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Abstract. The method of spectra disentangling has been applied in many studies on different
stellar systems up to the distance of Andromeda Galaxy. In some of these applications the
underlying assumptions are not precisely satisfied. This is why new generalizations of the method
are needed. Ways to overcome these problems are discussed here.
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1. Introduction
The mutual interaction of components of binary and multiple stellar systems yields

an admirable chance to determine the basic parameters of stars, the knowledge of which
is crucial for understanding many problems in astrophysics. At the same time, the in-
teraction complicates the physics of the component stars as well as the processing of
observational data. Tricky models and methods are thus needed to get the desirable
information from the observations of different kind.

A basic example of such procedures and their difficulties can be met in spectroscopy
of binaries: the solution of radial–velocity curves (with an additional information from
photometry) gives the dimensions of the systems and the masses of components, but it re-
quires to distinguish the spectra of component stars. On the other hand, the components’
spectra, the correspondence of which with the masses and other parameters of stars is of
a particular interest, can be decomposed from their observed superpositions, if the radial
velocities (RVs hereafter) are known. The problems are thus mutually entangled.

2. Disentangling = decomposition of spectra + fitting of parameters
Various methods enabling to perform one or the other of these tasks have been de-

veloped. If the spectral lines of binary components are blended, methods like cross–
correlation (cf., Hill 1993), two-dimensional cross-correlation (Zucker & Mazeh 1994) or
method of broadening function (Rucinski 1992) are needed to measure RVs of component
stars. These methods are based on the use of template spectra, which should correspond
to the spectra of components of the binary system (cf., Figure 1). The orbital parameters
can be then obtained by RV-solution using a straightforward fit, but it is preferable to
solve them simultaneously with light-curves or other types of data (cf., Wilson 1979;
Kallrath & Milone 1999; Hadrava 2004b, 2005).

To get spectra of binary components for a detailed analysis, several methods of decom-
position have been developed, which use the relative Doppler shifts for known RVs. The
most successful one is the method of tomographic separation (Bagnuolo & Gies 1991).

Intuitively, it is obvious, that — at least by some iterative procedure — the information
on both the RVs and component spectra can be extracted from the observed spectra, in
which it is entangled. This is the principle of methods of disentangling (Simon & Sturm
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Figure 1. A scheme of data-processing in classical spectroscopic treatment of binaries by
RV-curve solution (blue) and spectra decomposition (green), and in disentangling (red)

1994, Hadrava 1995), which comprise both spectra decomposition and RV measurement
(or direct parameter fitting). While the decomposition of observed spectra I(x, t) into
spectra Ij (x) of n component stars is basically a linear problem of solving a huge set (for
all logarithmic wavelengths x = c ln λ) of equations

n∑
j=1

Ij (x) ∗ δ(x − vj (t, p)) = I(x, t) , (2.1)

the fitting of parameters p (or RVs vj (t)) is non-linear. The whole procedure of disen-
tangling can thus be performed by an iterative minimization of the residual noise of the
observed data with respect to the parameters, with decomposition performed in each
step.
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3. Disentangling of spectra or Spectral disentangling ?
In disentangling we deal with data representing some observed parts of electromagnetic

spectrum radiated by the binary (multiple) stellar system. The spectra decomposition
can be performed, e.g., by the method of Singular Value Decomposition in the x- repre-
sentation (Simon and Sturm 1994) or using the Fourier transform method, which reduces
the set of Equarions (2.1) into many n-dimensional systems for each Fourier component
(Hadrava 1995). Recently a kind of iterative procedure for the decomposition was also
demonstrated (Gonzáles & Levato 2006). Mathematical methods which use a representa-
tion of solved functions (e.g., for solution of partial differential equations) in a properly
chosen system of some basis functions are called Spectral methods. Fourier disentan-
gling thus uses a “spectral” (in the mathematical meaning) decomposition of “spectra”
(in physical meaning). However, for any method of disentangling, the generality of the
treatment of the data is the most important, not the particular method used. Even for
Fourier disentangling it is thus more suitable to speak about “disentangling of spectra”
(as it was originally introduced by Simon & Sturm) or briefly “spectra disentangling”,
rather than “spectral disentangling”.

4. Disentangling with line-profile variability
Standard disentangling does not impose any restriction on the component spectra

Ij apart from their invariability in time (as a consequence, the systemic velocity can
be determined only after identifications of lines in the disentangled spectra). However,
various changes of line profiles may occur in real multiple stellar systems. These are either
phase-locked variations caused by proximity effects, eclipses and circumstellar matter, or
some intrinsic line-profile variations on various time-scales due to oscillations, rotation or
secular changes of the component stars. In some systems, we can neglect these effects in
the first approximation, and study them from O−C as a higher-order perturbation only.
But there is a danger of systematic errors e.g., in the disentangled orbital parameters.
Moreover, the solution by standard disentangling may fail completely in extreme cases. It
is thus desirable to involve the relevant effects directly into the procedure of disentangling.

This can be done by generalization of Equation (2.1) to the form
∑
j,k

Ik
j (x) ∗ ∆k

j (x, t, p) = I(x, t) , (4.1)

where the spectrum of each component star j can be a superposition of several functions
Ik
j corresponding, e.g., to different limb-darkening modes, each one broadened by an

appropriate broadening function ∆k
j (cf. Hadrava 1997, 2004c).

The simplest step in this direction consists in involving multiplicative line-strength
factors sj (t) into Equation (2.1), as is done in the KOREL04 code (Hadrava 1997, 2004c).
This enables to measure eclipses of (not too fast rotating) stars from their spectra, but
also to disentangle telluric lines (cf., Hadrava 2006a).

More tricky possibilities are to disentangle rotation of ellipsoidal components (Hadrava
& Kubát 2003) or to disentangle also the Schlessinger – Rossiter – McLaughlin rotational
effect in eclipsing binaries (Hadrava 2006c), or oscillations either radial (Hadrava 2004a,
2004c) or non-radial. Other models of line-profile variability, like spots, etc. could be
included using a proper model of the stellar disc like in light-curve models (Hadrava
2005).
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5. Disentangling with constraints
The advantage of disentangling in unbiased simultaneous searches for orbital parame-

ters and component spectra may turn into a disadvantage, if reliable information on one
or the other is available from some other source of data. Generally, all kinds of data (spec-
troscopy, photometry, astrometry etc.) should be solved simultaneously, as it is enabled
e.g., by FOTEL code (cf., Hadrava 2004b). Previous versions of KOREL provided RVs of
individual components at each exposure, which could be subsequently included into the
FOTEL solution with other RVs (e.g., from the literature), photometry etc. However,
the information available in the additional data is not then utilized in the disentangling
itself, which can fall into a false solution, or, at least, its convergence is more difficult. In
the case of disentangling with LPVs caused by eclipses, the solution of radii or inclination
would be safer to perform simultaneously with a light-curve solution (despite the pos-
sibility of different photospheric and chromospheric radii which should be considered).
Such constraints of parameters can be, in some cases, taken into account by their being
fixed at values found from the additional sources. However, more generally, we need to
search for a minimum of (O −C)2 bound by some conditions Fk (p) = 0 to a subspace of
the parameter space. This can be performed by minimization of the sum

S =
∑

t

∫
|I −

∑
j

Ij ∗ ∆j |2dx +
∑

λkF 2
k (p) (5.1)

with some Lagrange multiplicators λ. Because, in practice, the constraints obtained from
the additional data also have some uncertainty, the additional terms F 2

k can be the
(O−C)2 for those data and we thus arrive at the problem of simultaneous disentangling
and solution of the other data with λs determining their relative weights, as is done
in FOTEL and other similar codes (cf., Holmgren 2004; Hadrava 2004b, 2006b). An
important direction is thus a merging of FOTEL and KOREL codes.

A similar situation may concern the component spectra: for a component weak in
one spectral region, its spectrum can be better determined by a model corresponding
to spectrum disentangled from another region, where the component is stronger. Also
the telluric spectrum is quite well known and its disentangling as an unknown function
increases the danger of instability, especially of low Fourier modes. The new version of
KOREL thus enables to choose some component spectra to be restricted by templates Jj

given on input and to disentangle the others (Hadrava 2006b), i.e., to solve the equation
m∑

j=1

Ij (x) ∗ ∆j (x, t, p) = I(x, t) −
n∑

j=m+1

Jj (x) ∗ ∆j (x, t, p) . (5.2)

6. Conclusions
Compared with previous methods, spectra disentangling is a step forward towards a

complex, general and unbiased interpretation of observational data. Its efficiency has been
proven in numerous applications (cf., Holmgren 2004 for review). However, the range of its
applicability is not unlimited and users should be aware of the underlying assumptions
of the method as well as of possibilities offered by its particular implementation (cf.,
Hadrava 2004c for a review).

The principle of the method is not exhausted yet and it deserves a further generalization
to enlarge its applicability to objects for which it fails or is unreliable at present and to
enable a simultaneous fitting of other types of data.
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Figure 2. A triple star disentangled with template telluric spectrum artificially straightened
in the core of Hα line
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