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Abstract

Let K be a real quadratic number field and let p be a prime number which is inert in K.
We denote the completion of K at the place p by Kp. We propose a p-adic construction
of special elements in K×p and formulate the conjecture that they should be p-units lying
in narrow ray class fields of K. The truth of this conjecture would entail an explicit
class field theory for real quadratic number fields. This construction can be viewed
as a natural generalization of a construction obtained by Darmon and Dasgupta who
proposed a p-adic construction of p-units lying in narrow ring class fields of K.
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1. Introduction

Let K be a real quadratic number field and let p be a prime number which is inert in K. Darmon
and Dasgupta proposed a p-adic construction of special elements u ∈K×p where Kp stands for
the completion of K at p. The present two authors have conjectured that u is a p-unit in L, i.e.
u ∈ OL[1/p]×, where L is a suitable narrow ring class field of K. Moreover, they also predicted
that for all infinite places ν of L, |u|ν = 1. Owing the last condition it is essential to assume
beforehand that L is a totally complex field, otherwise u=±1, thus the importance of working
in the narrow sense. In fact, it is not too hard to see that such a u 6=±1 is necessarily contained in
a CM -field. As explained in the introduction of [DD06], those conjectural p-units can be thought
of as analogues of classical elliptic units which are constructed by evaluating modular functions
at imaginary quadratic numbers. Darmon and Dasgupta also constructed a p-adic L-function
which interpolates Z-linear combinations of special values of partial zeta functions attached to
L/K and related it to their invariant u. This is the so-called p-adic Kronecker limit formula.
The first goal of this paper is to extend their p-adic construction to the case where L is a narrow
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p-units in ray class fields of real quadratic number fields

ray class field of K. The transition from a narrow ring class field situation to the case of a narrow
ray class field is a natural interesting question raised by Darmon and other experts and requires
some subtle refinements, but the main central ideas come from [DD06]. The second goal is to
prove a p-adic Kronecker limit formula which allows us to relate the first derivative of a certain
p-adic zeta function to our p-adic invariant. The approach used to define our p-adic invariant is
similar to that developed in [DD06], but it is more direct since the p-adic measures appearing
in our construction are known to be Z-valued rather than just Zp-valued. The analogue of this
result in the context of ring class fields was not available when the paper [DD06] was written,
but it was later proved by Dasgupta (see [Das07a, Theorem 1.3]) and this proof could be adapted
to the more general setting of ray class fields (see [Cha, Theorem 13.1]).

We now describe the construction of our p-adic invariant and its appearance in a p-adic
Kronecker limit formula. We first need to fix some notation and definitions. Let (p, N0, f) be a
triple of strictly positive integers which are pairwise coprime and where p is a prime number.
Also, fix a pair (K,N) where K is real quadratic number field with ring of algebraic integers
OK and N is an integral OK-ideal such that OK/N' Z/N0Z (‘Heegner hypothesis’). Finally, we
also require the prime number p to be inert in K.

Definition 1.1. We define D(N0, f) to be the free abelian group generated by the symbols
{[d0, r] : 0< d0|N0, r ∈ Z/fZ}. If δ ∈D(N0, f) we call f the conductor of δ and N0 the level of δ.
A typical element δ ∈D(N0, f) will be denoted by

δ =
∑

d0|N0,r

n(d0, r)[d0, r],

where the sum goes over d0|N0 (d0 > 0) and r ∈ Z/fZ with n(d0, r) ∈ Z. We have a natural
action of (Z/fZ)× on D(N0, f) given by j ? [d0, r] := [d0, jr] where j ∈ (Z/fZ)× and we extend
this action Z-linearly to all of D(N0, f). We use the short-hand notation

δj := j ? δ.

Let δ =
∑

d0|N0,r∈Z/fZ n(d0, r)[d0, r] ∈D(N0, f) be such that the integers n(d0, r) are subject to
the following three conditions.

(1) If r ≡ 0 (mod f), then for all d0|N0 we have n(d0, r) = 0.

(2) For all r ∈ Z/fZ,
∑

d0|N0
n(d0, r)d0 = 0.

(3) For all d0|N0 and r ∈ Z/fZ, n(d0, pr) = n(d0, r).

An element δ ∈D(N0, f) satisfying conditions (1)–(3) will be called a good divisor for the triple
(N0, f, p).

We want to associate Eisenstein series to any good divisor δ ∈D(N0, f). Let

Ek(r, τ) :=
(

(−1)k(2πi)k

(k − 1)!

)−1 ∑
(m,n)∈Z2

(0,0)6=(m,n)

e−2πimr/f

(m+ nfτ)k

=
−B̃k(−r/f)

k
+

1
fk

f−1∑
b=0

e−2πibr/f
∑
m≥1

∑
n≥1

mk−1(qmnτ+b/f + (−1)kqmnτ−b/f ), (1)
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H. Chapdelaine

where τ ∈H= {x+ iy ∈ C : y > 0} stands for the complex upper half plane, r ∈ Z/fZ,
qnτ+b/f = e2πi(nτ+b/f) and B̃k(x) :=Bk({x}) where Bk(x) is the kth Bernoulli polynomial and
0≤ {x}< 1 is the fractional part of x. When k ≥ 3 the convergence of the right-hand side of (1) is
absolute and therefore Ek(r, τ) is a modular form of weight k for the modular group Γ1(f). When
k = 2 the convergence is not absolute. Nevertheless, the corresponding q-expansion of (1) still
converges and therefore we take it as the definition of E2(r, τ). In the case where r 6≡ 0 (mod f)
and k = 2, one can show that Ek(r, τ) satisfies the correct transformation formula and therefore
corresponds to a holomorphic modular form of weight two for the modular group Γ1(f). In a
similar way, we also define

E∗k(r, τ) :=
(

(−1)k(2πi)k

(k − 1)!

)−1 ∑
(m,n)∈Z2

(0,0)6=(m,n)

e2πinr/f

(m+ nτ)k

=
−B̃k(r/f)

k
+
f−1∑
b=0

e2πibr/f
∑
m≥1

∑
n≥1

mk−1(qm(fn+b)τ + (−1)kqm(fn−b)τ ).

The Eisenstein series Ek(r, τ) and E∗k(r, τ) are related by the formula

E∗k(r, τ) = det(Wf )kEk(r, Wfτ)(Wfτ)k, (2)

where Wf =
( 0 −1
f 0

)
.

Next we want to associate Eisenstein series to a good divisor δ ∈D(N0, f).

Definition 1.2. Let δ =
∑

d0|N0,r∈Z/fZ n(d0, r)[d0, r] ∈D(N0, f) be a fixed good divisor. To any
integer k ≥ 2 we associate the Eisenstein series

Fk,δ(τ) :=
∑

d0|N0,r∈Z/fZ

d0n(d0, r)Ek(r, d0τ) and F ∗k,δ(τ) :=
∑
d0,r

dk−1
0 n

(
N0

d0
, r

)
E∗k(r, d0τ),

and

Fk,δ,p(τ) := Fk,δ(τ)− pk−1Fk,δ(pτ) and F ∗k,δ(τ)− pk−1F ∗k,δ(pτ),

which are related by the formula

Fk,δ(WfN0τ) = (−1)kτkN0F
∗
k,δ(τ) where WfN0 =

(
0 −1

fN0 0

)
. (3)

For every j ∈ (Z/fZ)×/〈p〉, we set

F̃k(r, z) :=−12fFk,δr(z) and F̃k,p(r, z) :=−12fFk,δr,p(z),

and similarly we set

F̃ ∗k (r, z) :=−12F ∗k,δr(z) and F̃ ∗k,p(r, z) :=−12F ∗k,δr,p(z).

In the definition of a good divisor we have forced the condition n(d0, r) = 0 for all d0|N0

when r ≡ 0 (mod f), because we want the function F̃2(r, τ) to satisfy the correct transformation
formula, i.e. we want F̃2(r, τ) to be a modular form of weight two. For a fixed integer k ≥ 2,
we can think of {F̃k(r, z)}(Z/fZ)×/〈p〉 as a family of Eisenstein series indexed by elements of
(Z/fZ)×/〈p〉. For any γ ∈ Γ0(f) we have the transformation formula

F̃k(γ ? r, γτ)(cτ + d)−k = F̃k(r, τ),
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p-units in ray class fields of real quadratic number fields

where
(
a b
c d

)
? r := dr (mod f). A similar formula holds for F̃ ∗k (r, τ). As the divisor δ satisfies

condition (2), the constant terms of the q-expansions of F̃k(r, τ) (respectively F̃ ∗k (r, τ)) vanish
at the cusps Γ0(fN0){∞} (respectively Γ0(fN0){0}) where∞ stands for the cusp 1/0. It is ‘well
known’ that the period integrals ∫ c2

c1

znF̃k(r, z) dz (4)

are rational numbers, for c1, c2 ∈ Γ0(fN0){∞} and 0≤ n < k. For explicit formulas of these
periods given in terms of Dedekind sums see of [Cha, Proposition 11.1].

We need to introduce some background about p-adic integration. Let

X := (Zp × Zp) \ (pZp × pZp).

Definition 1.3. Let A be an abelian group. An A-valued distribution on X is a map

µ : {Compact open sets of X}→A

which is finitely additive, i.e. for any disjoint union,
⋃n
i=1 Ui, of compact open sets of X we have

µ

( n⋃
i=1

Ui

)
=

n∑
i=1

µ(Ui).

A distribution is said to be a measure if A can be chosen to be a bounded subgroup of Qp.

Let

Γ̃0 :=
{(

a b
c d

)
= γ ∈GL2(Z[1/p]) : det(γ)> 0, c≡ 0 (mod fN0)

}
.

Note that the orbit Γ̃0{∞}= Γ0(fN0){∞}.
The next theorem is the crucial technical ingredient for the definition of our p-adic invariant.

Theorem 1.1. There exists a unique collection of p-adic measures µ̃r{c1→ c2} on (Qp ×Qp) \
(0, 0) taking values in Z and indexed by triples

(r, c1, c2) ∈ (Z/fZ)×/〈p〉 × Γ̃0{∞} × Γ̃0{∞},

such that:

(1) for every homogeneous polynomial h(x, y) ∈ Zp[x, y] of degree k − 2,∫
X
h(x, y) dµ̃r{c1→ c2}(x, y) = (1− pk−2)

∫ c2

c1

h(z, 1)F̃k(r, z) dz;

(2) for all γ ∈ Γ̃0 and all compact open subset U ⊆Q2
p \ (0, 0),

µ̃r{c1→ c2}(U) = µ̃γ?r{γc1→ γc2}(γU);

(3) for every homogeneous polynomial h(x, y) ∈ Zp[x, y] of degree k − 2,∫
Zp×Z×p

h(x, y) dµ̃r{c1→ c2}(x, y) =
∫ c2

c1

h(z, 1)F̃k,p(r, z) dz.

Proof. See § 3. 2

Remark 1.1. A similar statement is true if one replaces F̃k(r, z) by F̃ ∗k (r, z) and the orbit Γ̃0{∞}
by Γ̃0{0}.
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Now we need to introduce certain notions in order to give a precise definition of our p-adic
invariant. Let Hp = P1(Cp) \ P1(Qp) be the so-called p-adic upper half plane endowed with its
structure of rigid analytic space and let Kp be the completion of K at the prime p. Note that
Hp ∩K 6= ∅. For certain pairs (r, τ) ∈ Z/fZ× (Hp ∩K) we want to associate a p-adic invariant
u(r, τ) ∈K×p . Let us fix an embedding K ⊆ R. For every τ ∈K −Q we define the order Oτ as
EndK(Λτ ) where Λτ is the lattice Z + τZ. Let O be an order of K of conductor coprime to N0

and let n = N ∩ O. Note that O/n∼ Z/N0Z. A pair (r, τ) ∈ (Z/fZ)× × (Hp ∩K) is said to be
(O, n)-admissible if O =Oτ =ON0τ , ΛN0τ = nΛτ , and if τ − τσ > 0 where σ is the non-trivial
automorphism of K. When there is no need to specify the pair (O, n) we simply say that the
pair (r, τ) is admissible. In § 4 we give some motivation for the notion of admissibility which
we develop further. We also introduce an important relation of equivalence on admissible pairs
which we denote by ∼ (see Definition 4.4 and Remark 4.3). We are now ready to define our
p-adic invariant.

Definition 1.4. For every admissible pair (r, τ) ∈ (Z/fZ)× × (Hp ∩K) such that τ is reduced
(see Definition 1.6), we define the p-adic invariant

u(δr, τ) = u(r, τ) := pψr{∞→γτ∞} ×
∫
X

(x− τy) dµ̃r{∞→ γτ∞}(x, y) ∈K×p , (5)

where γτ is an oriented generator of the stabilizer of τ under the action of Γ1 (see Definition 1.5),
i.e. γτ is chosen in such a way that it generates the quotient StabΓ1(τ)/〈±1〉 ' Z and

γτ

(
τ
1

)
= ε

(
τ
1

)
with ε > 1. For any pair of cusps c1, c2 ∈ Γ0(fN0){∞}, the quantity ψr{c1→ c2} is defined by
the following integral

ψr{c1→ c2} :=
1

2πi

∫ c2

c1

F̃2(r, τ) dτ, (6)

where the complex line integral on the right-hand side is taken along the unique geodesic C in
the complex upper half plane H connecting the cusps c1 and c2.

Remark 1.2. One can define in an analoguous way a p-adic invariant u∗(r, τ) by replacing the
Eisenstein series F̃k(r, τ) in the statement of Theorem 1.1 by the Eisenstein series F̃ ∗k (r, τ).

It is explained in § 2 that the rational number ψr{c1→ c2} is, in fact, always an integer. Some
explanations about the multiplicative integral appearing in (5) are in order. This p-adic integral
is defined by

×
∫
X

(x− τy) dµ̃r{∞→ γτ∞}(x, y) := lim
||U||→0

∏
U∈U

(xU − τyU )µ̃r{∞→γτ∞}(U) ∈K×p , (7)

where U is a cover of X by disjoint compact open sets, (xU , yU ) is an arbitrary point of U ∈ U ,
and the p-adic limit is taken over increasingly fine covers U . The product in (7) makes sense
since the measures µ̃r{c1→ c2} are Z-valued and not only Zp-valued.

The appellation p-adic invariant for the quantity u(r, τ) is appropriate in light of the following
theorem.
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p-units in ray class fields of real quadratic number fields

Theorem 1.2. Let (r, τ) and (r′, τ ′) be (O, n)-admissible pairs such that τ and τ ′ are reduced
and

γ ? (r, τ) := (γ ? r, γτ) = (r′, τ ′), γ =
(
a b
c d

)
∈ Γ̃0.

Then

u(r, τ)≡ u(r′, τ ′) (mod (K×p )tor), (8)
where (K×p )tor = µp2−1.

It is a natural question to ask whether (8) remains valid without the modulo (mod µp2−1).
The author did not attempt to prove it but numerical examples suggest that this refinement is
true. Under a mild assumption on τ , one can show that (r, τ)∼ (r′, τ ′) if and only if there exists
a γ ∈ Γ̃0 such that γ ? (r, τ) = (r′, τ ′) (see § 4).

When O =OK , we conjecture that the element u(r, τ) lies in the narrow ray class field K
of conductor f which we denote by K(f∞). To be precise, assume that the minimal quadratic
polynomial with integer coefficients satisfied by τ has the form

Aτ2 +Bτ + C = 0, (A, B, C) = 1, A > 1

where N0|A and B2 − 4AC = disc(K).

Conjecture 1.1. Let L=K(f∞)Frob(p/℘) where ℘= pOK and p is a prime ideal of K(f∞)
above ℘. Then the element u(r, τ) ∈K×p is a ‘strong p-unit’ in L, i.e. an element of OL[1/p]×,
such that |u(r, τ)|ν = 1 for all infinite places ν of L.

In § 4.1 (see Conjecture 4.1), we propose a conjectural Shimura reciprocity law which describes
the action of Gal(K/K) on u(r, τ).

In § 5 we introduce the zeta functions ζ∗(δ, (r, τ), s) (respectively ζ(δ, (r, τ), s)) which
interpolates certain periods of F̃k(r, τ) with respect to the cusp ∞ (respectively certain periods
of F̃ ∗k (r, τ) with respect to the cusp zero). The reader should keep in mind the following:

periods of F̃k(r, z) ; ζ∗(δ, (r, τ), s) and u(r, τ),
periods of F̃ ∗k (r, z) ; ζ(δ, (r, τ), s) and u∗(r, τ).

Finally, in § 6, we prove a p-adic analogue of the Kronecker limit formula which relates our
p-adic invariant u(r, τ) to the first derivative at s= 0 of a certain p-adic zeta function. More
precisely, we prove that:

(1) 3(ζ∗p )′(δ, (r, τ), 0) =−logp NKp/Qp(u(r, τ));
(2) 3ζ∗(δ, (r, τ), 0) = vp(u(r, τ)),

where ζ∗p (δ, (r, τ), s) is a p-adic zeta function interpolating the special values

(1− p−2n)ζ∗(δ, (r, τ), n)

for even integer n≤ 0 such that n≡ 0 (mod p− 1).
Here we want to point out that our choice of working with the periods of F̃k(r, z) (with

respect to the cusp ∞) rather than that coming from F̃ ∗k (r, z) (with respect to the cusp zero)
is not necessarily the best choice. For example, the formulas which relate the special values
of ζ(δ, (r, τ), s) to the special values of classical partial zeta functions K are much simpler
than that showing up in the case of ζ∗(δ, (r, τ), s). Nevertheless, we have decided to work with
the periods of F̃k(r, z) rather than that coming from F̃ ∗k (r, z) since this has the advantage of
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simplifying the formulas which relate the Darmon–Dasgupta invariant to the p-adic invariant
u(r, τ), see [Cha07b]. Note that in the special case where f = 1, which was the case considered
in [DD06], ζ∗p (δ, (r, τ), s) = ζp(δ, (r, τ), s), which becomes false when f > 1. This can be accounted
by the fact that the two cusps zero and infinity are inequivalent modulo Γ0(f) when f > 1.

In [Das07b], Dasgupta proposed a conjectural p-adic construction of p-units lying in narrow
ray class fields of any totally real number field. In particular, his method allows him to construct
p-units in narrow ray class fields of a real quadratic number field K. However, his new method
is rather different from the modular symbols approach initiated in [DD06] and that developed
here. One special feature of our modular symbols approach is the possibility of computing in
polynomial time the p-adic invariant u(r, τ) ∈K×p . For numerical examples which support the
conjectural algebraicity of u(r, τ), see [Das07a, Cha] and [Cha07a].

Notation

Let K be a real quadratic number field and O be a Z-order of K. Let OK = Z + ωZ be the
maximal Z-order of K. Every Z-order O of K can be written uniquely as O = Z + nωZ where
n ∈ Z>0 is called the conductor of O. An O-module Λ⊆K will be called an O-ideal. An O-ideal
a will be called integral if a⊆O. By an invertible O-ideal we mean an O-ideal Λ such that
EndK(Λ) = {λ ∈K : λΛ⊆ Λ}=O. Note that if a and b are invertible O-ideals, then a ∩ b is an
invertible O-ideal. However, if a and b are invertible O-ideals, then in general (a, b) := a + b is
not an invertible O-ideal. If c is an invertible ideal and f is an integral O-ideal, then we say that
(c, f) = 1 if there exists two O-invertible integral ideals a, b such that c = ab−1, a + f =O and
b + f =O. Given an integral O-ideal f we define the set

IO(f) := {b⊆K : b is an invertible integral O-ideal coprime to f, i.e. f + b =O}.

Consider the monoid IO(1). For every integral O-ideal f we define an equivalence relation on the
monoid IO(1) which we denote by ∼f. Let a, b ∈ IO(1). We say that a∼f b if and only if there
exists an element λ ∈ 1 + fa−1, λ� 0 (totally positive), such that λa = b. Note that if a∼f b, then
(a, f) = (b, f). The set IO(1)/∼f is a finite monoid. The set of invertible elements of IO(1)/∼f is
exactly IO(f)/∼f. By class field theory, the ideal class group IO(f)/∼f corresponds to an abelian
extension of K which we denote by K(f∞) where ∞=∞1∞2 corresponds to the product of the
two distinct real places of K. We call K(f∞) the narrow ray class field of K of conductor f.

We let

PO(f∞) =
{
α

β
∈K : α, β ∈ O, β 6= 0, (αO, f) = (βO, f) =O, α≡ β (mod f),

α

β
� 0

}
. (9)

It is easy to see that for a, b ∈ IO(f), a∼f b if and only if there exists a λ ∈ PO(f∞) such that
λa = b. We can thus think of IO(f)/∼f as IO(f)/PO(f∞).

Let p be a prime number which is inert in K. Instead of working with Z-lattices and Z-orders
of K, one could well work with Z[1/p]-lattices and Z[1/p]-orders of K. It is an easy exercise to
see that all of the notions introduced previously are still valid in this setting. For any Z-module
M ⊆ C and a prime number p, we define M (p) :=M [1/p]'M ⊗Z Z[1/p].
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Definition 1.5. For quantities p, f, N0 fixed, we define:

(1) Γ̃0 := {
(
a b
c d

)
∈GL+

2 (Z[1/p]) : c≡ 0 (mod fN0)};

(2) Γ0 = {γ ∈ Γ̃0 : det(γ) = 1};
(3) Γ̃1 = {γ ∈ Γ̃0 : a≡ 1 (mod f), c≡ 0 (mod fN0)};
(4) Γ1 = {γ ∈ Γ̃1 : det(γ) = 1}.

For a fixed prime number p we let T = T0 ∪ T1 be the Bruhat–Tits tree for PGL2(Qp) where T0

corresponds to its set of vertices and T1 corresponds to its set of edges. We let v0 be the standard
vertex of T which corresponds to the homothety class of Zp ⊕ Zp. Finally we let red :Hp→T
be the reduction map.

Definition 1.6. A point τ ∈Hp is said to be reduced if red(τ) = v0. This is equivalent to saying
that |τ − t|p ≥ 1 for t= 0, 1, . . . , p− 1 and |τ |p ≤ 1, where | |p stands for the p-adic valuation on
Cp normalized in a such a way that |p|p = 1/p.

For a short introduction to the objects defined in the previous paragraph, see [Dar04, ch. 5].

2. Modular units and Eisenstein series

The results presented in this section relate periods of modular units with periods of Eisenstein
series. This was the initial point of view that was taken in [Cha]. We also explain how the p-adic
invariant u(r, τ) is related to a certain 2-cocycle κ ∈ Z2(Γ̃1, K

×
p ). All of the results presented

here can be found in [Cha]. The main result proved in this section is the proof of Theorem 1.2
which uses in an essential way the 2-cocycle κ.

Let H∗ =H ∪ P1(Q), f > 1 be a positive integer and let X(f)(C) =H∗/Γ(f) be the modular
curve with full level f structure. For a pair (r/f, s/f) ∈ ((1/f)Z)2 we associate the Siegel function

g(r/f,s/f)(τ) =−e2πi(s/f)(r/f−1)/2q
1
2
B̃2(r/f)

τ (1− qz)
∏
n≥1

(1− qnτ qz)(1− qnτ q−z), (10)

where τ ∈H, z = (r/f)τ + s/f , qτ = e2πiτ , qz = e2πiz, B2(x) = x2 − x+ 1
6 is the second Bernoulli

polynomial and B̃2(x) :=B2({x}) with 0≤ {x}< 1 being the fractional part of x. The infinite
product (10) converges whenever Im(τ)> 0. On [DK81, p. 36] it is explained that the function
g(r/f,s/f)(τ)12f is a modular unit on X(f)(C), i.e. a meromorphic function on X(f)(C) with its
divisor supported on the set of cusps of X(f)(C). Let N0 > 0 be a positive integer prime to f
and let d0|N0, d0 > 0. Consider this special case of Siegel functions

g(r/f,0)(d0fτ) = q
1
2
B̃2(r/f)

fd0τ
(1− qrd0τ )

∏
n≥1

(1− qnd0fτqrd0τ )(1− qnd0fτq−rd0τ ).

Let δ =
∑

d0|N0,r∈Z/fZ n(d0, r)[d0, r] ∈D(N0, f) be a good divisor. We define a family of modular
functions, indexed by j ∈ (Z/fZ)×, by the formula

βδj (τ) :=
∏

d0|N0,r∈Z/fZ

g(r/f,0)(d0fτ)12n(d0,jr). (11)

Owing to assumption (3) in Definition 1.1, βδpj (τ) = βδj (τ). Therefore, we can think of the
functions βδj (τ) as being indexed by the cosets j ∈ (Z/fZ)×/〈p〉. Using assumption (2) of
Definition 1.1, a direct calculation shows that the function βδj (τ) is invariant under the
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substitution τ 7→ γτ for all γ ∈ Γ1(f) ∩ Γ0(fN0). In particular, the function βδj (τ) may be viewed
as a modular unit of level fN0. Moreover, for all c ∈ Γ0(fN0){∞} one has that βδj (c) = 1
(this uses assumption (2)), so that βδj (τ) is holomorphic on the set of cusps Γ0(fN0){∞}
= {a/c : (a, c) = 1 and (fN0)|c}. Here, ∞ stands for the cusp 1/0.

The definition of F̃k(r, τ) of the introduction was motivated by the following proposition.

Proposition 2.1. Let δ =
∑

d0|N0,r∈Z/fZ n(d0, r)[d0, r] ∈D(N0, f) be a good divisor. Then
when the weight k is equal to two, we have:

(1) dlog βδr(τ) = 2πiF̃2(r, τ) dτ ;

(2) dlog βδr,p(τ) = 2πiF̃2,p(r, τ) dτ .

Proof. This is a straightforward computation. 2

2.1 Construction of a modular symbol

Let M=Div0(Γ0(fN0){∞}) denote the group of degree-zero divisors on the set Γ0(fN0){∞}.
Note that M has a natural left action by Γ0(fN0). A partial modular symbol with values in
an abelian group A is simply a group homomorphism from M to A. If ψ is a partial modular
symbol and c1, c2 ∈ Γ0(fN0){∞}, then we write

ψ{c1→ c2} or ψ[m] for ψ([c1]− [c2]), where m= [c1]− [c2] ∈M.

Assumption (2) of Definition 1.1 implies that the differential dlog βδr(τ) on H∗ is holomorphic
at the points of the set Γ0(fN0){∞}. Thus, we may define a family of partial modular symbols
ψr, indexed by r ∈ (Z/fZ)×/〈p〉, by the rule

ψr{c1→ c2}=
1

2πi

∫ c2

c1

dlog βδr(τ), (12)

where the complex line integral on the right-hand side is taken along the unique geodesic C in
H∗ connecting the cusps c1 and c2. The rational integer ψr{c1→ c2} may be understood as the
winding number of the closed loop βδr(C) around the origin in the complex plane.

Remark 2.1. In light of Proposition 2.1 we see that (12) coincides with (6).

The partial modular symbol ψr is Γ0(fN0)-invariant in the sense that for all γ ∈ Γ0(fN0)
one has

ψr{c1→ c2}= ψγ?r{γc1→ γc2}, (13)

where, for γ =
(
a b
c d

)
, γ ? j ≡ dj (mod f). The identity (13) follows directly from the

transformation formula βδγ?r(γτ) = βδr(τ) where γ ∈ Γ0(fN0).
We define the p-stabilization of βδr(τ) to be

βδr,p(τ) :=
βδr(τ)
βδr(pτ)

.

Using the infinite product of βδr,p(τ) and assumption (3) of Definition of 1.1 one can show that
βδr,p(τ) is Up,m-invariant, i.e.

Up,m(βδr,p(τ)) :=
p−1∏
k=0

βδr,p

(
τ + k

p

)
= βδr,p(τ). (14)
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(The index m of Up,m stands for multiplicative.) For a proof of (14) see [Cha, Proposition 3.5
and Remark 4.7]. Moreover, for all c ∈ Γ0(fN0){∞}, one also has βδr,p(c) = 1.

The family of p-stabilized modular units {βδj ,p(τ)}j∈(Z/fZ)×/〈p〉 gives rise naturally to a family
of Γ̃0-invariant partial modular symbols with values in the abelian group of Z-valued measures
on P1(Qp). In order to make the previous statement precise, we need to introduce some notation.

The group of matrices

GL+
2

(
Z
[

1
p

])
=
{
γ ∈GL2

(
Z
[

1
p

])
: det(γ)> 0

}
acts naturally on P1(Qp) by the rule x 7→ γx= (ax+ b)/(cx+ d), where γ =

(
a b
c d

)
∈GL+

2 (Z[1/p])
and x ∈ P1(Qp). We define a ball in P1(Qp) to be a translate of Zp by some element of
GL+

2 (Z[1/p]), i.e. a ball in P1(Qp) is a set of the form

γZp := {γx ∈ P1(Qp) : x ∈ Zp},

where γ ∈GL+
2 (Z[1/p]). We denote the set of all such balls by B.

Theorem 2.1. There exists a unique system of Z-valued measures on P1(Qp), indexed by triples

(Z/fZ)×/〈p〉 × Γ̃0{∞} × Γ̃0{∞}

satisfying the following properties (for all (r, c1, c2) ∈ (Z/fZ)×/〈p〉 × Γ̃0{∞} × Γ̃0{∞}):
(1) µr{c1→ c2}(P1(Qp)) = 0;
(2) µr{c1→ c2}(Zp) = (1/2π|i)

∫ c2
c1

dlog βδr,p(τ);

(3) (Γ̃0-invariance property) for all γ ∈ Γ̃0 and all compact open U ⊆ P1(Qp) we have

µγ?r{γc1→ γc2}(γU) = µr{c1→ c2}(U).

Proof. The key idea is to use the Up,m-invariance of the modular units βδr,p(τ). The latter
property can be used to ‘package’ these various winding numbers into a family of p-adic Z-valued
measures on P1(Qp). For a proof, see [Cha, Theorem 5.1]. 2

The following lemma states that the system of measures µ̃ appearing in Theorem 1.1 lifts the
system of measures µ appearing in Theorem 2.1.

Lemma 2.1. For all compact open U ⊆ P1(Qp) we have

π∗µ̃{c1→ c2}(U) := µ̃j{c1→ c2}(π−1(U)) = µj{c1→ c2}(U),

where π : X→ P1(Qp) is the Z×p -bundle given by (x, y) 7→ x/y.

Proof. See [Cha, Proof of Lemma 6.1]. 2

2.2 Construction of a 2-cocycle
The family of measures constructed in Theorem 2.1 will enable us to construct a 2-cocycle
κ ∈ Z2(Γ̃1, K

×
p ) .

Let δ ∈D(N0, f) be a fixed good divisor.

Definition 2.1. Let r ∈ (Z/fZ)×, c1, c2 ∈ Γ̃0{∞} and let τ1, τ2 ∈Hp ∩Kp. We define∫ τ2

τ1

∫ c2

c1

dlog βδr,p(z) :=
∫
P1(Qp)

logp

(
t− τ2

t− τ1

)
dµr{c1→ c2}(t),
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where µr{c1→ c2} is the measure of Theorem 2.1 for the modular unit βδ,p(τ). Since the measures
µr{c1→ c2} are Z-valued it makes sense also to define the multiplicative integral

×
∫ τ2

τ1

∫ c2

c1

βδr,p(τ) dµr{c1→ c2}(t) := lim
C={Ui}

∏
i

(
ti − τ2

ti − τ1

)µr{c1→c2}(Ui)
,

where ti is an arbitrary point of Ui and the limit goes over a set of covers that become finer
and finer.

Definition 2.2. Let τ ∈Hp ∩Kp and fix c ∈ Γ̃0{∞} and r ∈ (Z/fZ)×. Then for all γ1, γ2 ∈ Γ̃0

we define

κc,(r,τ)(γ1, γ2) :=×
∫ γ1τ

τ

∫ γ1γ2c

γ1c
dlog βδr,p(z) ∈K×p .

We let the group Γ̃0 act trivially on K×p .

Proposition 2.2. The 2-cochain κc,(r,τ) ∈ C2(Γ̃0, K
×
p ) is a ‘twisted’ 2-cocycle satisfying the

relation

(dκc,(r,τ))(γ1, γ2, γ3) = κc,(r,τ)(γ2, γ3)− κc,(γ−1
1 ?r,τ)(γ2, γ3)

for all γ1, γ2, γ3 ∈ Γ̃0.

In particular, (dκc,(r,τ))|Γ̃1
= 0, i.e. κc,(r,τ)|Γ̃1

∈ Z2(Γ̃1, K
×
p ).

Proof. See [Cha, Proposition 5.7]. 2

2.3 Explicit splitting of a 2-cocycle
Definition 2.3. To each v ∈ T0 (set of vertices of the Bruhat–Tits tree for PGL2(Qp)) we
associate a well-defined partial modular symbol mv{c1→ c2} on the set of cusps Γ̃0{∞} taking
values in the set of Γ̃0-invariant Z-valued measures on P1(Qp). We define

mv0,r{c1→ c2} :=
1

2πi

∫ c2

c1

dlog βδr(z), mγv,γ?r{γc1→ γc2}=mv,r{c1→ c2},

where v ∈ V(T ), γ ∈ Γ̃0, r ∈ (Z/fZ)×/〈p〉 and c1, c2 ∈ Γ0(fN0){∞}.

Note that the assignment v 7→mv,r{c1→ c2} satisfies the harmonicity property∑
d(v′,v)=1

mv′,r{c1→ c2}= (p+ 1)mv,r{c1→ c2}.

The last equality comes from the fact that F̃2(r, z) is an eigenvector with eigenvalue (1 + p) for
the Hecke operator T2(p) (see [Cha, Equation (4.19)]).

The next theorem gives an explicit splitting of the 2-cocycle appearing in Definition 2.2.

Theorem 2.2. Let τ ∈Hp ∩Kp, r ∈ (Z/fZ)×, γ ∈ Γ̃1 and v = red(τ). Define

ρc,(r,τ)(γ) := pmv,r{c→γc)} ×
∫
X

(x− τy) dµ̃r{c→ γc}(x, y). (15)

Then ρc,(r,τ) ∈ C1(Γ1, K
×
p ) is a 1-cochain such that of dρc,(r,τ) = κc,(r,τ).

Proof. The proof uses in an essential way Lemma 2.1 and property (3) of Theorem 1.1. For a
detailed proof see [Cha, Theorem 6.2]. 2
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Remark 2.2. For an admissible pair (r, τ) one has that ρ∞,(r,τ)(γτ ) = u(r, τ).

Corollary 2.1. Let (r, τ) ∈ (Z/fZ)× ×Hp ∩K be an admissible pair such that red(τ) = v0.

Let γ ∈ Γ̃1. Then

ordp(ρc,(r,τ)(γ)) =mv0,r{c→ γc}. (16)

Proof. This follows directly from the definition of ρc,(r,τ). 2

2.4 Proof of Theorem 1.2
Theorem 1.2 will be a direct consequence of the next two propositions.

Proposition 2.3. For τ ∈Hp ∩K let

Γ1,τ := {γ ∈ Γ1 : γτ = τ}.

Let ρc,(r,τ) be the 1-cochain appearing in Theorem 2.2 when viewed as an element of Z1(Γ1, K
×
p ).

Then ρc,(r,τ)|Γ1,τ modulo Hom(Γ1, K
×
p )|Γ1,τ does not depend on the base point c ∈ Γ0{∞}.

Proof. Let x, y ∈ Γ1{∞}. We want to show that

ρx,(r,τ)|Γ1,τ − ρy,(r,τ)|Γ1,τ ∈Hom(Γ1, K
×
p )|Γ1,τ = Z1(Γ1, K

×
p )|Γ1,τ .

This is equivalent to showing that (dρx,(r,τ))|Γ1,τ − (dρy,(r,τ))|Γ1,τ = 0. The previous equality
means exactly that (κx,(r,τ) − κy,(r,τ))|Γ1,τ = 0. Let us compute as follows.

Let γ1, γ2 ∈ Γ1. We have

κx,(r,τ)(γ1, γ2)− κy,(r,τ)(γ1, γ2) =
∫ γ1τ

τ

∫ γ1γ2x

γ1x
dlog βδr,p(z)−

∫ γ1τ

τ

∫ γ1γ2y

γ1y
dlog βδr,p(z)

=
∫ γ1τ

τ

∫ γ1y

γ1x
dlog βδk,p(z)−

∫ γ1τ

τ

∫ γ1γ2y

γ1γ2x
dlog βδr,p(z)

=
∫ γ1τ

τ

∫ γ1y

γ1x
dlog βδr,p(z)−

∫ γ1γ2τ

τ

∫ γ1γ2y

γ1γ2x
dlog βδr,p(z)

+
∫ γ1γ2τ

γ1τ

∫ γ1γ2y

γ1γ2x
dlog βδr,p(z).

Now applying γ−1
1 to the bounds of the third term of the last equality (note that γ−1

1 ? r = r)
and setting

cx,y(γ) :=
∫ γτ

τ

∫ γy

γx
dlog βδr,p(z) ∈ C1(Γ1, K

×
p ),

we obtain

κx,(r,τ)(γ1, γ2)− κy,(r,τ)(γ1, γ2) = cx,y(γ1)− cx,y(γ1γ2) + cx,y(γ2) = (dcx,y)(γ1, γ2).

We have thus proved that d(ρx,(r,τ) − ρy,(r,τ) − cx,y)|Γ1 = 0. So

ρx,(r,τ) − ρy,(r,τ) − cx,y ∈Hom(Γ1, K
×
p ).

Finally, evaluating at γτ and using the fact that cx,y(γτ ) = 0 proves the proposition. 2

Proposition 2.4. The abelianization of Γ1, i.e. (Γ1)ab = Γ1/[Γ1, Γ1] is a finite group.

Proof. See [Men67] and [Ser70]. 2
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Corollary 2.2. The group Hom(Γ1, K
×
p ) is a finite abelian group of exponent dividing

#(K×)tor = p2 − 1.

Remark 2.3. Note that the Proposition 2.4 is obviously false if one replaces Γ1 by the larger
group Γ̃1.

Proof of Theorem 1.2. Let (r, τ) be an admissible pair. Let U ⊂ (Qp ×Qp) \ (0, 0) be a compact
open subset, let c1, c2 ∈ Γ̃0 and let γ =

(
A B
C D

)
∈ Γ̃0. A direct computation which uses property (2)

of Theorem 1.1 shows that

×
∫
U

(x− τy) dµ̃r{c1→ c2}(x, y) =×
∫
γU

(Cτ +D)(x− γτy) dµ̃γ?r{γc1→ γc2}(x, y). (17)

Now let (r, τ) and (r′, τ ′) be admissible pairs as given in the statement of Theorem 1.2. By
assumption there exists a η ∈ Γ̃0 such that η ? (r, τ) = (r′, τ ′). Since τ and τ ′ are reduced
we see that η ∈ Γ̃0 ∩GL2(Zp) = Γ0(fN0). Note that γτ ′ = ηγτη

−1 where γτ and γτ ′ are as in
Definition 1.4. Let ξ = η∞. We have

u(r′, τ ′) = ρ∞,(r′,τ ′)(γτ ′) = ρξ,(r′,τ ′)(γτ ′) (mod µp2−1),

where the last equality follows from Proposition 2.3 (γτ ′ ∈ Γ1,τ ′) and Corollary 2.2. Now let us
compute directly ρξ,(r′,τ ′)(γτ ′). We have

ρξ,(r′,τ ′)(γτ ′) = pmv0,r′{ξ→γτ ′ξ} ×
∫
X

(x− τ ′y) dµ̃r′{ξ→ γτ ′ξ}(x, y)

= pmv0,r{∞→γτ∞} ×
∫
X

(x− τy) dµ̃r{∞→ γτ∞}(x, y),

where the last equality uses (17) and the Γ̃0-equivariance of the modular symbol mv0,r′{ξ→ γτ ′ξ}.
This concludes the proof. 2

3. Proof of Theorem 1.1

This section is devoted to the existence of the system of measures which appear in Theorem 1.1.

The proof is technical and long but essentially it follows the same lines as that given in [DD06].
We only prove in detail the new ingredients which are not straightforward adaptations of [DD06];
for a more detailed version of the proof see [Cha]. The uniqueness of the family of measures follows
easily from properties (1) and (2). It remains to show the existence of such a family. We first
prove the existence of a family of measures which satisfy properties (1), (2) and (3) under the
weaker assumption that they take values in Zp rather than Z. We divide the proof into five steps.
We let ξ = a/c ∈ Γ̃0{∞} where p - c and j ∈ (Z/fZ)×/〈p〉 and write µξ,j := µ̃j{ξ→∞}.

First step. There exists a unique family of Zp-valued measures on Zp × Zp which satisfies the
property ∫

Zp×Zp
h(x, y) dµξ,j(x, y) = (1− pk−2)

∫ i∞

ξ
h(z, 1)F̃k(j, z) dz.
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A direct computation shows that

In,m(j) :=
∫
Zp×Zp

xnymdµξ,j(x, y) = (1− pn+m)
∫ i∞

ξ
znF̃n+m+2(j, z) dz

= − 12
fn+m

(1− pn+m)
n∑
l=0

(
n

l

)(
a

c

)n−l
(−1)l

×
∑

d0|N0,r∈Z/fZ

n(d0, r)d−l0 D
jr (mod f)
n+m−l+1,l+1(a, c/d0) (18)

for all integers n, m≥ 0, where

D
r (mod f)
s,t (a, c) := cs−1

∑
1≤h≤c

h≡r (mod f)

B̃s(h/c)
s

B̃t(ha/c)
t

.

The second equality follows from [Cha, Proposition 11.4] which provides explicit formulas for
the rational periods of F̃k(j, z).

The key tool in showing the existence and uniqueness of {µξ,j} is the following result, which
is a two-variables version of a classical theorem of Mahler.

Lemma 3.1. Let bn,m ∈ Zp be constants indexed by integers n, m≥ 0. There exists a unique
measure µ on Zp × Zp such that∫

Zp×Zp

(
x

n

)(
y

m

)
dµ(x, y) = bn,m.

For any 0≤ n and 0≤ i≤ n, define the rational numbers cn,i via
(
x
n

)
=
∑n

i=0 cn,ix
i. For

j ∈ (Z/fZ)×/〈p〉 we let

Jn,m(j) :=
n∑
i=0

m∑
i′=0

cn,icm,i′Ii,i′(j).

So in order to show that the measures µξ,j are Zp-valued, it is enough to show, by Lemma 3.1,
that Jn,m(j) ∈ Zp. The way that this is proved is by interpreting the quantity Jn,m(j) as the
partial derivative of a certain rational function. More precisely,

Jn,m(j) =
(
Dw

m

)(
Dz

z

)
H∗j (u, v)|(1,1),

where (z, w) = (1/u, ua/cv1/c), Dw = w(∂/∂w), Dz = z(∂/∂z) and H∗j (u, v) is a rational function
in Zp(u1/c, v1/c). For the exact definition of H∗j (u, v), see [Cha, Equations (12.9) and (12.10)].

Now the p-integrality of Jn,m(j) is a direct consequence of the following lemma.

Lemma 3.2. Consider the subring R of Zp(u1/c, v1/c) defined by

R :=
{
P

Q
: P, Q ∈ Zp[u1/c, v1/c] and Q(1, 1) ∈ Z×p

}
.

Then R is a ring stable under the operators
(
Dw
m

)
and

(
Dz
n

)
. Furthermore, H∗j (u, v) ∈R.

The proof of Lemma 3.2 is identical to the proof of [DD06, Lemma 4.11] (see also
[Cha, Lemma 12.2]). 2
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Second step. There exists a unique family of partial modular symbols {νj}j∈(Z/fZ)×/〈p〉 supported
on the set of cusps Γ0(fN0){∞} of Zp-valued measures on Zp × Zp such that∫

Zp×Zp
h(x, y) dνj{r→ s}(x, y) = (1− pk−2)

∫ s

r
h(z, 1)F̃k(j, z) dz

for r, s ∈ Γ0(fN0){∞} and for every homogeneous polynomial h(x, y) ∈ Z[x, y] of degree k − 2.
Furthermore, if γ =

(
a b
c d

)
∈ Γ0(fN0), then νj{r→ s}(U) = νγ?j{γr→ γs}(γU), i.e. the system

of measures is Γ0(fN0)-invariant.
The proof of this step uses step 1. The argument is identical to the proof of [DD06, Lemma

4.13] (see also [Cha, Lemma 12.4]). Note that the Γ0(fN0)-invariance boils down basically to the
transformation formula Ek(γ ? r, γτ)(cτ + d)−k = Ek(r, τ) where γ =

(
a b
c d

)
∈ Γ0(fN0).

Third step. Let r, s ∈ Γ{∞}. The measures νj{r→ s} constructed in step 2 satisfy the following
formula ∫

Zp×Z×p
h(x, y) dνj{r→ s}(x, y) =

∫ s

r
h(z, 1)F̃k,p(j, z) dz,

for every homogeneous polynomial h(x, y) ∈ Z[x, y] of degree k − 2.
The proof of this step uses step 2 and follows the same lines as the proof of [DD06,

Lemma 4.14] where [DD06, Lemma 4.15] is replaced by the following lemma.

Lemma 3.3. Let s, t≥ 1. For any rational number a/c (p could divide c), we have inside Qp the
identity

lim
j→∞

D
r (mod f)

s+(p−1)pj ,t
(a, c) =D

r (mod f)
s,t (a, c)− ps−1D

p−1r (mod f)
s,t (pa, c).

The proof of Lemma 3.3 is different from the proof of [DD06, Lemma 4.15] since we do not
use reciprocity formulas for Dedekind sums. For this reason we have decided to include it.

Proof of Lemma 3.3. Let x= a/c ∈Q with (a, c) = 1 and assume first that p - c. Let b be an
integer such that abp≡ 1 (mod c). Note that

D
r (mod f)
s,t (a, c) = cs−1

∑
1≤l≤c

l≡ar (mod f)

B̃s(lbp/c)
s

B̃t(l/c)
t

. (19)

Therefore,

D
r (mod f)

s+(p−1)pj ,t
(a, c) = cs−1+(p−1)pj

∑
1≤l≤c

l≡ar (mod f)

B̃s+(p−1)pj (lbp/c)
s

B̃t(l/c)
t

(20)

and, similarly,

D
r (mod f)

s+(p−1)pj ,t
(pa, c) = cs−1

∑
1≤l≤c

l≡ar (mod f)

B̃s+(p−1)pj (lb/c)
s

B̃t(l/c)
t

. (21)

Write y = {lbp/c} and y′ = {lb/c}. Since c(p−1)pj → 1, then subtracting ps−1 times (21) to (20)
we see that it suffices to prove that

lim
j→∞

Bs+(p−1)pj (y) =Bs(y)− ps−1Bs(y′). (22)
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For s > 0, this follows from the proof of [You01, Theorem 3.2]. In the course of the proof of [You01,
Theorem 3.2], Young obtains for any positive integer b coprime to p the congruence

(bs+(p−1)pj − 1)
Bs+(p−1)pj (x)− ps−1+(p−1)pjBs+(p−1)pj (x′)

s+ (p− 1)pj

− (bs − 1)
Bs(x)− ps−1Bs(x′)

s
≡ 0 (mod pj+1Zp) (23)

where x′ is such that px′ − x ∈ {0, 1, . . . , p− 1} and s≥ 1. The denominator of Bn/n at p is
well behaved. If (p− 1) - n, then Bn/n is p-integral. If (p− 1)|n, then vp(Bn/n) =−1− vp(n).
Using the previous observation it follows that limj→∞ p(p−1)pjBs+(p−1)pj (x′) = 0. Letting j→∞
in (23) we obtain that

(bs − 1) lim
j→∞

Bs+(p−1)pj (x)
s

= (bs − 1)
Bs(x)− ps−1Bs(x′)

s
. (24)

When s≥ 1 we can always choose b such that bs − 1 6= 0. Therefore, we can cancel the two factors
bs − 1 in (24) to obtain (22). It remains to treat the case where s= 0.

We have vp(y)≥ 1. Let g = (p− 1)pj . Note that

Bg(y) =
g∑

k=0

(
g

k

)
Bky

g−k

= yg + g

(g−1∑
k=1

(
g − 1
k − 1

)
Bk
k
yg−k

)
+Bg. (25)

If (p− 1) - k, then Bk/k ∈ Zp. If (p− 1)|k, then we can write k = (p− 1)pum with (m, p) = 1.
So vp((Bk/k)yg−k)≥−1− u+ (p− 1)pu ≥ 0 since pj−u − 1≥m. We thus deduce from (25) that
limj→∞ B(p−1)pj (y) =B(p−1)pj .

Let ω be the Teichmüller character at p. If we look at Lp(s) the p-adic L-function twisted by
the trivial character, we have the formula

Lp(1− n) =−(1− ω−n(p)pn−1)
Bn,ω−n

n
.

Here ω−n means the primitive character associated to ω−n (so ω−n(a) is not necessarily equal
to ω(a)−n). So letting n= (p− 1)pj , we have ω−n(p) = 1 and we obtain

Lp(1− (p− 1)pj) =−(1− p(p−1)pj−1)
B(p−1)pj

(p− 1)pj
.

Now we know that lims→1(s− 1)Lp(s) = 1− 1/p. So letting j→∞ we obtain

lim
j→∞

B(p−1)pj = 1− 1
p
.

This proves the claim for s= 0.
We need to treat now the case where p|c. This case turns out to be simple. Let us prove the

following elementary lemma.

Lemma 3.4. Let h be any integer and 0 6= c ∈ Z such that p|c. Then we have the following:

(1) limj→∞ cs+gB̃s+g(h/c) = csB̃s(h/c), if (h, p) = 1;

(2) limj→∞ cs+gB̃s+g(h/c) = 0, if p|h,

where g = (p− 1)pj .
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Proof of Lemma 3.4. Let us prove the first case. We have

cs+gB̃s+g

(
h

c

)
=

s+g∑
k=0

(
s+ g

k

)
Bkh

s+g−kck

=
s∑

k=0

(
s+ g

k

)
Bkh

s+g−kck +
s+g∑

k=s+1

(
s+ g

k

)
Bkh

s+g−kck. (26)

Now since |c|p < 1, |h|p = 1, |
(
m
k

)
|p ≤ 1 and |Bk|p ≤ p, the limit in (26) when j→∞ exists. Since

(h, p) = 1 the limit of the first term is csB̃s(h/c) and the limit of the second term is zero. This
proves the first part of the lemma.

Assume now that p|h. If vp(h)≥ vp(c), then h/c ∈ Zp. In this case we know that
limj→∞ B̃s+(p−1)pj (h/c) exists by (22). Finally since p|c it follows that limj→∞ cs+gB̃s+g(h/c) = 0.
Assume now that vp(c)> vp(h) =m≥ 1. Then by the first part of the Lemma 3.4 we know that
limj→∞(c/pm)s+gB̃s+g((h/pm)/(c/pm)) exists. It follows limj→∞ cs+gB̃s+g(h/c) = 0 since m≥
1. 2

With Lemma 3.4 it is now easy to prove Lemma 3.3 for the case where p|c. We have

lim
j→∞

D
r (mod f)
s+g,t (a, c) = lim

j→∞

∑
1≤h≤c

h≡r (mod f)

cs+g−1B̃s+g−1

(
h

c

)
B̃t

(
ah

c

)

=
∑

1≤h≤c
h≡r (mod f)

(p,h)=1

cs−1B̃s−1

(
h

c

)
B̃t

(
ah

c

)
. (27)

On the other hand, we have

D
r (mod f)
s,t (a, c)− ps−1D

p−1r (mod f)
s,t (pa, c)

=D
r (mod f)
s,t (a, c)− ps−1D

p−1r (mod f)
s,t (a, c/p)

=
∑

1≤h≤c
h≡r (mod f)

cs−1B̃s−1

(
h

c

)
B̃t

(
ah

c

)
−

∑
1≤h≤c/p

h≡p−1r (mod f)

ps−1

(
c

p

)s−1

B̃s−1

(
h

c/p

)
B̃t

(
ah

c/p

)

=
∑

1≤h≤c
h≡r (mod f)

cs−1B̃s−1

(
h

c

)
B̃t

(
ah

c

)
−

∑
1≤h≤c

h≡r (mod f)
h≡0 (mod p)

cs−1B̃s−1

(
h

c

)
B̃t

(
ah

c

)

=
∑

1≤h≤c
h≡r (mod f)

(p,h)=1

cs−1B̃s−1

(
h

c

)
B̃t

(
ah

c

)
.

Compare with (27). This concludes the proof of Lemma 3.3. 2

Fourth step. Let r, s ∈ Γ{∞}. The measures νj{r→ s} are supported on X.
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Proof. Let γ =
(
a b
c d

)
∈ Γ0(fN0) and set µ(γ, z) := (cz + d). Let h(x, y) ∈ Z[x, y] be a

homogeneous polynomial of degree k − 2 =m+ n− 2. Then∫
γ(Zp×Z×p )

h(x, y) dνj{r→ s}(x, y) =
∫
Zp×Z×p

h(γ(x, y)) dνj{r→ s}(γ(x, y))

=
∫
Zp×Z×p

h(γ(x, y)) dνγ−1?j{γ−1r→ γ−1s}(x, y)

=
∫ γ−1s

γ−1r
h(γz, 1)µ(γ, z)k−2F̃k,p(γ−1 ? j, z) dz

=
∫ s

r
h(z, 1)µ(γ−1, z)−(k−2)F̃k,p(γ−1 ? j, γ−1z) d(γ−1z).

Let M(p)⊂M2(Z) be the set of primitive matrices of determinant p. Let{
ηi =

(
ai bi
ci di

)}p+1

i=1

be a complete set of representatives of SL2(Z) \M(p). Then we have

Tk(p)Ek(j, z) = pk−1
p+1∑
i=1

Ek(dij, ηiz)µ(ηi, z)−k, (28)

where Tk(p) stands for the Hecke operator at p. For some background about Hecke operators in
this context see [Cha, § 4.8].

Let P =
(
p 0
0 1

)
and {γi =

(
ai bi
ci di

)
}p+1
i=1 be a complete set of representatives of Γ0(pfN0) \

Γ0(fN0). Note that the set {Pγ−1
i }

p+1
i=1 is a complete set of representatives of SL2(Z) \M(p).

From (30) we deduce that

−1
12f

p+1∑
i=1

F̃k,p(γ−1
i ? j, γ−1

i z)µ(γ−1
i , z)−(k−2)d(γ−1

i z)

=
∑
d0,r

n(d0, r)d0

p+1∑
i=1

Ek(airj, d0γ
−1
i z)µ(γ−1

i , z)−(k−2)d(γ−1
i z)

− pk−1
∑
d0,r

n(d0, r)d0

p+1∑
i=1

Ek(airj, pd0γ
−1
i z)µ(γ−1

i , z)−(k−2)d(γ−1
i z). (29)

As

Ek(r, γz)µ(γ, z)−(k−2)d(γz) = Ek(γ−1 ? r, z) dz,

for any γ ∈ Γ0(f), we have that

Ek(airj, d0γ
−1
i z)µ(γ−1

i , z)−(k−2)d(γ−1
i z) = Ek(γi ? (airj), d0z) dz

= Ek(jr, d0z) dz.

From [Cha, Equation (4.19)] one may deduce that

Tk(p)Ek(j, z) = pk−1Ek(j, z) + Ek(pj, z). (30)
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Using the fact that (28) is equal to (30), that µ(Pγ, z) = µ(γ, z) and pd0γ
−1
i z = d0Pγ

−1
i z we

obtain

pk−1
p+1∑
i=1

Ek(airj, d0Pγ
−1
i z)µ(γ−1

i , z)d(γ−1
i z)

= pk−1
p+1∑
i=1

Ek(airj, d0Pγ
−1
i z)µ(Pγ−1

i , z)−(k−2)d(Pγ−1
i z)

= (Tk(p)Ek(rj, d0z)) dz
= (pk−1Ek(rj, d0z) + Ek(prj, d0z)) dz.

Now because p ? δ = δ we find that∑
d0,r

n(d0, r)d0(pk−1Ek(rj, d0z) + Ek(prj, d0z)) dz = (pk−1 + 1)
∑
d0,r

n(d0, r)d0Ek(rj, d0z).

Substituting the last expression in (29) we find

−12f((p+ 1)− (pk−1 + 1))
∑
d0,r

n(d0, r)d0Ek(rj, d0) = (p− pk−1)F̃k(j, z).

Finally, note that
⋃p+1
i=1 γi(Zp × Z×p ) is a degree p cover of X. Hence, we obtain

p

∫
X
h(x, y) dνj{r→}(x, y) =

p+1∑
i=1

∫
γi(Zp×Z×p )

h(x, y) dνj{r→}(x, y)

=
p+1∑
i=1

∫ s

r
h(z, 1)F̃k,p(γ−1

i ? j, γ−1
i z)µ(γ−1

i , z)−(k−2)d(γ−1z)

= (p− pk−1)
∫ s

r
h(z, 1)F̃k,p(j, z) dz

= (p− pk−1)
∫
Zp×Z×p

h(x, y) dνj{r→ s}(x, y)

= p

∫
Zp×Zp

h(x, y) dνj{r→ s}(x, y).

Since this holds for any h homogeneous of degree k we obtain that the support of νj{r→ s} is
included in X. 2

Fifth step. Now we want to extend the measures νj{r→ s} to the space Q2
p \ {(0, 0)}. The

compact open set X is a fundamental domain for the action of multiplication by p on Q2
p \ {(0, 0)}

where by multiplication by p we mean
( p 0

0 p

)
(x, y) = (px, py). Hence, if for a compact open U ⊆ X

we define

µ̃j{r→ s}(U) := νj{r→ s}(U),

then µ̃j{r→ s} extends uniquely to a Γ0(fN0)-invariant partial modular symbol of Zp-valued
measures on Q2

p \ {0} which is invariant under the action of multiplication by p:

µ̃j{r→ s}(pU) = µ̃j{r→ s}(U),
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for all compact open U ⊆Q2
p \ {(0, 0)}. This almost proves Theorem 1.1. It remains to show that

the modular symbol µ̃j is ‘Γ̃0-invariant’, i.e. for all compact open set U ⊆Q2
p \ {(0, 0)} and all

pairs of cusps r, s ∈ Γ̃0{∞},

µ̃γ?j{γr→ γs}(γU) = µ̃j{r→ s}(U). (31)

Note that Γ̃0 = 〈Γ0(fN0), P 〉 where P =
(
p 0
0 1

)
. By construction the modular symbol µ̃j is

Γ0(fN0)-invariant therefore in order to show (31) it is enough prove it for the matrix P . This
is proved in exactly the same way as the proof of [DD06, Lemma 4.17].

Finally, it remains to show that our measures νj{r→ s} are Z-valued.

Theorem 3.1. The measures µ̃j{∞→ a/c} take values in Z.

Proof. This result is an easy adaptation of the proof of [Das07a, Theorem 1.3]. The interested
reader may find all of the details in [Cha, § 13]. 2

This concludes the proof of Theorem 1.1. 2

4. From H to Z/fZ×HOp (N0) and the Shimura reciprocity law

Let K be a real quadratic field and let p be a prime number inert in K. Let us fix an embedding
K ⊆ R and let GK/Q = {1, σ}. Choose a Z-order O ⊆K and fix a positive integer N coprime
to p. In [DD06] the authors associate to such data the set

HOp (N) :=HOp = {τ ∈Hp :O(p)
τ =O(p)

Nτ =O(p), τ − τσ > 0}, (32)

where Oτ = EndK(Λτ ) and Λτ = Z + τZ.

Remark 4.1. Note that the notion involved in (32) differs slightly from that in [DD06] since in
their setting O was assumed to be Z[1/p]-orders instead of Z-orders. Therefore, there is no need
to tensor over Z[1/p]. One can verify that the set HOp (N) is nonempty if and only if there exists
an O-ideal N such that O/N' Z/NZ; this is the so-called Heegner hypothesis.

We propose the following generalization of HOp (N).

Definition 4.1. Let (N0, f, p) and (K,N) be as in the introduction. Let O be an order of K
of conductor coprime to N0 and let n =O ∩N. To such data we associate the following sets:

(1) Z/fZ×HOp (N0);

(2) Z/fZ×HOp (n);

(3) Z/fZ×HOp (N0, f);

(4) Z/fZ×HOp (n, f);

where

HOp (n) := {τ ∈Hp :O(p)
τ =O(p)

N0τ
=O(p), nΛ(p)

τ = Λ(p)
N0τ

, τ − τσ > 0},

HOp (N0, f) := {τ ∈Hp :O(p)
τ =O(p)

N0τ
=O(p), (Λ(p)

τ , fO(p)) = 1, τ − τσ > 0},

and

HOp (n, f) := {τ ∈Hp :O(p)
τ =O(p)

N0τ
=O(p), nΛ(p)

τ = Λ(p)
N0τ

, (Λ(p)
τ , fO(p)) = 1, τ − τσ > 0}.
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Note that the notation (Λ(p)
τ , f) = 1 is equivalent to saying that (A, f) = 1, where

Qτ (x, y) =Ax2 +Bxy + Cy2. One has the two ‘stratifications’:

(1)
∐

n(Z/fZ×HOp (n)) = Z/fZ×HOp (N0);

(2)
∐

n(Z/fZ×HOp (n, f)) = Z/fZ×HOp (N0, f);

where the two disjoint unions run over the elements of the set

{n EO : n is an invertible O-ideal and O/n' Z/N0Z}. (33)

Definition 4.2. We have a natural left action of Γ̃0 on the set Z/fZ×HOp (N0) given by(
a b
c d

)
? (r, τ) :=

(
dr,

aτ + b

cτ + d

)
.

If there exists a γ ∈ Γ̃0 such that γ ? (r, τ) = (r′, τ ′), then we simply write (r, τ) ≈ (r′, τ ′).

We now define a map that allows us to go from the set Z/fZ×HOp (N0, f) to the set of
integral O(p)-ideals.

Definition 4.3. We define a map Ω (which depends on p and f)

Ω : Z/fZ×Hp(N0, f)→
{

Z
[

1
p

]
-modules contained in K of rank two

}
,

by the rule

(r, τ) 7→ArΛ(p)
τ ,

where 0 6=Ar ∈ Z>0 is the smallest integer such that the following properties hold:

(1) Ar ≡ r (mod f);

(2) ArΛ
(p)
τ is O(p)-integral;

where Qτ (x, y) =Ax2 +Bxy + Cy2 and O(p) = EndK(Λ(p)
τ ).

Remark 4.2. In the definition of the map Ω, it is important to assume that τ ∈Hp(N0, f)
otherwise the integer Ar does not always exist.

Now we introduce another equivalence relation, denoted by ∼, on Z/fZ×HOp (N0).

Definition 4.4. Let (r, τ), (r′, τ ′) ∈ Z/fZ×Hp(N0). We say that (r, τ)∼ (r′, τ ′) if and only if
there exists a totally positive element

λ ∈ 1 + f(r̃′Λ(p)
τ ′ )−1

such that (r̃Λ(p)
τ , r̃Λ(p)

N0τ
) = (λr̃′Λ(p)

τ ′ , λr̃
′Λ(p)
N0τ ′

) where r̃, r̃′ are the unique integers such that
1≤ r̃, r̃′ ≤ f , r̃ ≡ r (mod f) and r̃′ ≡ r′ (mod f).

Remark 4.3. It is an easy exercise to see that the two stratifications (1) and (2) appearing at
the bottom of Definition 4.1 are preserved under the equivalence relation ∼. In the case where
(r, τ), (r′, τ ′) ∈ Z/fZ×HOp (N0, f) it is easy to see that (r, τ)∼ (r′, τ ′) if and only if there exists
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a totally positive element λ ∈ 1 + fΩ(r′, τ ′)−1 such that

(ArΛ(p)
τ , ArΛ

(p)
N0τ

) = (λA′r′Λ
(p)
τ ′ , λA

′
r′Λ

(p)
N0τ ′

),

where ArΛ
(p)
τ = Ω(r, τ) and A′r′Λ

(p)
τ ′ = Ω(r′, τ ′).

Lemma 4.1. The equivalence relations induced by ∼ and ≈, when restricted to the distinguished
subset (Z/fZ)× ×HOp (N0, f)⊆ Z/fZ×HOp (N0), are the same.

Proof. See [Cha, § 5]. 2

Corollary 4.1. The stratification

(Z/fZ)× ×HOp (N0, f) =
∐
n

((Z/fZ)× ×HOp (n, f)) (34)

is preserved under ≈.

Define the set MK(N0, f, p) to be{
(L, M) : pairs of Z

[
1
p

]
-modules of rank two in K, EndK(L) = EndK(M) =O(p),

(L, fO(p)) = (M, fO(p)) = 1 and L/M ' Z/N0Z
}
.

We have a natural equivalence relation on M(N0, f, p) which we denote again by ∼, where
(L, M)∼ (L′, M ′) if and only if there exists a totally positive element λ ∈ 1 + fL′−1 such that
(L, M) = (λL′, λM ′).

Proposition 4.1. There exists a natural bijection of sets, which we denote by ψ, between

ψ : ((Z/fZ)× ×HOp (N0, f))/∼ −→ MK(N0, f, p)/∼,

where ψ([(r, τ)]) := [(ArΛ
(p)
τ , ArΛ

(p)
N0τ

)] and ArΛ
(p)
τ = Ω(r, τ). (The brackets denote the class

modulo ∼.)

Proof. First define the map ψ̃ : (Z/fZ)× ×HOp (N0, f)→MK(N0, f, p), by

ψ̃(r, τ) = (ArΛ(p)
τ , ArΛ

(p)
N0τ

),

where ArΛ
(p)
τ = Ω(r, τ). A direct calculation shows that the map ψ̃ descends to a well-defined

map when one goes to the quotient on both sides; we denote this new map by ψ. Now let us
construct a ‘map’ going in the other direction. Let (L, M) ∈MK(N0, f, p). As (L, fO(p)) = 1,
there exists an integer a ∈ Z>0 such that a≡ 1 (mod f) and aL is O(p)-integral. We can
thus assume beforehand that L is O(p)-integral without changing the class of modulo ∼. Let
O(p) = Z[1/p] + Z[1/p]ω. As L/M ' Z/N0Z, there exists an ordered Z[1/p]-basis (ω1, ω2) of
L such that L= Z[1/p]ω1 + Z[1/p]ω2 and M = Z[1/p]ω1 + Z[1/p]N0ω2. We claim that we can
always choose ω1 in such a way that ω1 ≡ integer (mod f). Let us prove this.

If ω1 ≡ integer (mod f), then we are done. Let us suppose that ω1 6≡ integer (mod f). In
this case one can assume without lost of generality that ω2 = a+ bω where a, b ∈ Z[1/p] and
b 6≡ 0 (mod f), otherwise replace ω2 by ω2 + ω1. Now since N0 is coprime to f one can find
an integer k such that ω1 −N0kω2 ≡ integer (mod f). Then the new basis {ω̃1, ω̃2} where
ω̃1 = (ω1 −N0kω2) and ω̃2 = ω2 satisfies the required property.
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Let ω1 ≡ u (mod f) where u ∈ Z. As (L, fO) = 1 we have (u, f) = 1. Therefore, there exists
an α ∈ O(p) such that αω1 ≡ 1 (mod f) and αω1� 0. Note that α≡ u−1 (mod f). Now we can
write the pair (L, M) as

(L, M) =
(
α−1

(
Z
[

1
p

]
αω1 + Z

[
1
p

]
αω2

)
, α−1

(
Z
[

1
p

]
+ Z

[
1
p

]
N0

ω2

ω1

))
∼
(
α−1

(
Z
[

1
p

]
+ Z

[
1
p

]
ω2

ω1

)
, α−1

(
Z
[

1
p

]
+ Z

[
1
p

]
N0

ω2

ω1

))
.

Now set τ = ω2/ω1. Without lost of generality we can assume that τ > τσ otherwise replace τ
by −τ . Finally, we send the pair (L, M) on the pair (u, τ) ∈ (Z/fZ)× ×HOp (N0, f). One can
check that this construction gives a well-defined map (when one descends to the quotient on
both sides) which is an inverse of ψ. 2

Let f (p) = fO(p). Class field theory gives an isomorphism

IO(p)(f (p))/∼f (p)
rec−1

// Gal(K(f (p)∞)/K),

where K(f (p)∞) is the abelian extension of K which corresponds by class field theory to the
ideal class group IO(p)(f (p))/∼f (p) . Note that K(f (p)∞) =K(f∞)〈Fr℘〉 where pO = ℘, K(f∞) is
the abelian extension corresponding to the ideal class group IO(f)/∼f and K(f∞)〈Fr℘〉 is the
subfield of K(f∞) fixed by the Frobenius at ℘. We set L :=K(f∞)〈Fr℘〉.

Using Proposition 4.1 we see that there is a natural action of GL/K on ((Z/fZ)×

×HOp (N0, f))/∼ given by the following rule: let [(r, τ)] ∈ ((Z/fZ)× ×HOp (N0, f))/∼ and
ψ[(r, τ)] = [(L, M)]. Now define

rec−1(b) ? [(r, τ)] := ψ−1[(bL, bM)].

Note that this Galois action preserves the stratification (34). From this one sees directly that
this action is simple but, in general, not transitive since the indexing set of the stratification
might be of size larger than one.

4.1 Shimura reciprocity law
We are now ready to formulate the Shimura reciprocity law which describes the action of GK on
u(r, τ). We assume in the next conjecture that the number field L is totally complex otherwise
the conjecture says nothing interesting.

Conjecture 4.1. Let (r, τ) ∈ (Z/fZ)× ×HOp (N0, f). Then

u(r, τ) ∈ OL
[

1
p

]×
,

where L=K(fO∞)〈Fr℘〉, ℘= pO. Moreover, we have a Shimura reciprocity law. Let

rec :GL/K → IO(f)/〈QO(f∞), p〉,

where f = fO. Then for σ ∈GL/K we have

u(k, τ)σ
−1

= u(k′, τ ′) (mod µp2−1),

where σ ? [(k, τ)] = [(k′, τ ′)]. Furthermore, if we let c∞ denote the complex conjugation in GL/K ,
then

u(r, τ)c∞ = u(r, τ)−1 (mod µp2−1).
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Remark 4.4. In [DD06], since the conductor f = 1, one is led to consider various orders of K.
However, in our case, since f can vary, it is sufficient to consider only the case, where O =OK . As
explained before the statement of the theorem, if we want our construction to be interesting, it
is essential to assume beforehand that L is totally complex. Let L=K(f∞)〈Fr℘〉 where f = fOK .
Then class field theory implies that L is totally complex if and only if the index

n :=
[
OK
[

1
p

]
(f)× :OK

[
1
p

]
(f∞)×

]
,

is equal to one or two, where OK [1/p](f∞)× corresponds to the group of totally positive units
of OK [1/p] congruent to one modulo f and OK [1/p](f)× corresponds to the group of units of
OK [1/p] congruent to one modulo f . We expect u(r, τ) to be contained in the largest CM subfield
contained in L which we denote by LCM . In general the field LCM can be a proper subfield of L
of index two (see [Cha07a, Proposition 7.1]).

5. Special values of zeta functions and periods of Eisenstein series

In this section we introduce various zeta functions and we show how their special values are
related to certain periods on Eisenstein series.

5.1 The zeta function twisted by an additive character

Let K be a real quadratic field with discriminant D and fix a positive integer f coprime to D.
We let OK(∞)× stand for the group of totally positive units of OK .

Definition 5.1. Let a be an integral OK-ideal. We define

Ψ(a, f, w1, s) := NK/Q

(
a

f
√
D

)s ∑
Γa\
{

06=µ∈ a
f
√
D

}

w1(µ)e2πiTrK/Q(µ)

|NK/Q(µ)|s
,

where Γa =OK(∞)× ∩ (1 + fa−1) and w1 is the sign character given by sign ◦NK/Q.

It is easy to see that the first entry of Ψ depends only on the narrow ray class modulo f , i.e.
for a, b ∈ IOK (1) if a∼f b, then Ψ(a, f, w1, s) = Ψ(b, f, w1, s).

For any point τ ∈Hp ∩K we let Qτ (x, y) =A(x− τy)(x− τσy) =Ax2 +Bxy + Cy2

(A, B, C ∈ Z, A> 0 and (A, B, C) = 1) be the primitive quadratic form associated to τ .
We always have the formulas NK/Q(Λτ ) = 1/A and cond(Oτ )2D =B2 − 4AC where Qτ (x, y)
=Ax2 +Bxy + Cy2 and cond(Oτ ) is the conductor of the order Oτ .

Let ÃΛτ be an integral OK-ideal where Ã ∈ Z>0 and τ ∈Hp ∩K. Note that A|Ã where
(1/A) = NK/Q(Λτ ). A direct calculation shows that

Ψ(ÃΛτ , f, w1, s) =−
∑

〈ητ 〉\{(m,n)∈Z2\(0,0)}

sign(Qτ (m, n))
|Qτ (m, n)|s

e(−2πi(Ã/A)n)/f , Re(s)> 1, (35)

where ητ is the matrix corresponding to the action of the generator ε > 1 of Γ
ÃΛτ

=OK(∞)×

∩ f(ÃΛτ )−1 on the lattice Λτ with respect to the ordered basis {τ, 1}. The action of a matrix(
a b
c d

)
acting on the vector (x, y) is given by (ax+ by, cx+ dy). In the case where (Ã, f) = 1

one has that c≡ 0 (mod f) and d≡ 1 (mod f). In fact, one can show that 〈±ητ 〉= StabΓ1(f)(τ).
Based on the previous discussion we introduce the following zeta function.

387

https://doi.org/10.1112/S0010437X08003886 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X08003886


H. Chapdelaine

Definition 5.2. Let (r, τ) ∈ Z/fZ× (Hp ∩K). We define

ζ((r, τ), s) =−
∑

〈ητ 〉\{(m,n)∈Z2\(0,0)}

sign(Qτ (m, n))
|Qτ (m, n)|s

e−2πirn/f , Re(s)> 1,

where Qτ (x, y) =Ax2 +Bxy + Cy2 and 〈±ητ 〉= StabΓ1(f)(τ).

A direct calculation shows that if (r, τ) is equivalent to (r′, τ ′) under the action of Γ0(f),
then ζ((r, τ), s) = ζ((r′, τ ′), s). Let Ã ∈ Z and ÃΛτ be an integral OK-ideal. Let r be the image
of the integer Ã/A inside Z/fZ. Then from (35) one readily sees that

Ψ(ÃΛτ , f, w1, s) = ζ((r, τ), s).

Now we want to define a dual zeta function to ζ((r, τ), s) (dual in the sense of the functional
equation).

Definition 5.3. Let (r, τ) ∈ Z/fZ× (Hp ∩K). We define

ζ̂((r, τ), s) := f2s
∑

〈ητ 〉\(06=(m,n)≡(r,0) (mod f))

sign(Qτ (m, n))
|Qτ (m, n)|s

, Re(s)> 1, (36)

where 〈±ητ 〉= StabΓ1(f)(τ).

Note that the matrix ητ preserves the congruence (r, 0) (mod f).
There is a functional equation which relates ζ((r, τ), s) to ζ̂((r, τ), s).

Theorem 5.1. Let (r, τ) ∈ Z/fZ× (Hp ∩K). Then we have

−Fw1(s)ζ((r, τ), s) = Fw1(1− s)ζ̂((r, τ), 1− s), Re(s)<−1, (37)

where Fw1(s) = disc(Qτ )s/2π−sΓ((s+ 1)/2)2.

Proof. Note that the left-hand side of (37) makes sense when Re(s)<−1, since ζ admits a
meromorphic continuation to C (see [Cha, Corollary 8.1]). All of the essential ingredients
in the proof of the previous theorem can be found in [Sie68]. For a detailed proof, see
[Cha, § 8.3]. 2

By the previous theorem we can now evaluate the zeta function ζ̂((r, τ), s) at negative
integers. The key result concerning these special values is due to Siegel.

Theorem 5.2 (Siegel [Sie68]). For any even integer n≤ 0 we have that ζ̂((r, τ), n) is a rational
number.

Proof. In [Sie68], Siegel gives explicit formulas for the values ζ((r, τ), n) for odd integers n≥ 1.
These values are equal to a certain power of π times a rational number for which he gives an
explicit formula involving Bernoulli polynomials. Using the functional equation of ζ((r, τ), s) and
Siegel’s explicit formulas for the values of ζ((r, τ), n), where n≥ 1 is an odd integer, we deduce
the rationality of ζ̂((r, τ), n) for even integers n≤ 0. 2

5.2 Archimedean zeta function associated to a class in (Z/fZ×HOp (N0))/Γ̃0

In this section we want to associate to any class in (Z/fZ×HOp (N0))/Γ̃0 a well-defined
Archimedean zeta function. We first start by stating a useful elementary lemma.
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Lemma 5.1. Let τ ∈Hp ∩K such that (disc(Qτ ), p) = 1 and let

〈±γτ 〉= StabSL2(Z[1/p])(τ).

Then γτ ∈ SL2(Z) where γτ is well defined up to ±1.

Proof. See the proof of [Cha, Lemma 8.1]. 2

Remark 5.1. It is easy to show that if τ is reduced, i.e. if red(τ) = v0 where v0 is the standard
vertex on the Bruhat–Tits tree and red is the reduction map, then (disc(Qτ ), p) = 1. However, the
converse is false. We can therefore think of the reduced requirement as a finer notion compared
with the more naive condition (disc(Qτ ), p) = 1.

Proposition 5.1. Let (r, τ), (r′, τ ′) ∈ Z/fZ×HOp (N0) and assume that red(τ) = red(τ ′) = v0.

Then if (r′, τ ′) ≈ (r, τ), i.e. if there exists a γ ∈ Γ̃0 such that (r′, τ ′) = γ ? (r, τ), then we have

ζ((r, τ), s) = ζ((r′, τ ′), s) and ζ((r, τ∗), s) = ζ((r′, τ ′∗), s),

where τ∗ = 1/(fN0τ) and τ ′∗ = 1/(fN0τ
′).

Proof. Since τ and τ ′ are reduced we have γ =
(
a b
c d

)
∈ Γ0(f). It thus follows that ζ((r, τ), s)

= ζ((r′, τ ′), s). Let us show the other equality. A direct calculation reveals that(
d c/fN0

bfN0 a

) (
τ∗

1

)
=
(
τ ′∗

1

)
.

It follows that (r, τ∗) and (r′, τ ′∗) are Γ0(f)-equivalent and thus ζ((r, τ∗), s) = ζ((r′, τ ′∗), s). 2

We have thus succeeded to attach well-defined Archimedean zeta functions to any class of
(Z/fZ×HOp (N0))/Γ̃0. So far we have not used the level N0-structure built in HOp (N0). The
next object we define is a zeta function attached to a good divisor δ ∈D(N0, f) and a pair
(r, τ) ∈ Z/fZ×HOp (N0).

Definition 5.4. Let δ =
∑

d0,r
n(d0, r)[d0, r] ∈D(N0, f) be a good divisor and (j, τ) ∈ Z/fZ

×HOp (N0) with red(τ) = v0 and j ∈ (Z/fZ)×. Then we define:

(1) ζ(δj , (1, τ), s) :=
∑

d0|N0,r∈Z/fZ n(d0, r)ds0ζ̂((rj, d0τ), s);

(2) ζ∗(δj , (1, τ), s) :=
∑

d0|N0,r∈Z/fZ n(N0/d0, r)ds0ζ̂((−rj, d0τ
∗), s) where τ∗ = 1/(fN0τ).

With the help of Proposition 5.1 it is an easy exercise to show that ζ(δj , (1, τ), s) and
ζ∗(δj , (1, τ), s) depend only on the class of (1, τ) modulo ≈ when τ is reduced. We have the
formulas ζ(δaj , (1, τ), s) = ζ(δj , (a, τ), s) and ζ∗(δaj , (1, τ), s) = ζ∗(δj , (a, τ), s) for all a ∈ Z/fZ.

Remark 5.2. Note that there is a hat on zeta functions appearing on the right-hand side of
Definition 5.4(1) and (2). One can think of ∗ as an involution on the set Z/fZ× (Hp ∩K)
given by (r, τ) 7→ (−r, τ∗) where τ∗ = 1/(fN0τ). This involution ∗ allows us to relate our p-adic
invariant u(r, τ) to the Gross–Stark p-units; see [Cha07b]. If we restrict this involution to the
distinguished subset (Z/fZ)× ×HOp (N0, f), then we obtain a map

∗ : (Z/fZ)× ×HOp (N0, f)→ (Z/fZ)× ×HO∗p (N0)
(r, τ) 7→ (−r, τ∗),

where τ∗ = 1/(fN0τ) and cond(O∗) = f · cond(O). Note that if Qτ (x, y) =Ax2 +Bxy + Cy2,
then Qτ∗(x, y) = sign(C)(CN0f

2x2 +Bfxy + (A/N0)y2).
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5.3 The special values ζ∗(δ, (r, τ ), 1− k) as integrals of Eisenstein series F̃2k(r, z)

We would like to state a result which relates periods of Eisenstein series to special values of the
Archimedean zeta functions ζ(δr, (1, τ), s) and ζ∗(δr, (1, τ), s).

Proposition 5.2. Let (j, τ) ∈ Z/fZ×HOp (N0) where j ∈ (Z/fZ)× and red(τ) = v0. Then, for
all odd integers k ≥ 1, we have:

(1)

3ζ∗(δj , (1, τ), 1− k) =
∫ γτ∗ξ2

ξ2

Qτ∗(z, 1)k−1F̃ ∗2k(j, z) dz

= f2k−2

∫ γτ ξ1

ξ1

Qτ (z, 1)k−1F̃2k(j, z) dz;

(2)

3ζ(δj , (1, τ), 1− k) =
∫ γτ ξ2

ξ2

Qτ (z, 1)k−1F̃ ∗2k(j, z) dz;

where τ∗ = 1/(fN0τ), ξ1 =∞, ξ2 = 0, 〈±γτ 〉= StabΓ1(τ) with cτ + d > 1 for γτ =
(
a b
c d

)
.

Proof. The second equality of part (1) follows from (3). The proof of parts (1) and (2) is similar
to the proof of [DD06, Proposition 3.2]. For a detailed proof see [Cha, Lemma 9.2]. 2

6. P -adic zeta functions and p-adic Kronecker limit formula

Definition 6.1. Let δ ∈D(N0, f) be a good divisor and let (j, τ) ∈ (Z/fZ)× ×HOp (N0) such
that (disc(Qτ ), p) = 1. We define the p-adic zeta function

ζ∗p (δj , (1, τ), s) :=
1
3

∫
X
〈Qfτ (fx, y)〉−s dµ̃j{∞→ γτ∞}(x, y)

=
1
3
〈f〉−2s

∫
X
〈Qτ (x, y)〉−s dµ̃j{∞→ γτ∞}(x, y), (38)

where 〈x〉 denotes the unique element in 1 + pZp that differs from x by a (p− 1)th root of unity.

This zeta function makes sense for any s ∈ Zp and as usual 〈±γτ 〉= StabΓ1(τ).

Corollary 6.1. For an even integer n≤ 0 congruent to zero modulo p− 1, we have

(1− p−2n)ζ∗(δj , (1, τ), n) = ζ∗p (δj , (1, τ), n).

Proof. Combine Proposition 5.2(1) with Theorem 1.1(1). 2

Remark 6.1. We thus see that our p-adic zeta function interpolates rational values of the
Archimedean zeta function ζ∗(δj , (1, τ), s) at negative integers.

Lemma 6.1. The derivative (ζ∗p )′(δj , (1, τ), 0) at s= 0 is given by

(ζ∗p )′(δj , (1, τ), 0) =−1
3

∫
X

logp(Qτ (x, y)) dµ̃j{ξ→ γτξ}(x, y) where ξ =∞.
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Proof. This is a direct calculation using (38). Note that the integral over X of logp(Qfτ (fx, y))
= logp f2 + logp Qτ (x, y) is the same as logp Qτ (x, y) since the total measure is zero so that the
constant term logp f2 vanishes. 2

We can now deduce a p-adic Kronecker limit formula.

Theorem 6.1. Let (r, τ) ∈ (Z/fZ)× ×HOp (N0) with τ reduced, i.e. red(τ) = v0. Then

3(ζ∗p )′(δr, (1, τ), 0) =−logpNKp/Qp(u(δr, τ)). (39)

Proof. From Theorem 2.2 we have

logp u(δr, τ) =
∫
X

logp(x− τy) dµ̃r{∞→ γτ∞}(x, y). (40)

Replacing τ by τσ in the previous identity gives us

logp u(δr, τσ) =
∫
X

logp(x− τσy) dµ̃r{∞→ γτσ(∞)}(x, y). (41)

However, γτ = γτσ . Therefore, adding (40) and (41) and using Lemma 6.1 gives (39). 2

Proposition 6.1. We have 3ζ∗(δr, (1, τ), 0) = ordp(u(δr, τ)).

Proof. Combine Corollary 2.1 with Proposition 5.2(1) after having set k = 1. 2
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