replaced by Γ_{i}^{*};
(vii) $H_{i}^{*} H_{j}^{*}=H_{i}^{*} \times H_{j}^{*} ; H_{i}^{*} K_{i}^{*}=H_{i}^{*} \times K_{j}^{*} ; K_{i}^{*} K_{i}^{*}=K_{i}^{*} \times K_{i}^{*}, i \neq j$.

Lemma 1.3. Let $\tilde{L}_{i}, \tilde{\Gamma}_{i}$ be the commutator subgroup of the inverse images of $L_{i}^{*}, \Gamma_{i}^{*}$ in $\operatorname{Spin}\left(V_{0}\right)$ respectively and $\tilde{H}_{i}, \tilde{K}_{i}$ the intersection of $\tilde{L}_{i}, \tilde{\Gamma}_{i}$ with the inverse images of H_{i}^{*}, K_{i}^{*} in Spin (V_{0}) respectively. Set $G=\left\langle\tilde{L}_{i}, \tilde{\Gamma}_{i}\right| 1 \leqq i \leqq$ $n-1\rangle$. Let n_{i}, p_{i} be representatives of inverse images of r_{i}, s_{i} in $\operatorname{Spin}\left(V_{0}\right)$ respectively. Then (i)-(vii) remain valid with $L_{i}^{*}, \Gamma_{i}^{*}, H_{i}^{*}, K_{i}^{*}, r_{i}, s_{i}$ replaced by $\tilde{L}_{i}, \tilde{\Gamma}_{i}, \tilde{H}_{i}, \tilde{K}_{i}, n_{i}, p_{i}$ respectively. Moreover $\tilde{L}_{i} \cong L_{i}^{*} \cong \Gamma_{i}^{*} \cong \tilde{\Gamma}_{i}, \tilde{H}_{i} \cong H_{i}^{*} \cong K_{i}^{*} \cong$ \tilde{K}_{i} and $G /\langle z\rangle$ is isomorphic to G^{*} where z is the product of the involutions in \tilde{L}_{1} and $\tilde{\Gamma}_{1}$.

Proof. First we note that $\operatorname{Spin}\left(V_{0}\right)$ is a non splitting central extension of a subgroup of order 2 by $\Omega\left(V_{0}\right)$. Since both $S U(2, q)$ and $S U(3, q)$ have trivial Schur multipliers (except $S U(2,9)$, whose Schur multiplier has order 3), it follows the inverse image in $\operatorname{Spin}\left(V_{0}\right)$ of a subgroup in $\Omega\left(V_{0}\right)$ isomorphic to $S U(2, q)$ or $S U(3, q)$ is a direct product [Griess (1972)]. The assertions are now clear.

Corollary 1.4. The groups \tilde{G} and G^{*} are groups of type D_{n} generated by $S U(3, q)$'s.

Lemma 1.5. $G^{*}=\Omega\left(V_{0}\right)$ and $\tilde{G}=\operatorname{Spin}\left(V_{0}\right)$.
Proof. We shall prove the lemma by induction on n. The cases $n=2$ and 3 are clear by I. Assume then $n>3$. Let $U_{1}=\left\langle v_{i} \mid 1 \leqq i \leqq 2 n-2\right\rangle \cap V_{0}$; $U_{2}=\left\langle v_{i} \mid 3 \leqq i \leqq 2 n-2\right\rangle \cap V_{0} ; \quad U_{3}=\left\langle v_{i} \mid 3 \leqq i \leqq 2 n\right\rangle \cap V_{0} \quad$ and $\quad U_{0}=$ $\left\langle v_{1}, v_{2}\right\rangle \cap V_{0}$. We shall regard $\Omega\left(U_{i}\right)$ as a subgroup of $\Omega\left(V_{0}\right)$ in a natural way.

Let $g \in \Omega\left(V_{0}\right)$. The projection of $g\left(U_{0}\right)$ into U_{3} is a subspace of dimension at most two. As U_{2} has index at least 2 it contains all possible symmetric bilinear spaces of dimension $\leqq 2$. By Witt's theorem, we can choose suitable elements $a \in \Omega\left(U_{3}\right)$ and $b \in \Omega\left(U_{1}\right)$ such that $a g\left(U_{0}\right) \subseteq U_{1}$ and $($ bag $)\left(U_{0}\right) \subseteq U_{0}$. Since $\left.H_{1}^{*}\left\langle r_{1} s_{1}\right\rangle\right|_{U_{1}} \cong O\left(U_{0}\right)$, we can assume bag $\left.\right|_{U_{0}}=$ identity. It follows that bag $\in \Omega\left(U_{3}\right)$ and therefore $g \in \Omega\left(U_{3}\right) \Omega\left(U_{1}\right) \Omega\left(U_{3}\right)$. The result now follows by induction.

Remark. It was Wong (1974) who first identified the group G^{*}.
Since we are assuming that q is odd, we can give a weaker definition of a group of type X generated by $S U(3, q)$'s. That is the set of subgroups L_{i} satisfies the following
(a) $G=\left\langle L_{i} \mid i \in X\right\rangle$;
(b) $\left[L_{i}, L_{j}\right]=1$ if $\{i, j\}$ is not an edge;
(c) $\left\langle L_{i}, L_{j}\right\rangle \cong S U(3, q)$ if $\{i, j\}$ is an edge;
(d) $\left[Z\left(L_{i}\right), Z\left(L_{i}\right)\right]=1$ for all i, j in X.

Because there is only one class of four groups in $\operatorname{SU}(3, q)$, it follows immediately that there exists cyclic subgroup H_{i} of order $q+1$ such that $H_{i} H_{j}=H_{i} \times H_{j}$ and $\left\langle L_{i}, H_{j}\right\rangle \cong\left\langle L_{j}, H_{i}\right\rangle \cong G U(2, q)$ if $\{i, j\}$ is an edge.

We shall now investigate universal group G of type D_{4}. Clearly universal groups of types D_{2} and D_{3} are $S U(2, q) \times S U(2, q)$ and $S U(4, q)$ respectively by I. Let the graph of G be

By (1.5) of I we have

$$
\left\langle L_{1}, L_{2}, L_{3}\right\rangle \cong\left\langle L_{1}, L_{2}, L_{4}\right\rangle \cong\left\langle L_{4}, L_{2}, L_{3}\right\rangle \cong S U(4, q) .
$$

Let U be a non degenerate hermitian space over F with orthonormal basis $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$. We may then regard $S U(U)$ as generated by the subgroups

$$
A=\left(\begin{array}{cccc}
\alpha & \beta & & \\
-\bar{\beta} & \bar{\alpha} & & \\
& & 1 & \\
& & & 1
\end{array}\right) ; \quad B=\left(\begin{array}{rrrr}
1 & & & \\
& \alpha & \beta & \\
& -\bar{\beta} & \bar{\alpha} & \\
& & & 1
\end{array}\right) ; \quad C=\left(\begin{array}{rrrr}
1 & & & \\
& 1 & & \\
& & \alpha & \beta \\
& -\bar{\beta} & \bar{\alpha}
\end{array}\right)
$$

$\alpha, \beta \in F$ and $\alpha \bar{\alpha}+\beta \bar{\beta}=1$. Thus we may identify L_{1}, L_{2}, L_{3} with A, B, C,
respectively and H_{1}, H_{2}, H_{3} with the diagonal subgroups of A, B, C respectively. We have similar identification in the other two cases.

Lemma 1.6. Let g and g^{\prime} be in $S U(U)$. Then one of the following holds
(i) $g \in C B A B A C$;
(ii) there exists $c \in C$ such that $g c \in A C B C B A B A$ and $c^{-1} g^{\prime} \in$ BABCBABA;
(iii) g has the form

$$
\left(\begin{array}{cccc}
1 & 0 & \alpha & \sigma \alpha \\
0 & 1 & \lambda \alpha & \lambda \sigma \alpha \\
\times & \times & \times & \times \\
\times & \times & \times & \times
\end{array}\right)^{\mathrm{ab}}
$$

for a suitable $a \in A$ and a diagonal element $b \in B .(\times$ denotes an unspecified entry in the matrix).

Proof. If $g(u) \in\left\langle u_{3}, u_{4}\right\rangle$ for some $u \in\left\langle u_{3}, u_{4}\right\rangle$ of unit length, then there exist c_{1}, c_{2} in C such that $c_{2}\left(u_{4}\right)=u$ and $c_{1} g c_{2}\left(u_{4}\right)=u_{4}$. Then $g \in C B A B A C$ as the stabilizer of u_{4} in $S U(U)$ is $\langle A, B\rangle=B A B A$. Therefore we may assume $g\left(u_{i}\right) \notin\left\langle u_{3}, u_{4}\right\rangle, i=3,4$. We now choose an element

$$
c=\left(\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & x & y \\
& & -\bar{y} & \bar{x}
\end{array}\right), \quad x \bar{x}+y \bar{y}=1
$$

with $y \neq 0$ and $x=\zeta \bar{y}$. Let pr be the projection map into $\left\langle u_{1}, u_{2}\right\rangle$. Suppose

$$
\begin{aligned}
& \operatorname{pr} g\left(u_{3}\right)=\alpha u_{1}+\beta u_{2} \\
& \operatorname{pr} g\left(u_{4}\right)=\gamma u_{1}+\delta u_{2} .
\end{aligned}
$$

Then pr $g c\left(u_{4}\right)=y\left\{(\alpha+\gamma \bar{\zeta}) u_{1}+(\beta+\delta \bar{\zeta}) u_{2}\right\}$ which has length

$$
\begin{equation*}
L=y \bar{y}\{\alpha \bar{\alpha}+\beta \bar{\beta}+(\alpha \bar{\gamma}+\beta \bar{\delta}) \zeta+(\bar{\alpha} \gamma+\bar{\beta} \delta) \bar{\zeta}+(\gamma \bar{\gamma}+\delta \bar{\delta}) \zeta \bar{\zeta}\} \tag{1}
\end{equation*}
$$

For (ii) to hold, we must be able to choose ζ such that it does not satisfy the equations $1+\zeta \bar{\zeta}=0 ; L=0$ and a non trivial polynomial in ζ of degree at most $q+1$ which expresses the length of the projection of $c^{-1} g^{\prime}\left(u_{4}\right)$ into $\left\langle u_{1}, u_{2}, u_{3}\right\rangle$. (See [I; 1.7] for details). Clearly such ζ exists if $L=0$ is non trivial and if $q^{2}-3(q+1)>0$ that is $q>4$. Thus it remains to consider the case when L is identically zero i.e.

$$
\begin{equation*}
\alpha \bar{\alpha}+\beta \bar{\beta}=\gamma \bar{\gamma}+\delta \bar{\delta}=\alpha \bar{\gamma}+\beta \bar{\delta}=0 . \tag{2}
\end{equation*}
$$

We may assume none of $\alpha, \beta, \gamma, \delta$ is zero; otherwise we are back to the situation of (i). Thus $\beta=\lambda \alpha \neq 0$ where $\lambda \bar{\lambda}=-1$. Equation (2) shows that $\alpha u_{1}+\beta u_{2}$ and $\gamma u_{1}+\delta u_{2}$ are non zero isotropic vectors orthogonal to each other. Because $\left\langle u_{1}, u_{2}\right\rangle$ is not totally degenerate, it follows that $\gamma=\sigma \alpha$ and $\delta=\sigma \beta$ for some $\sigma \in \dot{F}$. If $\sigma \bar{\sigma}=-1$, then there exists $c^{\prime} \in C$ such that $\operatorname{pr} g c^{\prime}\left(u_{4}\right)=0$ and we are again in (i). So $\sigma \bar{\sigma}=-1$. It follows then the projections of $g^{-1}\left(u_{1}\right)$ and $g^{-1}\left(u_{2}\right)$ into $\left\langle u_{1}, u_{2}\right\rangle$ are orthogonal vectors of unit length. It is now clear that (iii) follows. This completes the proof.

Lemma 1.7. Let G be a universal group of type D_{4} generated by $\operatorname{SU}(3, q)$'s with the following graph

Then $G=\left(N L_{3}\right)^{3} N$ where $N=\left\langle L_{1}, L_{2}, L_{4}\right\rangle$.
Proof. We have already remarked that

$$
\left\langle L_{1}, L_{2}, L_{4}\right\rangle \cong\left\langle L_{1}, L_{2}, L_{3}\right\rangle \cong\left\langle L_{4}, L_{2}, L_{3}\right\rangle \cong S U(4, q)
$$

Let $M=L_{2} L_{1} L_{2} L_{4} L_{2} L_{1} L_{2}$. Then each element g in G belongs to $N\left(L_{3} M\right)^{m} N$ for some integer $m>0$ since we have the following identities

$$
\begin{equation*}
\left\langle L_{1}, L_{2}\right\rangle=L_{1} L_{2} L_{1} L_{2}=L_{2} L_{1} L_{2} L_{1} \tag{1}
\end{equation*}
$$

and

$$
\begin{align*}
N & =L_{4}\left\langle L_{1}, L_{2}\right\rangle L_{4}\left\langle L_{1}, L_{2}\right\rangle \tag{2}\\
& =\left\langle L_{1}, L_{2}\right\rangle L_{4}\left\langle L_{1}, L_{2}\right\rangle L_{4}
\end{align*}
$$

by (1.7) of I. We also need the identity

$$
\begin{align*}
N & =\left\langle L_{1}, L_{2}\right\rangle\left\langle L_{2}, L_{4}\right\rangle\left\langle L_{1}, L_{2}\right\rangle \tag{3}\\
& =\left\langle L_{2}, L_{4}\right\rangle\left\langle L_{1}, L_{2}\right\rangle\left\langle L_{2}, L_{4}\right\rangle
\end{align*}
$$

Let $Y=N L_{3} M L_{3} M L_{3} N$. We want to show $Y=G$. It suffices to prove that an element

$$
x=c_{1} m_{1} c_{2} m_{2} c_{3} m_{3} c_{4}
$$

belongs to Y where $c_{i} \in L_{3}, m_{i} \in M$. First we may assume that $c_{i} \notin H_{3}$, otherwise we are done. Let $m_{i}=b_{4 i-3} a_{2 i-1} b_{4 i} d_{i} b_{4 i-1} a_{2 i} b_{4 i}$ where $a_{i} \in L_{1}$, $b_{j} \in L_{2}$ and $d_{j} \in L_{4}$.

In the remaining proof we shall use the letters a, b, c, d to denote arbitrary elements of $L_{1}, L_{2}, L_{3}, L_{4}$ respectively. Since we shall be interested in the factorization of G only, we use the same letter in an equation to denote possible different elements. We use $y \equiv z$ to denote $N y N=N z N$. On many occasions, we need to introduce suitably chosen fixed elements in L_{3}. These will be denoted by $c^{*}, \tilde{c}, \bar{c}$ etc. We look at different forms of the element x.
(i) We may suppose $b_{1} a_{1} b_{2} d_{1} b_{3} a_{2} b_{4}$ satisfies either (i) or (ii) of (1.6).

Suppose not. We may identify $\left\langle L_{1}, L_{2}, L_{3}\right\rangle$ (resp. $\left\langle L_{1}, L_{2}, L_{4}\right\rangle$) with $S U(U)$ so that L is identified with A, L_{2} with B and L_{3} (resp. L_{4}) with C. After suitable changes in the c_{i}, m_{i} of $c_{2} m_{2} c_{3} m_{3} c_{4}$ using (1) and (2), we may suppose

$$
z=\left(\begin{array}{cccc}
1 & 0 & \rho & \sigma \rho \\
0 & 1 & \lambda \rho & \lambda \sigma \rho \\
\times & \times & \times & \times \\
\times & \times & \times & \times
\end{array}\right)
$$

for some $\rho, \sigma, \lambda \in \dot{F}$ such that $\lambda \bar{\lambda}=\sigma \bar{\sigma}=-1$. Let

$$
c_{2}=\left(\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & \eta & \tau \\
& & -\bar{\tau} & \bar{\eta}
\end{array}\right) \text { and } \quad c^{*}=\left(\begin{array}{rrrr}
1 & & & \\
& 1 & & \\
& & & x \\
& & y \\
& & & -\bar{y} \\
& \bar{x}
\end{array}\right)
$$

where $\eta \bar{\eta}+\tau \bar{\tau}=1=x \bar{x}+y \bar{y}$ and $\zeta y=\bar{x} \neq 0$. By (1.7) of Phan (1976), there exists suitable ζ such that

$$
\left(c^{*}\right)^{-1} b_{7} a_{4} b_{8} c_{3} b_{9} a_{5} b_{10} \quad \text { and } c_{2} b_{5} a_{3} b_{6} c^{*}
$$

belong to $\left\langle L_{1}, L_{2}\right\rangle L_{3}\left\langle L_{1}, L_{2}\right\rangle$ provided $q^{2}-3(q+1)>0$. Suppose

$$
c_{2} b_{5} a_{3} b_{6} c^{*}=e c f .
$$

where $e, f \in\left\langle L_{1}, L_{2}\right\rangle$ and $c \in L_{3}$. Assume that

$$
\begin{aligned}
\left(b_{5} a_{3} b_{1}\right)\left(u_{3}\right) & =\alpha u_{1}+\beta u_{2}+\gamma u_{3} \\
(e)\left(u_{3}\right) & =\delta u_{1}+\varepsilon u_{2}+\chi u_{3}
\end{aligned}
$$

and

$$
c=\left(\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & x^{\prime} & y^{\prime} \\
& & -\bar{y}^{\prime} & \bar{x}^{\prime}
\end{array}\right)
$$

We note that $y^{\prime} \neq 0$ as $c_{2} \notin H_{3}$. Thus $\delta=\left(y / y^{\prime}\right) \alpha ; \varepsilon=\left(y / y^{\prime}\right) \beta$ and $\chi=$ $\left(y / y^{\prime}\right)(\eta \gamma+\tau \zeta)$. If $z e$ satisfies (i) or (ii) of (1.6), then we are done. Otherwise we have

$$
(\delta+\rho \chi) / \sigma \rho=(\varepsilon+\lambda \rho \chi) / \sigma \lambda \rho
$$

and $(\delta+\rho \chi)(\overline{\delta+\rho \chi})+\sigma \bar{\sigma} \rho \bar{\rho}=0$. This implies that $\lambda \delta=\varepsilon$ and so $\chi \bar{\chi}=1$. Then the second equation above becomes

$$
\begin{equation*}
\alpha \bar{\alpha}+\bar{\alpha}(\gamma \eta+\tau \zeta) \rho+\alpha(\overline{\gamma \eta+\tau \zeta}) \bar{\rho}=0 . \tag{4}
\end{equation*}
$$

If $\alpha=0$, then $\beta=0$ because $\lambda\left(y / y^{\prime}\right) \alpha=\left(y / y^{\prime}\right) \beta$. Therefore $b_{5} a_{3} b_{6} \in\left\langle L_{1}, H_{2}\right\rangle$ i.e. $b_{5} a_{3} b_{6}=\bar{a} \bar{b}$ where $\bar{a} \in L_{1}$ and $\bar{b} \in H_{2}$. So

$$
\begin{aligned}
x= & c_{1} m_{1} c_{2} \bar{a} \bar{b} d_{2} b_{7} a_{4} b_{8} c_{3} m_{3} c_{4} \\
\equiv & c_{1} m c_{2}^{\prime} b_{7} a_{4} b_{8} c_{3} m_{3} c_{4} \text { for a suitable } m \text { in } M \text { and } c_{2}^{\prime} \text { in } L_{3} \\
& \quad \text { by (1) and (2). } \\
= & (c b a b) d(b a b c b a b c b a b) d b a b c \\
= & (c b a b \tilde{c}) d(\tilde{c})^{-1}(b a b c b a b c b a b) d b a b c \\
= & (b a b c b a b a) d(b a b c b a b a) d b a b c \quad \text { by }(1.7) \text { of I. }
\end{aligned}
$$

So $x \in Y$. Thus we may suppose $\alpha \neq 0$; that is, (4) is a non trivial equation in ζ of degree at most q. Now if $q^{2}-4 q-3>0$, there exist a suitable ζ not satisfying (4) and so this completes the proof of (i).
(ii) We may suppose $b_{7} a_{4} b_{8} c_{3} b_{9} a_{5} b_{10}$ satisfies either (i) or (ii) of 1.6.

The proof is the same as in (i).
(iii) If $b_{7} a_{4} b_{8} c_{3} b_{4} a_{5} b_{10} \in L_{3} L_{2} L_{1} L_{2} L_{1} L_{3}$, then $x \in Y$.

We have

$$
\begin{aligned}
x & =c \text { bab d bab c bab d(bab c bab)d bab c } \\
& =c b a b d b a b c b a b d(c b a b a c) d b a b c \\
& =\left(c b a b c^{*}\right) d\left(c^{*-1} b a b c b a b c\right) d \text { bab a d cbabc } \\
& \equiv(c b a b a) d(b a b c b a b a) d b a b a d \text { cbabc by }(1.7) \text { of I } \\
& =c b a b a d b a b c(b a b a d b a b a d) c b a b c \\
& =c b a b a d b a b c(d b a b d b a b a) c b a b c \\
& =c(b a b a d b a b d) c b a b d b a b a c b a b c
\end{aligned}
$$

$=d$ c babd babac babd baba a babc by (1) and (2)
$\equiv c b a b d(b a b a c b a b \bar{c}) d\left(\bar{c}^{-1} b a b a c b a b c\right)$
$=c b a b d b a b c b a b a d b a b c b a b a$ by (1.7) of I.

So $x \in Y$
(iv) If $b_{1} a_{1} b_{2} d_{1} b_{3} a_{2} b_{4} \in L_{4} L_{2} L_{1} L_{2} L_{1} L_{4}$, then $x \in Y$.

We have

$$
\begin{aligned}
x & =c(b a b d b a b) c b a b d b a b c b a b d \text { bab c } \\
& =c(d b a b a d) c b a b d b a b c b a b d b a b c \\
& \equiv c b a b a c d b a b d b a b c b a b d b a b c \\
& \equiv c b a b c b a b d b a b c b a b d b a b c \quad b y(1) \text { and (2) } \\
& \equiv\left(c b a b c b a b c^{*}\right) d\left(c^{*-1} b a b c b a b\right) d b a b c \\
& \equiv b a b c b a b a d b a b c b a b a d b a b c \\
& \in Y
\end{aligned}
$$

(v) If $b_{1} a_{1} b_{2} d_{1} b_{3} a_{2} b_{4} \in L_{1} L_{4} L_{2} L_{4} L_{2} L_{1} L_{2} L_{1} L_{4}$, then $x \in Y$.

We have

$$
\begin{aligned}
x & =c(b a b d b a b) c b a b d b a b c b a b d b a b c \\
& \equiv c b d b a b a d c b a b d b a b c b a b d b a b c \\
& \equiv c b d b a b c b a b d(b a b c b a b) d b a b c \quad \text { by (1) and (2). }
\end{aligned}
$$

If the bracketed term above belongs to $L_{3} L_{2} L_{1} L_{2} L_{1} L_{3}$, then we are done by (iii). In view of (ii), we may suppose it satisfies (ii) of (1.6). Therefore

$$
\begin{aligned}
x & \equiv c b d b a b c b a b d(a c b c b a b a) d b a b c \\
& \equiv c b d(b a b c b a b a c) d b c b a b a d b a b c \\
& \equiv c b d(c b c a b a b c b c) d b c b a b a d b a b c \quad \text { by (3) } \\
& \equiv(c b d c b c) a b a(b c b c d b c b) a b a d b a b c \quad \text { by }(3) \\
& \equiv c b c(d b d b a b a d b d) c b c(d b d b a b a d b a b) c \\
& \equiv c b c(a b a d b d b a b a) c b c(a b a d b d b a b) c \quad \text { by (3) } \\
& \equiv c b c a b a d b d(b a b a c b c b a b) d(b a b c) \quad \text { by (1), (2) } \\
& \equiv c b c a b a d b d(b a b a c b c b a b \bar{c}) d\left(\bar{c}^{-1} b a b c\right) \\
& \equiv c b c a b a d b d b a b c b a b a d b a b c \\
& \equiv(c b c b a b) d(b a b c b a b) d b a b c \quad b y(1),(2) \\
& \equiv c b a b d b a b c b a b d b a b c \quad \text { by }(1.7) \text { of I } \\
& \in Y
\end{aligned}
$$

In view of (i), (iv), (v) and (1.6), the proof is now complete.
Theorem 1.8. A universal group G of type D_{4} generated by $S U(3, q)$'s is isomorphic to $\operatorname{Spin}\left(V_{0}\right)$ where $\operatorname{dim} V_{0}=8$.

Proof. Let the graph of G be as follows

By (1.4) and (1.4) of I, we have homomorphisms

$$
G \xrightarrow{\Phi} \operatorname{Spin}\left(V_{0}\right) \xrightarrow{x} \Omega\left(V_{0}\right)
$$

where $\operatorname{dim} V_{0}=8$ such that $\theta\left(L_{i}\right)=L_{i}^{*} i=1,2,3$ and $\theta\left(L_{4}\right)=\Gamma_{1}^{*}$ where $\theta=\chi \phi$. We observe that $z_{1} z_{4} \in \operatorname{ker} \theta$ where $z_{i} \in Z\left(L_{i}\right)^{*}$. Suppose $g \in \operatorname{ker} \theta$. We consider the following possibilities.
(i) $g=n_{1} c n_{2}$ where $n_{i} \in N=\left\langle L_{1}, L_{2}, L_{4}\right\rangle$ and $c \in L_{3}$. Then $c n \in \operatorname{ker} \theta$ where $n=n_{2} n_{1}$. Hence $\theta(c)\left(v_{8}\right)=\theta(n)^{-1}\left(v_{8}\right)=v_{8}$. Therefore $c=1$ as $\left.\theta\right|_{L_{3}}$ is an isomorphism and the stabilizer of v_{8} in L_{3}^{*} is 1 . Therefore $g \in N$. On the other hand $\left.\theta\right|_{N}$ has kernel $\left\langle z_{1} z_{4}\right\rangle$. Hence $g \in\left\langle z_{1} z_{4}\right\rangle$.
(ii) $g=n_{1} c_{1} n_{2} c_{2} n_{3}$ where $n_{i} \in N$ and $c_{i} \in L_{3}$. Again we have $c_{1} n_{2} c_{2} n \in$ ker θ where $n=n_{3} n_{1}$. We may suppose $c_{1}, c_{2} \notin H_{3}$, otherwise we are back to (i). Let $x=\theta\left(c_{1}\right) \theta\left(n_{2}\right) \theta\left(c_{2}\right)=\theta(n)^{-1}$. By comparing the images of v_{8} (resp. v_{7}) for both expressions of x, we see that $\theta\left(n_{2}\right)$ fixes $\left\langle v_{6}\right\rangle\left(\right.$ resp. $\left.\left\langle v_{s}\right\rangle\right)$. It follows that $n_{2} \in L_{1} L_{4} H_{2}$. Therefore $n_{2} c_{2} \in L_{3} N$ and so we are in (i).
(iii) $g=n_{1} c_{1} n_{2} c_{2} n_{3} c_{3} n_{4}$ where $n_{i} \in N, c_{i} \in L_{3}$. We may suppose none of c_{i} belongs to H_{3}. The proof of (v) in (1.7) shows that either (i) or (ii) of (1.6) or g has the form in (ii) above. Hence we may assume that $n_{2}=b_{1} d b_{2} a b_{3}$ where $a \in L_{1}, b_{i} \in L_{2}$ and $d \in L_{4}$. If one of a, b_{1}, b_{3}, d belongs to $H_{1} H_{2} H_{4}$, then we may reduce the form of g to case (ii) above using 1.7 of I and bearing in mind the relation $L_{3} L_{2} L_{4} L_{2} L_{3} \subseteq L_{2} L_{4} L_{3} L_{2} L_{3} L_{4} L_{2}$ ((2.2) of I. Let $x=\theta\left(c_{1} b_{1} d b_{2} a b_{3} c_{2}\right)=\theta\left(n_{3} c_{3} n_{4} n_{1}\right)^{-1}$. Using the second expression for x, we see that the projection of $x\left(v_{8}\right)$ into $\left\langle v_{7}\right\rangle$ is 0 . On the other hand, because none of $c_{1}, c_{2}, b_{1}, b_{3}, a, d$ belongs to $H_{1} H_{2} H_{3} H_{4}$, the projection of $\theta\left(c_{2}\right)\left(v_{8}\right)$ [resp. $\theta\left(b_{3} c_{2}\right)\left(v_{8}\right) ; \quad \theta\left(a b_{3} c_{2}\right)\left(v_{8}\right) ; \quad \theta\left(d b_{2} a b_{3} c_{2}\right)\left(v_{8}\right) ; \quad \theta\left(b_{1} d b_{2} a b_{3} c_{2}\right)\left(v_{8}\right) ;$ $\left.\theta\left(c_{1} b_{1} d b_{2} a b_{3} c_{2}\right)\left(v_{8}\right)\right]$ into $\left\langle v_{8}\right\rangle\left[\right.$ resp. $\left.\left\langle v_{4}\right\rangle ;\left\langle v_{2}\right\rangle ;\left\langle v_{3}\right\rangle ;\left\langle v_{5}\right\rangle ;\left\langle v_{7}\right\rangle\right]$ is a non zero vector. This is a contradiction. Thus we have shown that $\operatorname{ker} \theta=\left\langle z_{1} z_{4}\right\rangle$ and ϕ is an isomorphism. This completes the proof.

Theorem 1.9. Let G be a universal group of type D_{n} generated by $S U(3, q)$'s, $n \geqq 2$. Then G is isomorphic to $\operatorname{Spin}\left(V_{0}\right)$ where $\operatorname{dim} V_{0}=2 n$.

Proof. The result holds for $2 \leqq n \leqq 4$ as remarked earlier and by (1.7). We may suppose $n \geqq 5$. Let the graph of G be as follows

By (1.4), we have homomorphisms

$$
G \xrightarrow{\psi} \operatorname{Spin}\left(V_{0}\right) \xrightarrow{\phi} \Omega\left(V_{0}\right) .
$$

Let $\theta=\phi \psi$ and $Z=\left\langle z_{1} z_{n}\right\rangle$ where $z_{i} \in Z\left(L_{i}\right)^{*}$. We shall prove by induction on n that $\operatorname{ker} \theta=Z$. Thus we may suppose that $\left\langle L_{n}, L_{i} \mid 1 \leqq i \leqq n-2\right\rangle \cong$ Spin ${ }^{\epsilon}(2(n-1), q)$ where $\varepsilon=+$ if $n-1$ is even and $\varepsilon=-$ if $n-1$ is odd and $P=\left\langle L_{n}, L_{i} \mid 1 \leqq i \leqq 3\right\rangle \cong \operatorname{Spin}^{+}(8, q)$.

Let n_{i} be an element of L_{i} which inverts H_{i}. Set $\Gamma_{1}=L_{n} ; p_{1}=n_{n}$ and $K_{1}=H_{n}$. We define inductively $\Gamma_{i+1}=n_{i} p_{i} L_{i+1} p_{i}^{-1} n_{i}^{-1}$ and $K_{i+1}=$ $n_{i} p_{i} H_{i+1} p_{i}^{-1} n_{i}^{-1}$. From the isomorphism of $\left\langle L_{1}, L_{2}, \Gamma_{1}\right\rangle$ onto $S U(4, q)$ we obtain that $\quad\left[L_{2}, \Gamma_{2}\right]=1 ; \quad n_{2} p_{2} L_{1} p_{2}^{-1} n_{2}^{-1}=\Gamma_{1} \quad$ and $\quad n_{2} p_{2} \Gamma_{1} p_{2}^{-1} n_{2}^{-1}=L_{1}$. \quad Since $n_{1} p_{1}\left\langle L_{2}, L_{3}\right\rangle p_{1}^{-1} n_{1}^{-1}=\left\langle\Gamma_{2}, L_{3}\right\rangle$ and $n_{1} p_{1}\left\langle H_{2}, H_{3}\right\rangle p_{1}^{-1} n_{1}^{-1}=\left\langle K_{2}, H_{3}\right\rangle$, we easily verify that $M=\left\langle\Gamma_{2}, L_{i} \mid 2 \leqq i \leqq n-1\right\rangle$ is a universal group of type D_{n-1} (universal because $z_{1} z_{n} \neq 1$ in P and $z_{2} n_{1} p_{1} z_{2} p_{1}^{-1} n_{1}^{-1}=z_{1} z_{n}$. Similarly $N=\left\langle\Gamma_{4}, L_{i}\right| 4 \leqq$ $i \leqq n-1\rangle$ is a universal group of type D_{n-3}. We note finally from the isomorphism of $\left\langle L_{2}, L_{3}, \Gamma_{2}\right\rangle$ onto $S U(4, q), n_{3} p_{3}$ interchanges L_{2}, Γ_{2} by conjugation. Thus $\left\langle L_{1}, L_{2}, \Gamma_{1}\right\rangle$ commutes elementwise with Γ_{4} as $\left[L_{1}, L_{3}\right]=$ $n_{2} p_{2}\left[\Gamma_{1}, L_{3}\right] p_{2}^{-1} n_{2}^{-1}=1 ;\left[\Gamma_{1}, \Gamma_{3}\right]=1$ and $\left\langle L_{1}, L_{2}, \Gamma_{1}\right\rangle=\left\langle L_{1}, \Gamma_{2}, \Gamma_{1}\right\rangle$.

Let $V_{1}=\left\{x v_{1}+\bar{x} v_{2}\right\} ; \quad V_{2}=\left\{x v_{3}+\bar{x} v_{4}+y v_{5}+\bar{y} v_{6}\right\} ; \quad V_{3}=\left\{x v_{7}+\bar{x} v_{8}\right\}$ and $V_{4}=\left(V_{1}+V_{2}+V_{3}\right)^{\perp}, x, y \in F$. We regard $\Omega(U)$ naturally as a subgroup of $\Omega\left(V_{0}\right)$ however U is a subspace of V_{0}. We verify that $\Omega\left(V_{1}+V_{2}\right)=$ $\theta\left(\left\langle L_{1}, \Gamma_{1}, L_{2}\right\rangle\right) ; \quad \Omega\left(V_{3}+V_{4}\right)=\theta(N) ; \quad \Omega\left(V_{1}+V_{2}+V_{3}\right)=\theta(P) \quad$ and $\Omega\left(V_{2}+V_{3}+V_{4}\right)=\theta(M)$ and $\left[\Omega\left(V_{1}+V_{2}\right), \Omega\left(V_{3}+V_{4}\right)\right]=1$. We now apply Wong's Theorem 3A [Wong (1974)] and get that $G / Z \cong \Omega\left(V_{0}\right)$. Therefore $G \cong \operatorname{Spin}\left(V_{0}\right)$. The proof is now complete.

2. Groups of types E_{6}, E_{7}, E_{8}

The success in identifying groups of types E_{6}, E_{7} and E_{8} depends on the fact that groups of type D_{n} when n is even are also Chevalley groups of type D_{n}, and therefore they have Steinberg's generators and relations. For convenience in discussing the proof we introduce the following terminology.

Definition. Let M_{1}, M_{2} be subgroups of a group X with $M_{1} \cong S L(2, q)(q$ odd, $q>3$) such that $\left\langle M_{1}, M_{2}\right\rangle \cong S L(3, q)$ (respectively $S U(3, q)$) and $\left[Z\left(M_{1}\right), Z\left(M_{2}\right)\right]=1$. We say M_{1} is joined to M_{2} linearly (resp. unitarily) in X. We remark that it follows there exist cyclic subgroups $H_{i} \subseteq M_{i}$ of order $q-1$
(resp. $q+1$) such that $\left\langle H_{1}, H_{2}\right\rangle=H_{1} \times H_{2}$ and $M_{1} H_{2} \cong H_{1} M_{2} \cong G L(2, q)$ (respectively $G U(2, q)$).

Next we need to know the structure of a universal group Y of type D_{n} in some details. We introduce the following notation. Let the graph of X be as follows

If L_{i} is joined to L_{j} unitarily, we can choose generators h_{i}, h_{j} of H_{i}, H_{j}; elements n_{i}, n_{j} in L_{i}, L_{j} which invert h_{i}, h_{j} respectively such that

$$
n_{i} h_{i} n_{j}^{-1}=h_{i} h_{j}=n_{i} h_{j} n_{i}^{-1}
$$

Set $\Gamma_{1}=L_{n} ; p_{1}=n_{n} ; k_{1}=h_{n}$ and define inductively $\Gamma_{i+1}=x L_{i+1} x^{-1} ; p_{i+1}=$ $x n_{i+1} x^{-1} ; k_{i+1}=x h_{i+1} x^{-1} ;$ where $x=n_{i} p_{i}$. Let $\left\langle y_{i}\right\rangle=Z\left(L_{i}\right)$ and $\left\langle z_{i}\right\rangle=Z\left(\Gamma_{i}\right)$.

Lemma 2.1. The following hold for the group X defined above.
(i) $\left[L_{i}, L_{i}\right]=\left[L_{i}, \Gamma_{j}\right]=\left[\Gamma_{i}, \Gamma_{j}\right]=\left[L_{i}, \Gamma_{i}\right]=1$ if $j \neq i-1, i, i+1$
(ii) $\quad L_{i}$ is joined to $\Gamma_{i-1}, L_{i-1}, \Gamma_{i+1}, L_{i+1}$ unitarily;
(iii) Γ_{i} is joined to $\Gamma_{i-1}, L_{i-1}, \Gamma_{i+1}, L_{i+1}$ unitarily;
(iv) $p_{i} h_{i+1} p_{i}^{-1}=k_{i} k_{i+1}=n_{i+1} k_{i} n_{i+1}^{-1}$;
(v) $p_{i} h_{i-1} p_{i}^{-1}=h_{i-1} k_{i}^{-1}=n_{i-1} k_{i}^{-1} n_{i-1}^{-1}$;
(vi) $k_{i+1}=h_{i} h_{i+1} k_{i}$;
(vii) $y_{i} z_{i}=y_{1} z_{1}$;
(viii) $n_{i+1} p_{i+1} L_{i} p_{i+1}^{-1} n_{i+1}^{-1}=\Gamma_{i}$.

Proof. Identifying Y with $\operatorname{Spin}\left(V_{0}\right)$ where $\operatorname{dim} V_{0}=2 n$, we verify all the assertions easily.

Definition. We call Γ_{i} the dual of L_{i} in Y. We note that the dual of L_{i} in Y is unique if $n \geqq 5$; when $n=4$, there are three subgroups $L_{3}, \Gamma_{3}, \Gamma_{1}$ which can be dual of L_{1}. In (2.2)-(2.5), we shall use the notation just introduced without further comment.

Lemma 2.2. Let Y be the universal group of type D_{n} defined above. Then $C_{Y}\left(y_{1}\right)$ contains a perfect group C of index 2 which is the central product of $L_{1} \times \Gamma_{1}$ and $\left\langle L_{i}, \Gamma_{i} \mid 3 \leqq i \leqq n-1\right\rangle$ and $Z(C)=\left\langle y_{1}, z_{1}\right\rangle$.

Proof. The assertions are straightforward [Iwahori (1970)]. (Note that we are assuming q odd, $q>3$.)

Corollary 2.3. Let x be an involution in Y conjugate to y_{1} in Y. Then there exists a unique subgroup L_{x} in Y such that $Z\left(L_{x}\right)=\langle x\rangle$.

Lemma 2.4. Let Y be the universal group of type D_{4}, generated by $S U(3)$'s
(i) Suppose $q \equiv 1(\bmod 4)$. Every involution x in $C_{Y}\left(y_{1}\right)^{\prime}-Z\left(C_{Y}\left(y_{1}\right)\right)$ is conjugate to $n_{1} p_{1} n_{3} p_{3}$ and the unique subgroup L_{x} of (2.3) is joined to L_{1}, Γ_{1}, L_{3}, Γ_{3} linearly.
(ii) Suppose $q \equiv-1(\bmod 4)$. Every involution x in $C_{Y}\left(y_{1}\right)-C_{Y}\left(y_{1}\right)^{\prime}$ is conjugate to $h_{2} n_{1} p_{1} n_{3} p_{3}$ and the unique subgroup L_{x} of (2.3) is joined to L_{1}, Γ_{1}, L_{3}, Γ_{3} linearly.

Proof. Since $Y \cong \operatorname{Spin}^{*}(8, q)$, we can regard Y as a universal Chevalley group of type D_{4} with the following Dynkin diagram.

Corresponding to each root α, we have the one parameter unipotent subgroup $\quad U_{\alpha}=\left\{x_{\alpha}(t) \mid t \in F_{0}\right\} ; \quad n_{\alpha}=x_{\alpha}(1) x_{-\alpha}(-1) x_{\alpha}(1) ; \quad h_{\alpha}(t)=$ $x_{\alpha}(t) x_{-\alpha}\left(-t^{-1}\right) x_{\alpha}(t) n_{\alpha}^{-1}$ and $X_{\alpha}=\left\langle U_{\alpha}, U_{-\alpha}\right\rangle$. Here we can assume $y_{1}=$ $h_{\alpha_{1}}(-1)$. Then $C_{Y}\left(y_{1}\right)=C\left\langle h_{\alpha_{2}}(\lambda)\right\rangle$ where $C=X_{\alpha_{0}} X_{\alpha_{1}} X_{\alpha_{3}} X_{\alpha_{4}},\langle\lambda\rangle=\dot{F}$ and α_{0} the longest root. We have $h_{\alpha_{2}}(\lambda)^{2} \in C$ and $\left\langle X_{\alpha_{1}}, h_{\alpha_{2}}(\lambda)\right\rangle \cong G L(2, q), i=$ $0,1,3,4 ;\left[X_{\alpha_{i}}, X_{\alpha_{j}}\right]=1 i \neq 2 \neq j$ and $i \neq j$.

Suppose $q \equiv 1(\bmod 4)$. Then $h_{\alpha_{2}}(-1) \in C$ and $h_{\alpha_{2}}(-1) \notin Z(C)=$ $\left\langle h_{\alpha_{1}}(-1), h_{\alpha_{3}}(-1), h_{\alpha_{9}}(-1)\right\rangle$. If x is an involution in $C-Z(C)$, it necessarily must have the form $x_{0} x_{1} x_{3} x_{4}$ where $x_{i} \in X_{\alpha_{i}}$ and $0\left(x_{i}\right)=4$. Since $\operatorname{SL}(2, q)$ contains just one class of elements of order 4 , all involutions in $C-Z(C)$ are conjugate to $h_{\alpha_{2}}(-1)$. The assertions of (i) are now clear.

Next suppose $q \equiv-1(\bmod 4)$. Let x be an involution in $C_{Y}\left(y_{1}\right)-$ $C_{Y}\left(y_{1}\right)^{\prime}$. Then x has the form $x=h_{\alpha_{2}}(-1) y z$ when $y \in X_{\alpha_{1}}$ and $z \in X_{\alpha_{0}} X_{\alpha_{3}} X_{\alpha_{4}}$. As $X_{\alpha_{1}}\left\langle h_{\alpha}(\lambda)\right\rangle \cong G L(2, q), h_{\alpha_{2}}(-1) y$ is an involution conjugate in $Y_{\alpha_{1}}$ to $h_{\alpha_{2}}(-1)$, we may assume $y=1$. A similar argument proves that $h_{\alpha_{2}}(-1) y z$ is conjugate to $h_{\alpha_{2}}(-1)$ in $C_{Y}\left(y_{1}\right)$. This completes the proof.

Lemma. Let Y be the universal group of type D_{6} generated by $S U(3)$'s
(i) There are two classes of non central involutions with representatives y_{1} and $y_{3} y_{5}$ and $C_{Y}\left(y_{1}\right)=C_{Y}\left(y_{3} y_{5}\right)$;
(ii) Suppose x, y are commuting involutions conjugate to y_{1} in Y such that $x y$ is not conjugate to y_{1} in Y. Let L_{x} and L_{y} be the unique subgroups L_{x} and L_{y} of (2.3) with $Z\left(L_{x}\right)=\langle x\rangle, Z\left(L_{y}\right)=\langle y\rangle$. Then $\left[L_{x}, L_{y}\right]=1$.

Proof. (i) The details can be easily computed [Iwahori (1970)].

To prove (ii), we introduce the usual Chevalley notation as in (2.4) since $Y \cong \operatorname{Spin}^{+}(12, q)$. We can assume $y_{1}=h_{\alpha_{1}}(-1)$ and also $x=y_{1}$. Then $L_{x}=$ $L_{1}=X_{\alpha_{1}}$. If $y \in C_{Y}\left(y_{1}\right)^{\prime}$, then $y=x_{1} x_{2}$ where $x_{1} \in L_{1}$ and $x_{2} \in \Gamma_{1} \times\left\langle L_{i}, \Gamma_{i}\right| 3 \leqq$ $i \leqq 5\rangle$ by (2.2). Suppose first $0\left(x_{1}\right)=0\left(x_{2}\right)=4$. From the structure of $S U(2, q)$, we get $x y=y_{1} x_{1} x_{2} \widetilde{\gamma} x_{1} x_{2}=y$, a contradiction to our hypothesis. So we may suppose $0\left(x_{1}\right) \leqq 2$ i.e. $x_{1}=1$ or $x_{1}=y_{1}$. We compute that the classes of involutions in $\Gamma_{1} \times\left\langle L_{i}, \Gamma_{i} \mid 3 \leqq i \leqq 5\right\rangle$ have representatives $z_{1}, z_{1} y_{3} y_{5}, z_{1} y_{3} z_{5}$, $z_{1} y_{3}, y_{3} y_{5}, y_{3} z_{5}, y_{5} z_{5}, y_{3}$. Of these only those with representatives z_{1}, y_{3} satisfy our requirement. In these cases we have $L_{y}=\Gamma_{1}$ or L_{3} and so $\left[L_{x}, L_{y}\right]=1$.

Now suppose $y \in C_{Y}\left(y_{1}\right)-C_{Y}\left(y_{1}\right)^{\prime}$. Suppose $q \equiv 1(\bmod 4)$. Then y.must have the form $y=y_{2} x_{1} x_{2}$ where $x_{1} \in L_{1}$ and $x_{2} \in \Gamma_{1} \times\left\langle L_{i}, \Gamma_{i} \mid 3 \leqq i \leqq 5\right\rangle$. From the fact that $\left\langle L_{i}, h_{2}\right\rangle \cong G U(2, q)$, we find that $y_{2} x_{1}$ is an involution conjugate in L_{1} to y_{2}. Therefore we may assume $x_{1}=1$. Then $x y=y_{1}\left(y_{2} x_{2}\right)=n_{1}\left(y_{2} x_{2}\right) n_{1}^{-1}$ $\widetilde{\gamma} y$ in contradiction to our assumption. The case $q \equiv-1(\bmod 4)$ is proved similarly regarding Y as a Chevalley group and the fact $\left\langle L_{1}, h_{\alpha_{2}}(\lambda)\right\rangle \cong$ $G L(2, q)$ where $\langle\lambda\rangle=\dot{F}$. This completes the proof.

In the proofs of (2.6)-(2.8) we shall encounter certain subgroups which are homomorphic images \bar{Y} of $Y=S U(m, q)$ for some integer $m>0$. For convenience, we introduce the following uniform notation for elements and subsets of \bar{Y}. Let U be a non degenerate hermitian space of dimension m on which Y acts naturally. We choose an orthonormal basis $\left\{u_{1}, u_{3}, u_{4}, \cdots, u_{m+1}\right\}$. Let $L_{i j}^{*}$ be the subgroup of Y which leaves $\left\langle u_{i}, u_{j}\right\rangle^{+}$pointwise fixed. If $i<j$, let $h_{i,}^{*}, \quad n_{i j}^{*}$ be the elements of $L_{i j}^{*}$ such that $h_{i j}^{*}\left(u_{i}\right)=\sigma u_{i}, \quad h_{i j}^{*}\left(u_{j}\right)=$ $\left(\sigma^{-1}\right) u_{j}, n_{i,}^{*}\left(u_{i}\right)=u_{j}$ and $n_{i,}^{*}\left(u_{i}\right)=-u_{i}$ where $\langle\sigma\rangle$ is the subgroup of order $q+1$ in \dot{F}. The images of $L_{i j}^{*}, h_{i j}^{*}, n_{i j}^{*}$ in \bar{Y}^{\prime} will be denoted by $L_{i j}, h_{i j}, n_{i j}$ respectively.

Suppose that G is a group of certain type generated by $S U(3, q)$'s and L_{i}, L_{i} are subgroups such that L_{i} is joined to L_{i} unitarily. We can choose generators h_{i}, h_{j} of $H_{i}, H_{i}, n_{i}, n_{j}$ of L_{i}, L_{j} respectively such that n_{i}, n_{j} inverts h_{i}, h_{j} and

$$
n_{i} h_{j} n_{i}^{-1}=h_{i} h_{j}=n_{i} h_{i} n_{j}^{-1} .
$$

In particular, if G has a subgroup of type A_{m-1} isomorphic to \bar{Y} and with subgraph

We may then identify $h_{13}, h_{i, i+1} ; n_{13}, n_{i, i+1} ; L_{i, i+1}$ with $h_{1}, h_{i} ; n_{1}, n_{i} ; L_{1}, L_{i}$ respectively.

Theorem 2.6. Let G be a universal group of type E_{6} generated by $S U(3, q)$'s. Then G is isomorphic to the twisted analogue of the universal Chevalley group of type E_{6} over F_{0}.

Proof. Let the graph of G be as follows

In view of (1.4) and (2.3) of I, the subgroup generated by $L_{i}, i=1,3,4,5,6$ is isomorphic to $S U(6, q)$ and so we can use the notation just introduced. Let $\theta=n_{14} n_{57}$. Then $\left[\theta, L_{2}\right]=1$ as $n_{24} \in\left\langle L_{1}, L_{3}\right\rangle$ and $n_{57} \in\left\langle L_{5}, L_{6}\right\rangle$. The element θ interchanges the elements of the sets $\left\{L_{1}, L_{3}\right\} ;\left\{L_{5}, L_{6}\right\}$ and $\left\{L_{4}, L_{17}\right\}$ by conjugation. We compute that $\theta n_{45} \theta^{-1}=n_{17}$ and L_{17} is joined to L_{2} unitarily as L_{4} is. Since L_{4}, L_{5}, L_{6} commute elementwise with L_{17}, it follows $N=$ $\left\langle L_{17}, L_{i} \mid 2 \leqq i \leqq 5\right\rangle \cong \operatorname{Spin}^{-}(10, q)$ as $\left(h_{3} h_{5}\right)^{q+1 / 2} \neq 1$ by (1.9). So $N \cong \operatorname{Spin}\left(V_{0}\right)$ where V_{0} is the symmetric bilinear space introduced in $\S 1$. Set $V_{i}=$ $\left\{x v_{2 i-1}+\bar{x} v_{2 i}+y v_{2 i+1}+\bar{y} v_{2 i+2}\right\}, \quad x, y \in F, \quad i=1,2,3,4$. We may assume $L_{3} \times L_{5}=\operatorname{Spin}\left(V_{1}\right) ; L_{4} \subseteq \operatorname{Spin}\left(V_{2}\right) ; L_{2} \subseteq \operatorname{Spin}\left(V_{3}\right)$ and $L_{17} \subseteq \operatorname{Spin}\left(V_{4}\right)$. Since $n_{34} n_{56} L_{4} n_{56}^{-1} n_{34}^{-1}=L_{36}, L_{36}$ is the dual of L_{4} in N. So the subgroup $N_{0}=$ $\left\langle L_{17}, L_{2}, L_{4}, L_{36}\right\rangle \cong \operatorname{Spin}^{+}(8, q)$. Let L_{0} be the dual of L_{17} in N. By (2.1), $\left[L_{0}, L_{i}\right]=1 \quad i=3,4,5$. Since $\theta N_{0} \theta^{-1}=N_{0}$, it follows $\theta L_{0} \theta^{-1}=L_{0}$ by (2.2). Therefore $\left[L_{0}, L_{1}\right]=1=\left[L_{0}, L_{6}\right]$. In particular $\left[\theta, L_{0}\right]=1$.

Let $z=n_{45} n_{17} n_{36} n_{0}$ where $n_{0}=n_{2} n_{45} n_{36} n_{2} n_{36}^{-1} n_{45}^{-1}$ when $q \equiv 1(\bmod 4)$ and $z=h_{2} n_{45} n_{17} n_{36} n_{0}$ when $q \equiv-1(\bmod 4)$. By $(2.4), z$ is an involution and there exists unique subgroup Γ_{2} with $Z\left(\Gamma_{2}\right)=\langle z\rangle$ and Γ_{2} is joined to $L_{17}, L_{0}, L_{36}, L_{4}$ linearly. Moreover $N_{0}=\left\langle L_{17}, L_{45}, L_{36}, L_{0}, \Gamma_{2}\right\rangle$. Furthermore $L_{45} \times L_{36}=$ $\operatorname{Spin}\left(V_{2}\right) ; L_{17} \times L_{0}=\operatorname{Spin}\left(V_{+}\right)$. Since $\left\langle\Gamma_{2}, L_{17}\right\rangle$ and $\left\langle\Gamma_{2}, L_{45}\right\rangle$ are isomorphic to $S L(3, q)$, it follows that there exist hyperbolic planes P_{1}, P_{2} in V_{2}, V_{4} respectively such that $\Gamma_{2} \subseteq \operatorname{Spin}\left(P_{1}+P_{2}\right)$. Let P_{3} be the orthogonal complement (a hyperbolic plane) of P_{2} in V_{4}. Thus $Q=\left(P_{1}+P_{2}+P_{3}\right)^{\perp}$ is a symmetric bilinear space of dimension 4 and index 1 . We note that $Q \cap V_{2}$ is a hyperbolic plane in V_{2} orthogonal to P_{1}. Let $S_{2}=\operatorname{Spin}(Q)$. Then $S_{2} \cong$ $S L\left(2, q^{2}\right)$ [Dieudonné (1955)]; $\left\langle S_{2}, L_{4}\right\rangle=\left\langle L_{i} \mid 3 \leqq i \leqq 5\right\rangle$ and $\left[S_{2}, \Gamma_{2}\right]=1$. We note that $\left\langle S_{2}, L_{4}\right\rangle$ as a subgroup of $\operatorname{Spin}\left(V_{0}\right)$ is $\operatorname{Spin}\left(V_{1}+\left\langle x v_{5}+\bar{x} v_{6}\right\rangle\right)$. On the other hand, $\left\langle S_{2}, L_{4}\right\rangle$ regarded as a subgroup of M acts on the hermitian space $\left\{u_{3}, u_{4}, u_{5}, u_{6}\right\}$. The isomorphism between $\operatorname{Spin}\left(V_{1}+\left\langle x v_{5}+\bar{x} v_{6}\right\rangle\right)$ and $\operatorname{SU}(4, q)$ maps Q to a totally degenerate subspace U_{0} of dimension 2 [Dieudonné (1955)] in $\left\{u_{3}, u_{4}, u_{5}, u_{6}\right\}$ with $U_{0} \cap\left\langle u_{4}, u_{5}\right\rangle=\left\langle w_{4}\right\rangle \neq 0$ and $U_{0} \cap\left\langle u_{3}, u_{6}\right\rangle=$ $\left\langle w_{3}\right\rangle \neq 0$ and $U_{0}=\left\langle w_{3}, w_{4}\right\rangle$. Let $U_{1}=\theta\left\langle w_{3}, w_{4}\right\rangle=\left\langle w_{3}, \theta\left(w_{4}\right)\right\rangle$ since θ fixes
elementwise $\left\langle u_{3}, u_{6}\right\rangle$. It follows $\left\langle U_{0}, U_{1}\right\rangle=\left\langle w_{3}, w_{4}, \theta\left(w_{4}\right)\right\rangle$ is a 3-dimensional totally degenerate space as $\theta\left(w_{4}\right) \in\left\langle u_{1}, u_{7}\right\rangle$. Set $S_{1}=\theta S_{2} \theta^{-1}$. Clearly $\left\langle S_{1}, S_{2}\right\rangle \cong$ $S L\left(3, q^{2}\right)$ and $\left\langle S_{1}, L_{36}\right\rangle=\left\langle L_{1}, L_{36}, L_{6}\right\rangle$ and $\left\langle S_{1}, S_{2}, L_{4}\right\rangle=M$.

We have shown $\left[\theta ; L_{2}\right]=1=\left[\theta, L_{0}\right]$ and $\theta n_{4} \theta^{-1}=n_{17}$. So $\theta z \theta^{-1}=z$ and because $\theta N_{0} \theta^{-1}=N_{0}$, therefore $\theta \Gamma_{2} \theta^{-1}=\Gamma_{2}$ by (2.3). It follows [$\left.S_{1}, \Gamma_{2}\right]=1$.

We now look at the following chain of subgroups $\Gamma_{2}, L_{4}, S_{2}, S_{1}$. First they generate G since $\left\langle S_{1}, S_{2}, L_{4}\right\rangle=M$ and $L_{2} \subseteq\left\langle L_{4}, \Gamma_{2}, L_{36}, L_{17}\right\rangle$. We also have the following relations $\left\langle\Gamma_{2}, L_{4}\right\rangle \cong S L(3, q) ; \quad\left[\Gamma_{2}, S_{2}\right]=1=\left[\Gamma_{2}, S_{1}\right] ; \quad\left\langle L_{4}, S_{2}\right\rangle \cong$ $S U(4, q) ;\left[L_{4}, S_{1}\right]=1\left(\right.$ as $\left\langle L_{1}, L_{36}, L_{6}\right\rangle$ centralizes $\left.L_{4}\right) ;\left\langle S_{2}, S_{1}\right\rangle \cong S L\left(3, q^{2}\right)$. It is now easy to see that the conditions of Curtis' Theorem 1.4 [Curtis (1965)] are satisfied. So $G \cong{ }^{2} E_{6}\left(q^{2}\right)$, the group of fixed points in the universal Chevalley group of type E_{6} over F of a 'twisting' automorphism.

Theorem 2.7. Let G be a universal group of type E_{7} generated by $S U(3, q)$'s. Then G is isomorphic to the universal Chevalley group of type E_{7} over F_{0}.

Proof. Let the graph of G be as follows

The subgroup $P=\left\langle L_{i}, L_{i} \mid 3 \leqq i \leqq 7\right\rangle$ is isomorphic to $S U(7, q)$ and $R=$ $\left\langle L_{i} \mid 1 \leqq i \leqq 6\right\rangle \cong{ }^{2} E_{6}\left(q^{2}\right)$. In the proof of (2.6), we have found the subgroup L_{0} is joined to L_{2} unitarily and commutes elementwise with $L_{1}, L_{i} 3 \leqq i \leqq 6$. The subgroup $N_{0}=\left\langle L_{36}, L_{45}, L_{2}, L_{0}, L_{17}\right\rangle$ is universal of type D_{4}. We also found the element $n_{2} n_{45} n_{36} n_{2} n_{36}^{-1} n_{45}^{-1}$ which interchanges L_{0} and L_{17} by conjugation (see 2.1)). Because L_{17} is joined to $L_{7}=L_{78}$ unitarily, L_{0} is joined to L_{78} unitarily. The subgroup $S=\left\langle L_{1}, L_{0}, L_{i} \mid 3 \leqq i \leqq 7\right\rangle$ is a group generated by $S U(3, q)$'s of type A_{7} and so by (2.3) of I S is a homomorphic image of $S U(8, q)$. We now use the notation introduced just prior to (2.6) and so $L_{0}=L_{89}$. As P is a subgroup of S, the previous notation for subgroups and elements of P in (2.6) is consistent with the present one.

Let $\psi=n_{17} n_{36} n_{45} n_{89}$. We compute that ψ interchanges the elements of the sets $\left\{L_{1}, L_{6}\right\} ;\left\{L_{3}, L_{5}\right\},\left\{L_{19}, L_{7}\right\}$ and fixes L_{4}, L_{89} by conjugation. As $\psi \in N_{0}$, we compute that ψ fixes L_{2} by conjugation (see also (2.1) (viii)). Therefore [L_{19}, L_{2}] $=1$ and so L_{19} commutes elementwise with $L_{i}, 2 \leqq i \leqq 5$ and is joined to L_{1} and $L_{89}=L_{0}$ unitarily. Thus $M_{1}=\left\langle L_{19}, L_{1}, L_{i} \mid 2 \leqq i \leqq 5\right\rangle \cong \operatorname{Spin}^{+}(12, q)$. Similarly $M_{2}=\left\langle L_{i} \mid 2 \leqq i \leqq 7\right\rangle$ and $M_{3}=\left\langle L_{78}, L_{89}, L_{i} \mid 2 \leqq i \leqq 5\right\rangle$ are isomorphic to $\operatorname{Spin}^{+}(12, q)$.

Let Γ be the dual of L_{2} in M_{3}. By (2.1), $\left[L_{i}, \Gamma\right]=1 i=2,3,5,7$ and Γ is joined to L_{4} and L_{89} unitarily. But Γ is the dual of L_{3} and L_{5} in M_{1}, M_{2} respectively. Hence $\left[L_{19}, \Gamma\right]=1$ and Γ is joined to L_{1} and L_{6} unitarily. Let $\phi=n_{13} n_{49} n_{67} n_{58}$. We compute that ϕ interchanges the elements of the sets $\left\{L_{3}, L_{19}\right\} ;\left\{L_{4}, L_{4}\right\} ;\left\{L_{5}, L_{7}\right\}$ by conjugation. Let t be the involution in L_{2}. Set $N_{1}=\left\langle L_{i} \mid 2 \leqq i \leqq 5\right\rangle$ and $N_{2}=\left\langle L_{2}, L_{89}, L_{19}, L_{7}\right\rangle$. These groups are isomorphic to $\operatorname{Spin}^{+}(8, q)$ and $\phi N_{1} \phi^{-1}=N_{2}$. As $C_{N_{1}}(t)^{\prime}=\Gamma L_{2} L_{3} L_{s}$ and $C_{\mathrm{v}_{2}}(t)=\Gamma L_{2} L_{19} L_{7}$ it follows $\phi \Gamma \phi^{-1}=\Gamma$. Let $L=n_{13} n_{49} \Gamma n_{49}^{-1} n_{13}^{-1}$. Then $L=n_{58}^{-1} n_{67}^{-1} \Gamma n_{67} n_{58}$. Since $n_{13} n_{49} \in N\left(L_{1}\right)$ and $n_{58} n_{67} \in N\left(L_{6}\right), L$ is joined to L_{1} and L_{6} unitarily since Γ is.

In G we have defined the elements h_{i}, n_{i} such that $\boldsymbol{n}_{i} \boldsymbol{h}_{i} \boldsymbol{n}_{i}^{-1}=h_{i}^{-1}$ and $n_{i} h_{i} n_{i}^{-1}=h_{i} h_{j}=n_{1} h_{i} n_{j}^{-1}$ if $\{i, j\}$ is an edge. Let $h_{1}=x_{1} h_{5} x_{1}^{-1}, n_{1}=x_{1} n_{5} x_{1}^{-1}$; $h_{1}=x_{2} h_{7} x_{2}^{-1}$ and $n_{L}=x_{2} n_{1} x_{2}^{-1}$ where $x_{1}=n_{4} n_{3} n_{2} n_{4} n_{2}^{-1} n_{3}^{-1}$ and $x_{2}=$ $n_{6} n_{5} n_{\Gamma} n_{6} n_{\Gamma}^{-1} n_{5}^{-1}$. So by (2.1), we have $n_{\mathrm{r}} h_{4} n_{\mathrm{r}}^{-1}=h_{4} h_{\mathrm{F}}^{-1} ; n_{\mathrm{F}} h_{6} n_{\mathrm{F}}^{-1}=h_{6} h_{\mathrm{F}}$ and $n_{L} h_{6} n_{L}^{-1}=h_{6} h_{L}^{-1}$. Similarly working with the subgroup $\left\langle L_{5}, L_{6}, L_{7}, \Gamma, L_{1}, L_{3}\right\rangle$ we obtain that $n_{L} h_{1} n_{L}^{-1}=h_{1} h_{L}, n_{19} h_{1} n_{19}^{-1}=h_{1} h_{19}^{-1}$. Also by (2.1) we have the identities $h_{2} h_{3} h_{4}^{2} h_{8}=h_{\mathrm{F}} ; h_{5} h_{5}^{2} h_{1} h_{7}=h_{L}$ and $h_{3} h_{1}^{2} h_{\mathrm{F}} h_{L}=h_{19}$.

Now set $z_{1}=n_{L} n_{19} n_{\Gamma} n_{3}$ (resp. $h_{1} h_{L} n_{L} n_{19} n_{\Gamma} n_{3}$); $z_{4}=n_{\Gamma}^{-1} n_{3} n_{5} n_{2}$ (resp. $h_{4} h_{5} h_{\mathrm{F}}^{-1} n_{\mathrm{I}}^{-1} n_{3} n_{5} n_{2}$) and $z_{6}=n_{\mathrm{I}} n_{5} n_{L}^{-1} n_{7}$ (resp. $h_{5}^{-1} h_{\mathrm{r}}^{-1} h_{L} n_{\Gamma} n_{5} n_{L}^{-1} n_{7}$) when $q \equiv$ $1(4)$ (resp. $q \equiv-1(4)$). We compute that z_{1}, z_{4}, z_{6} are commuting involutions such that $z_{1} z_{4}, z_{4} z_{6} z_{1} z_{6}$ are not conjugate to z_{1}, z_{4}, z_{6} in M_{1}, M_{2} and $\left\langle L_{5}, L_{6}, L_{7}, \Gamma, L_{1}, L_{3}\right\rangle$ respectively. Therefore there exist subgroup $\Gamma_{1}, \Gamma_{4}, \Gamma_{6}$ isomorphic to $S L(2, q)$ with $Z\left(\Gamma_{i}\right)=\left\langle z_{i}\right\rangle i=1,4,6$ such that $\left[\Gamma_{1}, \Gamma_{4}\right]=$ $\left[\Gamma_{4}, \Gamma_{6}\right]=\left[\Gamma_{1}, \Gamma_{6}\right]=1 ; \Gamma_{1}$ is joined to L_{2} linearly; Γ_{4} is joined to L_{2}, L_{3}, L_{5} linearly and Γ_{6} joined to L_{5}, L_{7} linearly by (2.5). Clearly we also have $\left[\Gamma_{1}, L_{i}\right]=1 i=2,5,7 ;\left[\Gamma_{4}, L_{7}\right]=1$ and $\left[\Gamma_{6}, L_{i}\right]=1 j=2,3,4$.

We can now apply Curtis' Theorem 1.4 to the chain of subgroups Γ_{1}, L_{2}, $L_{3}, \Gamma_{4}, L_{5}, \Gamma_{6}, L_{7}$ which generate G and get that $G \cong E_{7}(q)$, the universal Chevalley group of type E_{7} over F_{0}.

Theorem 2.8. Let G be a universal group of type E_{*} generated by $S U(3, q)$'s. Then G is isomorphic to the universal group of type E_{8} over F_{0}.

Proof. Let the graph of G be as follows

We shall use the notation in the proof of (2.7) as $\left\langle L_{i} \mid 1 \leqq i \leqq 7\right\rangle \cong E_{7}(q)$. There we have defined subgroups $L_{0}=L_{89}, L_{19}, \Gamma, L$ and $\psi=n_{17} n_{36} n_{45} n_{89}$. The
element ψ interchanges the elements of the sets $\left\{L_{3}, L_{5}\right\} ;\left\{L_{1}, L_{6}\right\}$ and $\left\{L_{19}, L_{7}\right\}$ by conjugation. Since $\psi L_{8} \psi^{-1}=L_{8}, L_{8}$ is joined to L_{19} unitarily. Also [$\left.L_{0}, L_{8}\right]=1$ because $L_{0} \subseteq\left\langle L_{i} \mid 1 \leqq i \leqq 6\right\rangle$.

Next we note that $Q_{1}=\left\langle L_{19}, L_{i} \mid 2 \leqq i \leqq 8\right\rangle$ is a universal group of type D_{8} with $\left\langle L_{i} \mid 2 \leqq i \leqq 7\right\rangle$ as a subgroup of type D_{6}. In the proof of (2.7), we found that L is the dual of L_{7} in Q_{1} and therefore by $(2.1), L$ is joined to L_{8} unitarily. Let Γ_{0} be the dual of L_{19} in Q_{1}. We note that $\Gamma_{0} \subseteq\left\langle L_{19}, L, L_{7}, L_{8}\right\rangle$, a group of type D_{4}. Let $z_{1}, z_{4}, z_{6}, \Gamma_{1}, \Gamma_{4}, \Gamma_{6}$ be as defined in (2.7). Let $z_{8}=$ $h_{8} h_{19} h_{L} n_{L}^{-1} n_{19} n_{7} n_{0}$ where $n_{0}=x n_{7} x^{-1}, x=n_{8} n_{L} n_{19} n_{8} n_{19}^{-1} n_{L}^{-1}$ and $h_{0}=x h_{7} x^{-1}$. We compute that $n_{0} h_{8} n_{0}^{-1}=h_{8} h_{0}^{-1} ; n_{L} h_{8} n_{L}^{-1}=h_{8} h_{L}=n_{8} h_{L} n_{8}^{-1} ; n_{19} h_{8} n_{19}^{-1}=$ $h_{8} h_{19}=h_{8} h_{19} n_{8}^{-1}$. Together with the relations found in (2.7), we compute that z_{1}, z_{8}, z_{6} are commuting involutions such that $z_{1} z_{8}, z_{8} z_{6}$ are not conjugate to z_{1}, z_{8} in $\left\langle L_{3}, L_{1}, \Gamma, L, L_{8}, L_{7}\right\rangle$ and $\left\langle L_{5}, L_{6}, \Gamma, L_{7}, L_{8}, L_{19}\right\rangle$ respectively. It follows by (2.5). $\left[\Gamma_{1}, \Gamma_{8}\right]=\left[\Gamma_{8}, \Gamma_{6}\right]=1$ where Γ_{8} is the unique subgroup isomorphic to $S L(2, q)$ in $\left\langle L_{19}, \Gamma_{0}, L_{7}, L_{8}, L\right\rangle$ and also Γ_{8} is joined to L_{7} linearly. From the proof of (2.7), $\left\langle L, L_{19}\right\rangle$ centralizes $\left\langle L_{i} \mid 2 \leqq i \leqq 5\right\rangle$; hence $\left[\left\langle L, L_{19}, L_{8}, L_{7}\right\rangle\right.$, $\left.\left\langle L_{2}, L_{3}, L_{4}, L_{5}\right\rangle\right]=1$ and therefore $\left[\Gamma_{8}, L_{i}\right]=1=\left[\Gamma_{8}, \Gamma_{4}\right] i=2,3,4$ because $\Gamma_{4} \subseteq$ $\left\langle L_{2}, L_{3}, L_{4}, L_{5}\right\rangle$ and $\Gamma_{8} \subseteq\left\langle L, L_{19}, L_{8}, L_{7}\right\rangle$. Finally we compute that the chain of subgroups $\Gamma_{1}, L_{2}, L_{3}, \Gamma_{4}, L_{5}, \Gamma_{6}, L_{7}, \Gamma_{8}$ generates G and by Curtis' Theorem 1.4 [Curtis, 1965], $G \cong E_{8}(q)$, the universal Chevalley group of type E_{8} over F_{0}. This completes the proof.

References

Charles W. Curtis (1965), 'Central extensions of groups of Lie type', J. reine angew. Math. 220, 174-185.
Jean Dieudonné (1955), La Géometrie des Groupes Classiques (Ergebnisse der Mathematik und ihrer Grenzgebiete, 5. Springer-Verlag, Berlin, Göttingen, Heidelberg, 1955).
Robert L. Griess, Jr. (1972), 'Schur multipliers of the known finite simple groups', Bull. Amer. Math. Soc. 78, 68-71.
Nagayoshi Iwahari (1970), 'Centralizers of involutions in finite Chevalley groups', Seminar on Algebraic Groups and Related Finite Groups, F1-F29 (Lecture Notes in Mathematics, 131. Sprinver-Verlag, Berlin, Heidelberg, New York, 1970).

Kok-Wee Phan (1977), 'On groups generated by three-dimensional special unitary groups', J. Austral. Math. Soc. 23 (Series A), 67-77.
W. J. Wong (1974), 'Generators and relations for classical groups', J. Algebra 32, 529-553.

Department of Mathematics, University of Notre Dame,
Notre Dame, U.S.A.

[^0]: (C) Copyright Australian Mathematical Society 1977

 Copyright. Apart from any fair dealing for scholarly purposes as permitted under the Copyright Act, no part of this JOURNAL may be reproduced by any process without written permission from the Treasurer of the Australian Mathematical Society.

