COMPOSITIO MATHEMATICA

p-units in ray class fields of real quadratic
number fields

Hugo Chapdelaine

Compositio Math. 145 (2009), 364-392.

doi:10.1112/S0010437X 08003886

FOUNDATION The London | £\
COMPOSITIO Mathematical Q/\ /A
MATHEMATICA Society | 557

https://doi.org/10.1112/50010437X08003886 Published online by Cambridge University Press


http://dx.doi.org/10.1112/S0010437X08003886
https://doi.org/10.1112/S0010437X08003886

Compositio Math. 145 (2009) 364-392
doi:10.1112/S0010437X 08003886

H
©

N
7

p-units in ray class fields of real quadratic
number fields

Hugo Chapdelaine

ABSTRACT

Let K be a real quadratic number field and let p be a prime number which is inert in K.
We denote the completion of K at the place p by K,. We propose a p-adic construction
of special elements in K and formulate the conjecture that they should be p-units lying
in narrow ray class fields of K. The truth of this conjecture would entail an explicit
class field theory for real quadratic number fields. This construction can be viewed
as a natural generalization of a construction obtained by Darmon and Dasgupta who
proposed a p-adic construction of p-units lying in narrow ring class fields of K.
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1. Introduction

Let K be a real quadratic number field and let p be a prime number which is inert in K. Darmon
and Dasgupta proposed a p-adic construction of special elements u € pr where K, stands for
the completion of K at p. The present two authors have conjectured that u is a p-unit in L, i.e.
u € Or[l/p]*, where L is a suitable narrow ring class field of K. Moreover, they also predicted
that for all infinite places v of L, |u|, =1. Owing the last condition it is essential to assume
beforehand that L is a totally complex field, otherwise u = 1, thus the importance of working
in the narrow sense. In fact, it is not too hard to see that such a u # +1 is necessarily contained in
a C'M-field. As explained in the introduction of [DDO06], those conjectural p-units can be thought
of as analogues of classical elliptic units which are constructed by evaluating modular functions
at imaginary quadratic numbers. Darmon and Dasgupta also constructed a p-adic L-function
which interpolates Z-linear combinations of special values of partial zeta functions attached to
L/K and related it to their invariant u. This is the so-called p-adic Kronecker limit formula.
The first goal of this paper is to extend their p-adic construction to the case where L is a narrow
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p-UNITS IN RAY CLASS FIELDS OF REAL QUADRATIC NUMBER FIELDS

ray class field of K. The transition from a narrow ring class field situation to the case of a narrow
ray class field is a natural interesting question raised by Darmon and other experts and requires
some subtle refinements, but the main central ideas come from [DDO06]. The second goal is to
prove a p-adic Kronecker limit formula which allows us to relate the first derivative of a certain
p-adic zeta function to our p-adic invariant. The approach used to define our p-adic invariant is
similar to that developed in [DDO06], but it is more direct since the p-adic measures appearing
in our construction are known to be Z-valued rather than just Z,-valued. The analogue of this
result in the context of ring class fields was not available when the paper [DD06] was written,
but it was later proved by Dasgupta (see [Das07a, Theorem 1.3]) and this proof could be adapted
to the more general setting of ray class fields (see [Cha, Theorem 13.1]).

We now describe the construction of our p-adic invariant and its appearance in a p-adic
Kronecker limit formula. We first need to fix some notation and definitions. Let (p, Ny, f) be a
triple of strictly positive integers which are pairwise coprime and where p is a prime number.
Also, fix a pair (K, ) where K is real quadratic number field with ring of algebraic integers
Ok and M is an integral Ok-ideal such that O /M ~ Z/NyZ (‘Heegner hypothesis’). Finally, we
also require the prime number p to be inert in K.

DEFINITION 1.1. We define D(Np, f) to be the free abelian group generated by the symbols
{ldo, 7] : 0 < do|No,r € Z) fZ}. 1f 6 € D(Ny, f) we call f the conductor of § and Ny the level of 6.
A typical element 6 € D(Ny, f) will be denoted by

6= Z ’I’L(d07 T) [do’ ’I"],
d()|N(),7’

where the sum goes over dyg|Ny (dp >0) and r € Z/fZ with n(dy, r) € Z. We have a natural
action of (Z/fZ)* on D(Ny, f) given by j x [do, ] := [dy, jr] where j € (Z/fZ)* and we extend
this action Z-linearly to all of D(Ny, f). We use the short-hand notation

(5]' ::j*é.

Let 0 =% g Ny ez fz M(do, 7)|do, ] € D(No, f) be such that the integers n(do, r) are subject to
the following three conditions.

(1) If r =0 (mod f), then for all dy| Ny we have n(dy, ) =0.
(2) Forall r € Z/ fZ, 3 4N, 7(do, )do = 0.
(3) For all dy|Ny and r € Z/ fZ, n(do, pr) = n(do, r).

An element § € D(Ny, f) satisfying conditions (1)—(3) will be called a good divisor for the triple
(NOa fa p)

We want to associate Eisenstein series to any good divisor 6 € D(Ny, f). Let

(—1)k(27ri)k -1 6—27Timr/f
Ek(T, T) = <> Z —_—
(k—1)! ez (m+nfr)k
(0 ) (m,n)

—Bu(— 1
= k(kr/‘f)+ eIy Y m ey + (D ), ()

Iz
b—0 m>1n>1
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where Te H={x+iyecC:y>0} stands for the complex upper half plane, re€Z/fZ,
Tnrtb/f = e2min+0/f) and By (x) := By({x}) where By(z) is the kth Bernoulli polynomial and
0 < {x} < 1is the fractional part of 2. When k > 3 the convergence of the right-hand side of (1) is
absolute and therefore Fy(r, 7) is a modular form of weight k for the modular group I'; (f). When
k =2 the convergence is not absolute. Nevertheless, the corresponding g-expansion of (1) still
converges and therefore we take it as the definition of Es(r, 7). In the case where r # 0 (mod f)
and k = 2, one can show that Fj(r, 7) satisfies the correct transformation formula and therefore
corresponds to a holomorphic modular form of weight two for the modular group I'1(f). In a
similar way, we also define

i} (—l)k(QTri)k -1 e2minr/f
Ei(r, 1) = ( -
(k—1)! ( §:€Z2 (m + nt)k
(0,0)#(m,n)
_Bk r f wibr m
DD 2 8 S S i+ )
m>1n>1
The Eisenstein series Ey(r, 7) and Ej(r, T) are related by the formula
Eji(r, 7) = det(Wy)*Ey,(r, W) (Wyr)*, (2)
where W = (f 0 )

Next we want to associate Eisenstein series to a good divisor § € D(Ny, f).

DEFINITION 1.2. Let 8 =3, n, rez/ sz 7(do, 7)[do, ] € D(No, f) be a fixed good divisor. To any
integer k£ > 2 we associate the Eisenstein series

F]w;(T) = Z don(do, T)Ek(T, d()’]’) and Fk Fi Z d < >Ek (T dOT)
dolNo,T‘EZ/fZ d07

and
Frop(t) = Frs(r) = p* ' Frs(pr) and  Fjs(7) —p* ' Fji5(p7),

which are related by the formula

* 0 -1
Frs(Wen,T) = (—1)kaN0Fk,,§(T) where Wy, = (fNO 0 > . (3)
For every j € (Z/fZ)* /{(p), we set
Fi(r,2) = —12fFis,(2) and  Fiy(r, 2) = —12f Fys, 5(2),
and similarly we set

Fi(r, 2) == —12F}5 (2) and  Fj,(r, 2) = —12F; (2).

In the definition of a good divisor we have forced the condition n(dy,r) =0 for all dy|Ny
when 7 = 0 (mod f), because we want the function Fy(r, 7) to satisfy the correct transformation
formula, i.e. we want ﬁg(?‘, 7) to be a modular form of weight two. For a fixed integer k > 2,
we can think of {ﬁk(r, 2)}z)f2)% )y as a family of Eisenstein series indexed by elements of
(Z)fZ)* /(p). For any v € I'g(f) we have the transformation formula

Fk(’y*r, 1) (et + d)JC = ﬁk(r, T),
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where (2%) %7 :=dr (mod f). A similar formula holds for ]?’,: (r,7). As the divisor ¢ satisfies

condition (2), the constant terms of the g-expansions of Fy(r, 7) (respectively ﬁl;“ (r, 7)) vanish
at the cusps T'o(fNo){oo} (respectively I'g(fNo){0}) where oo stands for the cusp 1/0. It is ‘well
known’ that the period integrals

/C2 ZFy(r, 2) dz (4)

C1
are rational numbers, for ¢1, co € To(fNp){oo} and 0 <n < k. For explicit formulas of these
periods given in terms of Dedekind sums see of [Cha, Proposition 11.1].

We need to introduce some background about p-adic integration. Let
Xo=(Zp X Zp) \ (PLp X pZyp).
DEFINITION 1.3. Let A be an abelian group. An A-valued distribution on X is a map
w : {Compact open sets of X} — A

which is finitely additive, i.e. for any disjoint union, | J;_; U;, of compact open sets of X we have

M(szl ) - g w(U).

A distribution is said to be a measure if A can be chosen to be a bounded subgroup of Q,,.
Let
To:= { <(Cl Z) =~ € GLa(Z[1/p]) : det(y) > 0, c =0 (mod fNo)} .
Note that the orbit T'g{oo} = Io(fNp){co}.
The next theorem is the crucial technical ingredient for the definition of our p-adic invariant.

THEOREM 1.1. There exists a unique collection of p-adic measures fi,{c1 — c2} on (Q, x Qp) \
(0,0) taking values in 7Z and indexed by triples

(r, c1, ¢2) € (Z/ Z)* /(B) x To{oo} x To{oo},
such that:

(1) for every homogeneous polynomial h(x,y) € Zy[z, y] of degree k — 2,

[ ey difer = e} w) = (1= 92 [ bl DR d
X

c
(2) for all v € Ty and all compact open subset U C QIQ) \ (0, 0),

fir{cr — 2} (U) = fiysr{yc1 = 72} (YU);
(3) for every homogeneous polynomial h(x,y) € Zy[x, y] of degree k — 2,

co _
[ bwdinfa—alen) = [ b DEG0nz) d
ZpxZy c1
Proof. See §3. O
Remark 1.1. A similar statement is true if one replaces Fy(r, z) by FV,;‘ (r, z) and the orbit ['y{co}
by T'p{0}.
367
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Now we need to introduce certain notions in order to give a precise definition of our p-adic
invariant. Let H, =P!(C,) \ P*(Q,) be the so-called p-adic upper half plane endowed with its
structure of rigid analytic space and let K, be the completion of K at the prime p. Note that
H, N K # (). For certain pairs (r,7) € Z/fZ x (H, N K) we want to associate a p-adic invariant
u(r, 7) € K\ Let us fix an embedding K CR. For every 7 € K — Q we define the order O, as
Endg (A;) where A; is the lattice Z + 77Z. Let O be an order of K of conductor coprime to Ny
and let n =N 0. Note that O/n~Z/NyZ. A pair (r,7) € (Z]/fZ)* x (H, N K) is said to be
(O, n)-admissible if O =Or = On,r, Anyr =nA;, and if 7 — 77 >0 where o is the non-trivial
automorphism of K. When there is no need to specify the pair (O, n) we simply say that the
pair (r, 7) is admissible. In §4 we give some motivation for the notion of admissibility which
we develop further. We also introduce an important relation of equivalence on admissible pairs
which we denote by ~ (see Definition 4.4 and Remark 4.3). We are now ready to define our
p-adic invariant.

DEFINITION 1.4. For every admissible pair (r,7) € (Z/fZ)* x (H, N K) such that 7 is reduced
(see Definition 1.6), we define the p-adic invariant

w(dp, ) = ulr, ) ::pr{OOHWTOO} ]ég(a: —1y) dpip{oo — yro0}(z, y) € pr, (5)

where 7, is an oriented generator of the stabilizer of 7 under the action of I'; (see Definition 1.5),
i.e. 7, is chosen in such a way that it generates the quotient Stabr, (7)/(£1) ~Z and

(1) = ()

with € > 1. For any pair of cusps ¢y, ca € T'o(fNo){oo}, the quantity ¢,{c; — c2} is defined by
the following integral

c2

e — e} = 2%” ﬁg(’f’, T)dr, (6)

c1
where the complex line integral on the right-hand side is taken along the unique geodesic C' in
the complex upper half plane H connecting the cusps c¢; and cs.

Remark 1.2. One can define in an analoguous way a p-adic invariant u*(r, 7) by replacing the
Eisenstein series FJ, (r,7) in the statement of Theorem 1.1 by the Eisenstein series F}(r, 7).

It is explained in § 2 that the rational number ¥, {c; — c2} is, in fact, always an integer. Some
explanations about the multiplicative integral appearing in (5) are in order. This p-adic integral
is defined by

][(l’ — 1Y) dpiy {00 — yroo}(x, y) == lim (wy = Typ)r e e KX (7)
X =0 ey

where U is a cover of X by disjoint compact open sets, (zy, yy) is an arbitrary point of U € U,
and the p-adic limit is taken over increasingly fine covers . The product in (7) makes sense
since the measures fi,{c; — ¢} are Z-valued and not only Z,-valued.

The appellation p-adic invariant for the quantity u(r, 7) is appropriate in light of the following
theorem.
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THEOREM 1.2. Let (r,7) and (v, 7") be (O, n)-admissible pairs such that T and 7" are reduced
and

ye () = (enam) =) 2= (0 ) el
Then
u(r, ) =u(r’,7") (mod (KPX )tor)s (8)

where (K; Jtor = Hp2_1-

It is a natural question to ask whether (8) remains valid without the modulo (mod py2_1).
The author did not attempt to prove it but numerical examples suggest that this refinement is
true. Under a mild assumption on 7, one can show that (r, 7) ~ (+/, 7') if and only if there exists
a v €L such that v % (r,7) = (', 7') (see §4).

When O = Ok, we conjecture that the element u(r, 7) lies in the narrow ray class field K
of conductor f which we denote by K(foo). To be precise, assume that the minimal quadratic
polynomial with integer coefficients satisfied by 7 has the form

AT +Br+C=0, (A,B,C)=1, A>1
where Ny|A and B? — 4AC = disc(K).
CONJECTURE 1.1. Let L = K(foo)f7o¥/¢) where p = pOk and p is a prime ideal of K (foo)

above p. Then the element u(r, 7) € K is a ‘strong p-unit’ in L, i.e. an element of OL[1/p]*,
such that |u(r, 7)|, =1 for all infinite places v of L.

In §4.1 (see Conjecture 4.1), we propose a conjectural Shimura reciprocity law which describes
the action of Gal(K/K) on u(r, 7).

In §5 we introduce the zeta functions (*(0, (r,7),s) (respectively ((0, (r,7),s)) which
interpolates certain periods of ﬁk(r, 7) with respect to the cusp oo (respectively certain periods
of ﬁg(r, 7) with respect to the cusp zero). The reader should keep in mind the following:

periods of ﬁk(r, z)~> C*(6, (r,7), s) and u(r, 7),
periods of ]5,: (r, 2) ~ C(0, (r, 7), s) and u™(r, 7).
Finally, in §6, we prove a p-adic analogue of the Kronecker limit formula which relates our

p-adic invariant u(r, 7) to the first derivative at s =0 of a certain p-adic zeta function. More
precisely, we prove that:

(1) 3(C;)/(67 (T’ T)? 0) = _logp NKp/Qp (U(T, 7—));
(2) 3<* (67 (T’ T)? 0) = Up(”(rv 7—))7

where (;(d, (r, 7), ) is a p-adic zeta function interpolating the special values

(1 - p_QH)C* (57 (7“, T)v n)
for even integer n <0 such that n =0 (mod p — 1).

Here we want to point out that our choice of working with the periods of ﬁk(r, z) (with
respect to the cusp oo) rather than that coming from }NW,’: (r, z) (with respect to the cusp zero)
is not necessarily the best choice. For example, the formulas which relate the special values
of (4, (r,7),s) to the special values of classical partial zeta functions K are much simpler
than that showing up in the case of (*(4, (1, 7), s). Nevertheless, we have decided to work with
the periods of Fj,(r, z) rather than that coming from ﬁ,:(r, z) since this has the advantage of
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simplifying the formulas which relate the Darmon—Dasgupta invariant to the p-adic invariant
u(r, 7), see [Cha07b]. Note that in the special case where f =1, which was the case considered
in [DDO6], ¢, (0, (r, ), 5) = (p(0, (1, T), s), which becomes false when f > 1. This can be accounted
by the fact that the two cusps zero and infinity are inequivalent modulo I'y(f) when f > 1.

In [Das07b], Dasgupta proposed a conjectural p-adic construction of p-units lying in narrow
ray class fields of any totally real number field. In particular, his method allows him to construct
p-units in narrow ray class fields of a real quadratic number field K. However, his new method
is rather different from the modular symbols approach initiated in [DDO06] and that developed
here. One special feature of our modular symbols approach is the possibility of computing in
polynomial time the p-adic invariant u(r, 7) € K. For numerical examples which support the
conjectural algebraicity of u(r, 7), see [Das07a, Cha] and [Cha07a].

Notation

Let K be a real quadratic number field and O be a Z-order of K. Let O =7Z + wZ be the
maximal Z-order of K. Every Z-order O of K can be written uniquely as O = Z + nwZ where
n € Z~g is called the conductor of @. An O-module A C K will be called an O-ideal. An O-ideal
a will be called integral if a C O. By an invertible O-ideal we mean an (O-ideal A such that
Endg(A) ={A € K: A\ C A} = O. Note that if a and b are invertible O-ideals, then a N b is an
invertible O-ideal. However, if a and b are invertible O-ideals, then in general (a, b) :=a+ b is
not an invertible O-ideal. If ¢ is an invertible ideal and f is an integral O-ideal, then we say that
(¢, ) =1 if there exists two O-invertible integral ideals a, b such that ¢ =ab~!, a+f= O and
b+ f= 0. Given an integral O-ideal f we define the set

Io(f) :={b C K : b is an invertible integral O-ideal coprime to f, i.e. f + b= O}.

Consider the monoid In(1). For every integral O-ideal f we define an equivalence relation on the
monoid Ip(1) which we denote by ~j. Let a,b € Ip(1). We say that a ~;b if and only if there
exists an element A € 1 + fa=!, A >> 0 (totally positive), such that Aa = b. Note that if a ~;b, then
(a,f) = (b, f). The set Ip(1)/ ~j is a finite monoid. The set of invertible elements of Ip(1)/ ~j is
exactly Io(f)/ ~ By class field theory, the ideal class group Io(f)/ ~s corresponds to an abelian
extension of K which we denote by K (foo) where oo = 001009 corresponds to the product of the
two distinct real places of K. We call K(foo) the narrow ray class field of K of conductor f.

We let

(07

Po(foo) = {ﬂ

€ K10, 50,5 £0.(0,) = (30.) = O =4 (mod ). § >0 (9

It is easy to see that for a,b € Ip(f), a ~;b if and only if there exists a A € Po(foo) such that
Aa = b. We can thus think of In(f)/ ~5 as Io(f)/Po(foo).

Let p be a prime number which is inert in K. Instead of working with Z-lattices and Z-orders
of K, one could well work with Z[1/p]-lattices and Z[1/p]|-orders of K. It is an easy exercise to
see that all of the notions introduced previously are still valid in this setting. For any Z-module
M C C and a prime number p, we define M®) := M[1/p] ~ M ®7 Z[1/p).
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DEFINITION 1.5. For quantities p, f, Ny fixed, we define:
(1) To:={(2Y%) € GLI(Z[1/p]) : c= 0 (mod fNo)};
(2) To={y€To:det(y)=1};
3) T1={y€Tlp:a=1(mod f),c=0(mod fNy)};
(4) Ty ={y el :det(y)=1}.
For a fixed prime number p we let 7 = 7o U 77 be the Bruhat-Tits tree for PGL2(Q),) where 7
corresponds to its set of vertices and 77 corresponds to its set of edges. We let vg be the standard

vertex of 7 which corresponds to the homothety class of Z, ® Z,. Finally we let red : H, — T
be the reduction map.

I
I

DEFINITION 1.6. A point 7 € H,, is said to be reduced if red(7) = vo. This is equivalent to saying
that |7 —t|,>1fort=0,1,...,p—1and ||, <1, where | |, stands for the p-adic valuation on
C, normalized in a such a way that |p|, =1/p.

For a short introduction to the objects defined in the previous paragraph, see [Dar04, ch. 5].

2. Modular units and Eisenstein series

The results presented in this section relate periods of modular units with periods of Eisenstein
series. This was the initial point of view that was taken in [Cha]. We also explain how the p-adic
invariant u(r, 7) is related to a certain 2-cocycle k€ Z2(I'y, K)). All of the results presented
here can be found in [Cha]. The main result proved in this section is the proof of Theorem 1.2
which uses in an essential way the 2-cocycle k.

Let H* = H UPY(Q), f > 1 be a positive integer and let X (f)(C)=H*/I'(f) be the modular
curve with full level f structure. For a pair (r/f, s/ f) € ((1/f)Z)? we associate the Siegel function

.
G oy ) (7) = —2TCDOLID 220D 4 A TT (1 - qPg) (1 - qPq-),  (10)
n>1
where T € H, z = (r/ f)T + s/ f, 4¢r = €™, q. = €*™* By(x) = 2? — x + ¢ is the second Bernoulli
polynomial and By(z) := By({z}) with 0 < {z} <1 being the fractional part of z. The infinite
product (10) converges whenever Im(7) > 0. On [DK81, p. 36] it is explained that the function
g(,./ﬁs/f)(T)le is a modular unit on X (f)(C), i.e. a meromorphic function on X (f)(C) with its
divisor supported on the set of cusps of X(f)(C). Let Ny > 0 be a positive integer prime to f
and let do| Ny, do > 0. Consider this special case of Siegel functions

iB (r/f) n n
9(r/£,0) (dOfT) = q]%doj— (1 - q'f‘dQT) | | (1 - qufTQT'dQT)(l - Qdof»rqfrdm—)'
n>1

Let 6 =3 g Ny rezy sz ™(do, 7)[do, 7] € D(No, f) be a good divisor. We define a family of modular
functions, indexed by j € (Z/f7Z)*, by the formula
B, ()= ] e/ .0y (do fr) 12 (dodm) (11)
do‘Ng,'f‘EZ/fZ

Owing to assumption (3) in Definition 1.1, 85 .(7) = Bs,(7). Therefore, we can think of the
functions fs;(7) as being indexed by the cosets j € (Z/fZ)*/(p). Using assumption (2) of
Definition 1.1, a direct calculation shows that the function (;;(7) is invariant under the
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substitution 7+ 7 for all vy € I'1(f) N To(f No). In particular, the function 35, (1) may be viewed
as a modular unit of level fNy. Moreover, for all ¢ € I'o(fNo){oo} one has that s (c) =1
(this uses assumption (2)), so that s, (7) is holomorphic on the set of cusps I'o(fNo){oc}
={a/c: (a,c) =1 and (fNp)|c}. Here, oo stands for the cusp 1/0.

The definition of ﬁk(r, 7) of the introduction was motivated by the following proposition.

PROPOSITION 2.1. Let 6 =3, n, rez/ sz M(do, 7)[do, 7] € D(No, f) be a good divisor. Then
when the weight k is equal to two, we have:

(1) dlog Gs,. (1) = Qwiﬁg(r, T)dT;
(2) dlog fs, p(7) = 27riﬁ2,p('r, T)dr.

Proof. This is a straightforward computation. O

2.1 Construction of a modular symbol

Let M = Divg(T'o(fNy){oo}) denote the group of degree-zero divisors on the set T'o(fNy){oo}.
Note that M has a natural left action by I'o(fNo). A partial modular symbol with values in
an abelian group A is simply a group homomorphism from M to A. If ¢ is a partial modular
symbol and ¢y, ca € To(fNo){oo}, then we write

P{c1 — ca} or Y[m] for ¥([c1] — [c2]), where m = [c1] — [c2] € M.

Assumption (2) of Definition 1.1 implies that the differential dlog s, (7) on H* is holomorphic
at the points of the set I'g(fNp){oo}. Thus, we may define a family of partial modular symbols
Yy, indexed by r € (Z/fZ)* /(p), by the rule

o1 — e} = —— / " dlog 5, (7), (12)

27t Jo,

where the complex line integral on the right-hand side is taken along the unique geodesic C' in
H* connecting the cusps ¢; and co. The rational integer ¢,.{c; — c2} may be understood as the
winding number of the closed loop G5, (C) around the origin in the complex plane.

Remark 2.1. In light of Proposition 2.1 we see that (12) coincides with (6).

The partial modular symbol ¢, is T'o(fNp)-invariant in the sense that for all v & I'o(fNo)
one has

Ur{cr — o} = @DV*T{VCl — e}, (13)
where, for y=(2%), y%j=dj(mod f). The identity (13) follows directly from the
transformation formula s, (y7) = B35, (1) where v € I'g(f No).

We define the p-stabilization of (5, (7) to be

_ Ps.(7)
/85r7p(7_) T ﬁ&r(pT)

Using the infinite product of s, ,(7) and assumption (3) of Definition of 1.1 one can show that
Bs, p(T) is Up m-invariant, i.e.

pt T+ k
U, ,m(ﬁ r,p(T)) = B .3 U M B, r,p(T)' (14)
pm (05 k1;[0 5 ( » ) 5
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(The index m of U, p, stands for multiplicative.) For a proof of (14) see [Cha, Proposition 3.5
and Remark 4.7]. Moreover, for all ¢ € I'g(fNg){oo}, one also has 35, ,,(c) = 1.

The family of p-stabilized modular units {85, ,(7)}je(z/fz)* /(p) gives rise naturally to a family

of fo—invariant partial modular symbols with values in the abelian group of Z-valued measures
on P}(Q,). In order to make the previous statement precise, we need to introduce some notation.

The group of matrices

aL; <Z BD - {7 € Ly <Z BD : det(y) > o}

acts naturally on P!(Q,) by the rule z — vz = (az + b)/(cz + d), where y = (2 %) € GL3 (Z[1/p])
and z € P1(Q,). We define a ball in P1(Q,) to be a translate of Z, by some element of
GLJ (Z[1/p]), i.e. a ball in P}(Q,) is a set of the form

Ly = {yz €PY(Qy) 1z € L},
where v € GLJ (Z[1/p]). We denote the set of all such balls by B.
THEOREM 2.1. There exists a unique system of Z-valued measures on P1(Q,), indexed by triples
(Z/fZ)"/(p) x To{oo} x To{oc}
satisfying the following properties (for all (r, ¢y, ¢3) € (Z/fZ)* /(p) x To{oo} x To{oo}):
(1) prier — e} (P! (@p)) =0;
(2) prier — e2}(Zp) = (1/2xi) [ dlog Bs, p(7);
(3) (To-invariance property) for all v € Ty and all compact open U C P! (Qp) we have
prxr{yer = ve2}(VU) = pr{cr — 2} (U).

Proof. The key idea is to use the Up, p,-invariance of the modular units s, ,(7). The latter
property can be used to ‘package’ these various winding numbers into a family of p-adic Z-valued
measures on P*(Q,). For a proof, see [Cha, Theorem 5.1]. O

The following lemma states that the system of measures g appearing in Theorem 1.1 lifts the
system of measures p appearing in Theorem 2.1.

LEMMA 2.1. For all compact open U C P1(Q,) we have
mei{er = }(U) = fi{er — e} (77 H(U)) = py{er — e2}(U),
where 7 : X — PY(Q,) is the Z, -bundle given by (z,y) + x/y.
Proof. See [Cha, Proof of Lemma 6.1]. O

2.2 Construction of a 2-cocycle
The family of measures constructed in Theorem 2.1 will enable us to construct a 2-cocycle
k€ Z%(Ty, K)) .
Let 6 € D(Ny, f) be a fixed good divisor.
DEFINITION 2.1. Let r € (Z/fZ)*, c1, 3 € [o{oo} and let 1y, 75 € H, N K. We define

t— T
/ / dlog G5, p(2) / . log,, <t—7§> dur{c1 — ea}(t),
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where y1,{c1 — c2} is the measure of Theorem 2.1 for the modular unit 35, (7). Since the measures
pr{c1 — co} are Z-valued it makes sense also to define the multiplicative integral

T2 [e2 d i t; — T2
[ it == o, TI(22

1 i

i

) pr{c1—e2}(Us)

where t; is an arbitrary point of U; and the limit goes over a set of covers that become finer
and finer.

DEFINITION 2.2. Let 7 € H, N K, and fix c € To{oo} and r € (Z/fZ)*. Then for all 41, ~2 € L
we define

YT [Y172€ «
"ic,(r,‘r)(")/la '72) ::f / dlog ﬂ(sr,p(z) € Kp .
T ~1c

We let the group Ty act trivially on K.

PROPOSITION 2.2. The 2-cochain k() € 02(f0, K)) is a ‘twisted’ 2-cocycle satisfying the
relation

(dhc,(r,r)) (V1,725 13) = Fie,(ryr) (Y2, 98) = K (31 ) (725 73)
for all 1,2, 73 € fo.
In particular, (dk. (rr))lF, =0, Le. ke rr)lf, € Z2(T'y, K)).
Proof. See [Cha, Proposition 5.7]. O

2.3 Explicit splitting of a 2-cocycle
DEFINITION 2.3. To each v €7y (set of vertices of the Bruhat-Tits tree for PGL2(Q))) we

associate a well-defined partial modular symbol m,{c; — c2} on the set of cusps To{oo} taking
values in the set of [g-invariant Z-valued measures on P1(Q,). We define

1 [
My r{c1 — c2} = 3 / dlog B35,(2), My ysr{ver — ve2} = myr{c1 — 2},
C1

where v € V(T), v € Lo, 7 € (Z/ fZ)* /{p) and c1, ¢3 € To(fNo){oo}.
Note that the assignment v — my, ,{c1 — c2} satisfies the harmonicity property

Z mv’,r{cl - C2} = (p + 1)mvﬂ~{61 — 62}.
d(v’',v)=1

The last equality comes from the fact that Fy (r, z) is an eigenvector with eigenvalue (1 + p) for
the Hecke operator T>(p) (see [Cha, Equation (4.19)]).

The next theorem gives an explicit splitting of the 2-cocycle appearing in Definition 2.2.

THEOREM 2.2. Let T€e HyN Ky, r € (Z/fZ)*, v € ') and v =red(7). Define

Pe(rr) (V) == pm”{ﬁ%)}]ég (x — 1y) dpir{c — yc}(z, y). (15)

Then pe (rr) € Cci(ry, K)\) is a 1-cochain such that of dp. (. .) = K

¢, (r,)"

Proof. The proof uses in an essential way Lemma 2.1 and property (3) of Theorem 1.1. For a
detailed proof see [Cha, Theorem 6.2]. O
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Remark 2.2. For an admissible pair (r, 7) one has that p (.- (77) = u(r, 7).

COROLLARY 2.1. Let (r,7) € (Z/fZ)* x H,N K be an admissible pair such that red(r) = vy.
Let v €T';. Then

Ordp(Pc,(r,r)('Y)) = Myy,riC— YC}. (16)

Proof. This follows directly from the definition of p, (7). O

2.4 Proof of Theorem 1.2

Theorem 1.2 will be a direct consequence of the next two propositions.
PROPOSITION 2.3. For 7 € H, N K let
I';={yeli:yr=1}

Let pe,(r,r) be the 1-cochain appearing in Theorem 2.2 when viewed as an element of Z4(Ty, K)).
Then pe (r|r, , modulo Hom(I'y, K)|r, ., does not depend on the base point ¢ € I'p{co}.

Proof. Let z,y € I'1{oo}. We want to show that
Pz, (r,T) ’FLT = Py,(r,7) ’FLT € Hom(Flv K;)’FI,T = Zl(Flv K;)’FI,T.

This is equivalent to showing that (dp, (.))Ir,, — (dpy,r)r,, =0. The previous equality
means exactly that (kg (,7) — Ky 7))y, = 0. Let us compute as follows.

Let 41, v2 € I';. We have

V1T Y1727 1T [Y17Y2Y
K, (r,1) (’713 ’72) — Ry, (r,7) (717 72) = / / dlog ﬁ& p(z) - / / dlog ﬂ&»,p('z)

7z "y

N LNY NT FYY2Y
/ / dlog G5, p(2) — / / dlog Bs, p(2)
Nz T Iy
YT [Y1Y Y1Y2T [fY17Y2Y
/ / dlog f3s, »(z / / dlog Bs, p(2)
Y1T Y1722

YLV2T fYLV2Y
/ / dlog G5, p(2).
YT Y122

Now applying v, ! to the bounds of the third term of the last equality (note that ~; Ler= T)
and setting

YT
Cry(y / / dlog B35, p(2) € C*(I'1, K)),
we obtain

Ko () (V15 72) = Koy () (V1 72) = Cay(11) — Coy(1172) + Coy(72) = (dezy) (11, 72).
We have thus proved that d(p, (r.r) — py,(rr) — Czy)lr, = 0. So

Px,(r,7) — Py,(rr) — Cay € Hom(Fl, K;)
Finally, evaluating at v, and using the fact that ¢, (y-) = 0 proves the proposition. O

PROPOSITION 2.4. The abelianization of T'y, i.e. (I'1)® =T'1/[['1,T1] is a finite group.

Proof. See [Men67] and [Ser70]. O
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COROLLARY 2.2. The group Hom(I'y, K)°) is a finite abelian group of exponent dividing
#(Kx)tor :p2 -1

Remark 2.3. Note that the Proposition 2.4 is obviously false if one replaces I'; by the larger
group I';.

Proof of Theorem 1.2. Let (r, T) be an admissible pair. Let U C (Q, x Q,) \ (0, 0) be a compact

open subset, let ¢1, co € I'g and let v = ( é IB) ) € fo. A direct computation which uses property (2)

of Theorem 1.1 shows that
f @ dicta o) = f (O +D)a=m0) diwlier = sabw ). (7
Y

Now let (r,7) and (1, 7') be admissible pairs as given in the statement of Theorem 1.2. By
assumption there exists a 1 €Tg such that nx(r,7)=(+', 7). Since 7 and 7’ are reduced
we see that n € o N GLy(Z,) =To(fNo). Note that v =nvy,n~' where 4, and 7,/ are as in
Definition 1.4. Let £ = noo. We have

U(T,7 7—/) = Poo,(r',1") (V) = pf,(r’,T’)(fyT’) (mod 'uprl)a

where the last equality follows from Proposition 2.3 (v, € I'; ) and Corollary 2.2. Now let us
compute directly pg v ) (77/). We have

pe (oo 2y (1) = pTor 77718 ]ég(w —7'y) djip {§ — 1 &}z, )
= pvo.r{oo—yroc} ][ (z — 7y) dir{oo — vr00} (2, y),
X

where the last equality uses (17) and the T'g-equivariance of the modular symbol My 1€ — V&L
This concludes the proof. O

3. Proof of Theorem 1.1

This section is devoted to the existence of the system of measures which appear in Theorem 1.1.

The proof is technical and long but essentially it follows the same lines as that given in [DDO06].
We only prove in detail the new ingredients which are not straightforward adaptations of [DDO06];
for a more detailed version of the proof see [Chal. The uniqueness of the family of measures follows
easily from properties (1) and (2). It remains to show the existence of such a family. We first
prove the existence of a family of measures which satisfy properties (1), (2) and (3) under the
weaker assumption that they take values in Z, rather than Z. We divide the proof into five steps.
We let € =a/c e To{oo} where ptcand j € (Z/fZ)* /{p) and write e j = fj{& — oo}

First step. There exists a unique family of Z,-valued measures on Z, x Z, which satisfies the
property

/ Mawwm@wﬁqum“%/mh@nﬁmam&
Lip X Lp 13
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A direct computation shows that

100
In,m(j) = / $nymd:u£,j($v y) = (1 - pn+m) / ZnFn+m+2(jv Z) dz
Zp XLy 13

S () (o) o

=0

— ir (mod
x> nlde, n)dg DL (a, e/do) (18)
d()|N(),?“EZ/fZ

for all integers n, m > 0, where

D;ngd f)(a’ C) — 51 Z Bs(:/c) Bt(f;a/c)‘
1<h<c
h=r (mod f)

The second equality follows from [Cha, Proposition 11.4] which provides explicit formulas for
the rational periods of FJ,(j, z).

The key tool in showing the existence and uniqueness of { ;} is the following result, which
is a two-variables version of a classical theorem of Mahler.

LEMMA 3.1. Let by, € Zy, be constants indexed by integers n, m > 0. There exists a unique
measure (i on Zy X Zy such that

/szzp (i) <i> du(x, y) = bm-

For any 0 <n and 0 <¢<n, define the rational numbers c,; via (ﬁ) =>", cmmi. For
J€(Z/fZ)*/(p) we let

n m
Jn,m(]) = Z Z Cn,icm,i’ji,i’ (J)
i=0 i'=0
So in order to show that the measures p¢ ; are Zy-valued, it is enough to show, by Lemma 3.1,
that Jy,m(j) € Z,. The way that this is proved is by interpreting the quantity .J,, ,,(j) as the
partial derivative of a certain rational function. More precisely,

Iuni) = () (%) bl

m z
where (z, w) = (1/u, u*“v'/¢), D,y = w(8/0w), D, = 2(d/9z) and H?(u,v) is a rational function
in Z,(u'/¢,v'/¢). For the exact definition of H(u, v), see [Cha, Equations (12.9) and (12.10)].

Now the p-integrality of J,, () is a direct consequence of the following lemma.

LEMMA 3.2. Consider the subring R of Z,(u'/¢,v'/¢) defined by

P
R:= {Q : P, Q € Zpu!®, v"/] and Q(1,1) € Z }
Then R is a ring stable under the operators (DT;L”) and (%). Furthermore, H; (u, v) € R.
The proof of Lemma 3.2 is identical to the proof of [DDO06, Lemma 4.11] (see also
[Cha, Lemma 12.2]). O
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Second step. There exists a unique family of partial modular symbols {v;} je(z/ )% ) (p) Supported
on the set of cusps I'g(fNo){oo} of Z,-valued measures on Z, x Z, such that

[ b= shen == [ b0 d:
ZpXZLp r

for v, s € To(fNo){oo} and for every homogeneous polynomial h(z,y) € Z[z, y] of degree k — 2.
Furthermore, if y=(2%) € To(fNo), then v;{r — s}(U) = vyuj{yr — 75} (7U), i.e. the system
of measures is I'g( f Ny)-invariant.

The proof of this step uses step 1. The argument is identical to the proof of [DD06, Lemma
4.13] (see also [Cha, Lemma 12.4]). Note that the I'g( f Np)-invariance boils down basically to the
transformation formula Eg(y %7, v7)(ct 4+ d)™% = Ey(r, 7) where v = (25) € To(fNo).

Third step. Let r, s € I'{oo}. The measures v;{r — s} constructed in step 2 satisfy the following
formula

[ b vyt = s = [ 0Byl o) s
Ly X Ly T

for every homogeneous polynomial h(x, y) € Z[z, y| of degree k — 2.

The proof of this step uses step 2 and follows the same lines as the proof of [DDOG,
Lemma 4.14] where [DD06, Lemma 4.15] is replaced by the following lemma.

LEMMA 3.3. Let s,t > 1. For any rational number a/c (p could divide c¢), we have inside Q,, the
identity

Jim DL e 0) = D™ Dase) =y DL D ),

The proof of Lemma 3.3 is different from the proof of [DD06, Lemma 4.15] since we do not
use reciprocity formulas for Dedekind sums. For this reason we have decided to include it.

Proof of Lemma 3.3. Let x =a/c € Q with (a,c) =1 and assume first that ptc. Let b be an
integer such that abp =1 (mod ¢). Note that

r (mo _ és g
D N gty Bolon/) Bufe) )
1<i<c 5 t
I=ar (mod f)
Therefore,
; By (p—1ypi (Ibp/) By(1/c
r (mod 5— _ s+(p—1)pi \LOP t( / )
Dsi(p_1{;j7t(a’ c)=c I+(p—1)p’ Z p ; t (20)
1<i<c¢
I=ar (mod f)

and, similarly,

By (p-1y (Ib/) By(1/c)
r (mod f) _s—1 s+(p—1)pi t
DSprl)pj’t(pa, c)=c Z . o (21)
1<i<c
I=ar (mod f)

Write y = {lbp/c} and 3 = {Ib/c}. Since ¢® VP — 1, then subtracting p*~! times (21) to (20)
we see that it suffices to prove that

lim Bs+(p_1)pj (y) = By (y) - ps_lBs (y/) (22)

J—00
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For s > 0, this follows from the proof of [You01, Theorem 3.2]. In the course of the proof of [You01,
Theorem 3.2], Young obtains for any positive integer b coprime to p the congruence

s— —1)pd
(bs+(p71)pj _ 1)BS+(p—1)pj (z) —p*~ @ Dé Byt p1)pi (')
s+ (p—1)p/
Bs _ S_IBS / )
e — 1) B ’; ) — 0 (mod Pz, (23)
where 2’ is such that pz’ —x€{0,1,...,p—1} and s> 1. The denominator of B, /n at p is

well behaved. If (p — 1) {n, then B, /n is p-integral. If (p — 1)|n, then vy(Bn/n) = —1 — vp(n).
Using the previous observation it follows that lim;_, ., pP=1p’ By (p—1)pi (z") = 0. Letting j — oo
in (23) we obtain that

Bs B (x Bs _ sleS !

Jj—00 S S

(24)

When s > 1 we can always choose b such that b° — 1 # 0. Therefore, we can cancel the two factors
b* — 1 in (24) to obtain (22). It remains to treat the case where s = 0.

We have v,(y) > 1. Let g = (p — 1)p’. Note that

By(y) = Zg: (Z) Byy™"

k=0

! g— 1\ B
— .9 T\ Z2Ekg—k B 2
v GG Te) o &
If (p— 1)1k, then By/k € Zy. If (p — 1)|k, then we can write k= (p — 1)p“m with (m,p)=1.
So vp((Br/k)y?™*) > —1 —u+ (p — 1)p* > 0 since p’~* — 1 > m. We thus deduce from (25) that
limj oo Bp—1)pi () = Bp-1)pi-

Let w be the Teichmiiller character at p. If we look at Ly(s) the p-adic L-function twisted by
the trivial character, we have the formula

Lyl —m) = (1w (p)p" )

Here w™" means the primitive character associated to w™" (so w™"(a) is not necessarily equal

to w(a)™™). So letting n = (p — 1)p/, we have w™"(p) = 1 and we obtain

. ; B j
—1)pi— (p=1)p?
Ly(1— (p—1)p) = —(1 — pp~Dp’ =1y ~e=1p?
o1 (o~ 1p) =~ i
Now we know that limg_,1(s — 1)L,(s) =1 — 1/p. So letting j — oo we obtain
. 1
5 oo =17

This proves the claim for s =0.

We need to treat now the case where p|c. This case turns out to be simple. Let us prove the
following elementary lemma.

LEMMA 3.4. Let h be any integer and 0 # ¢ € Z such that p|c. Then we have the following:
(1) limj_eo 9By g(h/c) = By(h/c), if (h,p) = 1;
(2) limj oo ¢T9B, 4(h/c) =0, if p|h,

where g = (p — 1)p’.
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Proof of Lemma 3.4. Let us prove the first case. We have

s+g
Cs+g§s+g <h> = <S + g> hs+g k k
C

]

s s+ s+g s+
_ < kg>Bkh5+g_kck+ > ( kg)Bkh”g—kck. (26)
k=0 k=s+1

Now since |c|, <1, |hl, =1,](})|p <1 and | By, < p, the limit in (26) when j — oo exists. Since
(h, p) =1 the limit of the first term is ¢*Bg(h/c) and the limit of the second term is zero. This
proves the first part of the lemma.

Assume now that p|h. If v,(h) >wvpy(c), then h/c€Z, In this case we know that
lim;j o0 Bs+(p 1)pi (h/c) exists by (22). Finally since p|c it follows that lim; ., ¢ st s+g(h/c) =0.
Assume now that v,(c) > vp(h) =m > 1. Then by the first part of the Lemma 3.4 we know that
1m0 (¢/P™)* 19 By o ((h/p™)/(c/p™)) exists. Tt follows lim; oo ¢*9Bsy,(h/c) =0 since m >
1. O

With Lemma 3.4 it is now easy to prove Lemma 3.3 for the case where p|c. We have

mod f : 15 h\ = (ah
b 005 = i Y et (1) ()

g=oeo 1<h<e
h=r (mod f)
h\ ~ (ah
_ Z “ 1B, 1( >Bt<a > (27)
1<h<e ¢
h=r (mod f)
(p,h)=1
On the other hand, we have
D;gmod ) (a7 C) _ ps_ng;lr (mod f) (pa, C)

_ DZ,EmOd ) (a’ C) . ps_lDS;IT (mod f) (a C/p)
s—1
_1(c ~ h \ =~ [ ah
2 o) E () (G)RE)
1<h<c 1<h<c/p p p P
h=r (mod f) Ly (mod f)
3 e (a) x5
1<h<c ¢ 1<h<c ¢
h=r (mod f) h=r (mod f)
h=0 (mod p)
ah
- 2 m(0)a(T)
c
1<h<c
h=r (mod f)
(p,h)=1
Compare with (27). This concludes the proof of Lemma 3.3. O

Fourth step. Let r, s € I'{oo}. The measures v;{r — s} are supported on X.
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Proof. Let v=(%%) €To(fNo) and set pu(y,z):=(cz+d). Let h(z,y)€Zlz,y] be a
homogeneous polynomial of degree k —2=m + n — 2. Then

[ et s = [ b)) dylr— s o6 )
Y(ZpxZy ) Zp XL

— / Wy 9)) dv 1y (e — s} ()
Zp XLy
-1

Y S ~
- / h(vz Dy, 202 Fop(y" %, 2) de
Y

= / Wz, V(v 2) D, (v x g,y 2) d(yLe).

Let M(p) C M2(Z) be the set of primitive matrices of determinant p. Let

(=G ),
771 Ci dz i
be a complete set of representatives of SLa(Z) \ M (p). Then we have

p+1
T( )Ek J,z)= k IZEk iJs 772 (niaz)_kv (28)

where T (p) stands for the Hecke operator at p. For some background about Hecke operators in
this context see [Cha, §4.8].

Let P= (po) and {~; :( )}p+l be a complete set of representatives of T'g(pfNy) \
To(fNop). Note that the set {P’yz 1 pirl is a complete set of representatives of SLa(Z) \ M (p).
From (30) we deduce that

pt+1
: -1 —1 _\—(k=2) g/ —1
12fz *.7771, Z)/,L(Pyz 72) d(77, Z)
p+1
=Y n(do,r dOZEk airj, dov;  2)u(y;t 2) " E V(5 2)
d07
pHl
=Y n(do, r)do Y Ex(asri, pdo; 2yt 2) T Dd(y; 1 2). (29)
do,r i=1

As
Ek(?", VZ)N(% Z)i(kimd(’y ) Ek( * r, Z) dZ
for any v € T'g(f), we have that

Ex(airj, dov; "2)u(v; 7t 2) " 2 d(y; ' 2) = Byl * (airj), doz) dz
Ex(jr, doz) dz.

From [Cha, Equation (4.19)] one may deduce that

Ti(p)Ex(j, 2) = p" ' Ex(j, 2) + Ex(pj, 2). (30)
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Using the fact that (28) is equal to (30), that p(P~, z) = u(y, z) and pdoyi_lz = dqu/Z-_lz we
obtain
pt1

PP Bilairg, doPry; 2 u(y; s 2)d(v;  2)
=1
p+1
=Py B, doPr;  )u(Pr; )" 2d(Pa )

=1
= (Ti(p)Ex(rj, doz)) dz
= (pk_lEk(Tja doz) + Ek(ija doz)) dz.

Now because pxd =9 we find that
> n(do, r)do(p" " Ex(rj, doz) + Ex(pri, doz)) dz = (p*' +1) Y _ n(do, )do Ex(rj, doz).

do,r do,r
Substituting the last expression in (29) we find
—12f((p+1) = 1+ 1)) > n(do, r)do Ex(rj, do) = (p — P 1) Fi(j, 2).
do,r
Finally, note that Ufill Yi(Zp x Zyy) is a degree p cover of X. Hence, we obtain

p+1

p /X B, y) dvg{r =} y) = 3 / Wz, y) dvi{r —}(z, )

i=1 %(przg)

p+l g ~

N O R R O
=17

= (p-p" / h(z, 1) Fy (4, 2) dz
== [ b ot =)o)

_ /Z B ditr = )

Since this holds for any h homogeneous of degree k we obtain that the support of v;{r — s} is
included in X. O

Fifth step. Now we want to extend the measures v;{r — s} to the space Q2\ {(0,0)}. The
compact open set X is a fundamental domain for the action of multiplication by p on Q2 \ {(0,0)}

where by multiplication by p we mean (8 g ) (z,y) = (pz, py). Hence, if for a compact open U C X

we define

pi{r — sHU) :==vi{r — s}(U),
then fi;{r — s} extends uniquely to a I'g(fNo)-invariant partial modular symbol of Z,-valued
measures on Q2 \ {0} which is invariant under the action of multiplication by p:

pi{r — s}(pU) = pi{r — s}(U),
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for all compact open U € Q2 \ {(0, 0)}. This almost proves Theorem 1.1. It remains to show that
the modular symbol f; is ‘To-invariant’, i.e. for all compact open set U C QIQ) \ {(0,0)} and all

pairs of cusps r, s € fo{oo},
fiysj{yr — 15} (YU) = p{r — s}(U). (31)

Note that I'g = (Do(fNp), P) where P = (g?). By construction the modular symbol f; is
Lo (f No)-invariant therefore in order to show (31) it is enough prove it for the matrix P. This
is proved in exactly the same way as the proof of [DD06, Lemma 4.17].

Finally, it remains to show that our measures v;j{r — s} are Z-valued.

THEOREM 3.1. The measures ji;{co — a/c} take values in Z.

Proof. This result is an easy adaptation of the proof of [Das07a, Theorem 1.3]. The interested
reader may find all of the details in [Cha, § 13]. O

This concludes the proof of Theorem 1.1. O

4. From H to Z/f7Z X ’Hg (Np) and the Shimura reciprocity law

Let K be a real quadratic field and let p be a prime number inert in K. Let us fix an embedding
K CR and let Gk g ={1,0}. Choose a Z-order O C K and fix a positive integer N coprime
to p. In [DDO06] the authors associate to such data the set

HO(N) :=HO = {reH,: 0P =0F) =0 + 77 >0}, (32)
where O =Endg (A;) and A, =Z + 7Z.

Remark 4.1. Note that the notion involved in (32) differs slightly from that in [DDO06] since in
their setting O was assumed to be Z[1/p]|-orders instead of Z-orders. Therefore, there is no need

to tensor over Z[1/p]. One can verify that the set ’Hg) (N) is nonempty if and only if there exists
an O-ideal M such that O/ ~ Z/NZ; this is the so-called Heegner hypothesis.

We propose the following generalization of 'H](? (N).

DEFINITION 4.1. Let (No, f, p) and (K,I) be as in the introduction. Let O be an order of K
of conductor coprime to Ny and let n = O NN. To such data we associate the following sets:

(1) Z/fZ x H (No);

(2) Z/fZ x H (n);

(3) Z/fZ x Hy (No, f);
(n, f);

(4) Z/fZ x HS (n,
where
HO(m):={r e H,: 0P =08 =00 aA® =AY 777> 0},
HO (No, f) = {1 € Hp: 0P = OF) =00 (AP, fOP) =1,7 — 77 > 0},
and
HOm, f)={reH,: 0P =08 =0@ nA® =AY (AP, fOP) =17 —77 > 0}.
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Note that the notation (Asp ), f)=1 is equivalent to saying that (A, f)=1, where
Q- (z,y) = Az? + Bxy + Cy?. One has the two ‘stratifications’:

(1) ITa(Z/fZ x My (0)) = Z/ fZ x H (No);
(2) HW(Z/fZ x HY (0, f)) =L/ FZ x 1 (No, f);
where the two disjoint unions run over the elements of the set
{n <O :nis an invertible O-ideal and O/n ~7Z/NyZ}. (33)

DEFINITION 4.2. We have a natural left action of Iy on the set Z/fZ x H[(?(No) given by

a b at +0b
<C d> * (T‘, 7') = (d'f‘, C7——|—d> .
If there exists a v € g such that v % (r, 7) = (r/, 7/), then we simply write (r, 7) = (', 7).

We now define a map that allows us to go from the set Z/fZ x HE(NO, f) to the set of
integral O")-ideals.

DEFINITION 4.3. We define a map € (which depends on p and f)
1
QN:Z/fZ x Hp(No, ) — {Z [p] -modules contained in K of rank two},

by the rule
(r,7) — A AP,
where 0 # A, € Z~ is the smallest integer such that the following properties hold:
(1) 4, = (mod f);
(2) A,AY is 0@ integral;
where Q. (x,y) = Az? + Bxy + Cy? and OW) = EndK(A(Tp)).

Remark 4.2. In the definition of the map €, it is important to assume that 7 H,(No, f)
otherwise the integer A, does not always exist.

Now we introduce another equivalence relation, denoted by ~, on Z/ fZ x H]? (Np).

DEFINITION 4.4. Let (r,7), (7', 7") € Z/ fZ x Hp(No). We say that (r,7) ~ (', 7') if and only if
there exists a totally positive element

Ael+ fFEBAR)

such that (rAS)JAJ@gT) (N7 A )\?’A( P) ~7) where 7,77 are the unique integers such that
1<rm 7 < f,7=r(mod f) an d?/z (mod f)-

Remark 4.3. It is an easy exercise to see that the two stratifications (1) and (2) appearing at

the bottom of Definition 4.1 are preserved under the equivalence relation ~. In the case where
(r,7), (', 7') € Z/ fZ x HS (No, [) it is easy to see that (r, 7) ~ (1/,7') if and only if there exists
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a totally positive element A € 1+ fQ(r’, 7/)~! such that
(A AP, AAD )= AALAD AALAY ),
where 4, A" = Q(r, ) and A;,Ag) =Q(r', 7).

LEMMA 4.1. The equivalence relations induced by ~ and =, when restricted to the distinguished
subset (Z/fZ)* x HI(?(NO, f)CZ/fZ x Hg)(No), are the same.

Proof. See [Cha, §5]. O

COROLLARY 4.1. The stratification

(Z/FZ)* x Hy (No, f) = [ T(Z/ £2)* x H (n, f)) (34)
is preserved under =.

Define the set Mg (No, f, p) to be

1
{(L, M) : pairs of Z [} -modules of rank two in K, Endg (L) = Endg (M) = OW),
p

(L, fOP)) = (M, fOP)) =1 and L/M ~ Z/NOZ}.

We have a natural equivalence relation on M(Ny, f, p) which we denote again by ~, where
(L, M) ~ (L', M") if and only if there exists a totally positive element A € 1+ fL'~! such that
(L, M) = (L', \M").

PROPOSITION 4.1. There exists a natural bijection of sets, which we denote by v, between
w : ((Z/fz)x X H;?(N()v f))/ ~ MK(N07 f7 p)/ ~

where ([(r,T)]) == [(ATA(TP),ATA%T)] and A, A% =Q(r, 7). (The brackets denote the class
modulo ~.)

Proof. First define the map ¢ : (Z/fZ)* x HS (No, f) — Mg (No, f,p), by
G(r, ) = (AAP, 4,00 ),

where ATASP ) = Q(r, 7). A direct calculation shows that the map QZ descends to a well-defined
map when one goes to the quotient on both sides; we denote this new map by . Now let us
construct a ‘map’ going in the other direction. Let (L, M) € Mg (N, f,p). As (L, fO®) =1
there exists an integer a € Z-o such that a=1 (mod f) and alL is O®)_integral. We can
thus assume beforehand that L is O®)-integral without changing the class of modulo ~. Let
OW) =7[1/p] + Z[1/plw. As L/M ~Z/NyZ, there exists an ordered Z[1/p]-basis (wy,ws) of
L such that L =Z[1/p|lw1 + Z[1/plwz and M = Z[1/plw1 + Z[1/p]Nowa. We claim that we can
always choose w; in such a way that w; = integer (mod f). Let us prove this.

If w; =integer (mod f), then we are done. Let us suppose that wy # integer (mod f). In
this case one can assume without lost of generality that ws =a + bw where a,b € Z[1/p] and
b#0 (mod f), otherwise replace wy by ws 4+ wj. Now since Ny is coprime to f one can find
an integer k such that w; — Nokwy = integer (mod f). Then the new basis {wi, w2} where
w1 = (w1 — Nokws) and wy = wq satisfies the required property.
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Let wy =u (mod f) where u € Z. As (L, fO) =1 we have (u, f) = 1. Therefore, there exists
an o € O® such that aw; =1 (mod f) and aw; > 0. Note that o = u~" (mod f). Now we can
write the pair (L, M) as

o= o3[ o) (] 252
(ool i) 6l i)

Now set 7 =wsy/wy. Without lost of generality we can assume that 7 > 7% otherwise replace 7
by —7. Finally, we send the pair (L, M) on the pair (u,7) € (Z/fZ)* x H]?(NO, f). One can
check that this construction gives a well-defined map (when one descends to the quotient on
both sides) which is an inverse of . O

Let §® = fO®). Class field theory gives an isomorphism

Tow (FP)/ ~ 2> Gal(K (F P o0) /),

where K(f (p)oo) is the abelian extension of K which corresponds by class field theory to the
ideal class group I (f )/ ~;m - Note that K (f P)oo) = K (foo){FTe) where pO = g, K (foo) is

the abelian extension corresponding to the ideal class group Io(f)/ ~j and K (foo){F"e) is the
subfield of K (foo) fixed by the Frobenius at p. We set L := K (foo)F7e) .

Using Proposition 4.1 we see that there is a mnatural action of Gp,x on ((Z/fZ)*
x HS (No, f))/ ~ given by the following rule: let [(r,7)] € ((Z/fZ)* x HS (No, f))/ ~ and
Y[(r, 7)] = [(L, M)]. Now define

rec H(b) * [(r, 7)] == [(bL, bM)].

Note that this Galois action preserves the stratification (34). From this one sees directly that
this action is simple but, in general, not transitive since the indexing set of the stratification
might be of size larger than one.

4.1 Shimura reciprocity law

We are now ready to formulate the Shimura reciprocity law which describes the action of G on
u(r, 7). We assume in the next conjecture that the number field L is totally complex otherwise
the conjecture says nothing interesting.

CONJECTURE 4.1. Let (r,7) € (Z/fZ)* x HS (No, f). Then

u(r, 7)€ Oy, [;] N

where L = K(f (’)oo)<F o) o = pO. Moreover, we have a Shimura reciprocity law. Let

rec: GL/K - IO(f)/<QO(fOO)7 p>7
where f = fO. Then for o € G,/ we have

U(k, 7—)071 = u(klv T,) (mOd MpQ—l)v

where o x [(k, 7)] = [(K’, 7')]. Furthermore, if we let c,, denote the complex conjugation in G/,
then

u(r, 7)°° = u(r, 7')_1 (mod pi,2_1).
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Remark 4.4. In [DDO6], since the conductor f =1, one is led to consider various orders of K.
However, in our case, since f can vary, it is sufficient to consider only the case, where O = Ok . As
explained before the statement of the theorem, if we want our construction to be interesting, it
is essential to assume beforehand that L is totally complex. Let L = K (foo)¥7¢) where f = fOk.
Then class field theory implies that L is totally complex if and only if the index

o oo

is equal to one or two, where Og[1/p](foo)™ corresponds to the group of totally positive units
of Ok[1/p] congruent to one modulo f and Og[1/p](f)* corresponds to the group of units of
Ok [1/p] congruent to one modulo f. We expect u(r, 7) to be contained in the largest C'M subfield
contained in L which we denote by Lojys. In general the field Loys can be a proper subfield of L
of index two (see [ChaO7a, Proposition 7.1]).

5. Special values of zeta functions and periods of Eisenstein series

In this section we introduce various zeta functions and we show how their special values are
related to certain periods on Eisenstein series.

5.1 The zeta function twisted by an additive character

Let K be a real quadratic field with discriminant D and fix a positive integer f coprime to D.
We let Ok (00)* stand for the group of totally positive units of Ok

DEFINITION 5.1. Let a be an integral Og-ideal. We define

Y(a, f,w1,s):=Ng/g <f\a/5> i \{O;: }
a ,uef%

where I'y = Ok (00)* N (1 + fa~!) and w; is the sign character given by sign o Ngk/g-

wy (H)eQWiTrK/Q(u)

Nk /o(p)]®

It is easy to see that the first entry of ¥ depends only on the narrow ray class modulo f, i.e.
for a,b € lp, (1) if a~s b, then V(a, f, w1, s) =¥ (b, f,wr, s).

For any point T1€H,NK we let Q-(x,y)=A(x —71y)(z — 7°y) = Az? + Bxy + Cy?
(A,B,C€Z, A>0 and (A, B,C)=1) be the primitive quadratic form associated to 7.
We always have the formulas Ny g(A;) =1/A and cond(O;)?D = B? — 4AC where Q-(z,y)
= A2? + Bzy + Cy? and cond(O,) is the conductor of the order O,.

Let ﬁAT be an integral Og-ideal where Ac Z>o and 7 € H, N K. Note that A\g where
(1/A) = Ng/g(A7). A direct calculation shows that

@(KA_” fowy, ) =— Z We(—%i(g/z‘l)n)/f’ Re(s) > 1, (35)
e mmez\o)p "
where 7, is the matrix corresponding to the action of the generator € > 1 of FZAT = Ok (o0)*

N f(AA,)! on the lattice A, with respect to the ordered basis {7, 1}. The action of a matrix
(‘Clg) acting on the vector (z,y) is given by (az + by, cx + dy). In the case where (A, f) =1
one has that ¢ =0 (mod f) and d =1 (mod f). In fact, one can show that (£n;) = Stabp, () (7).
Based on the previous discussion we introduce the following zeta function.

387

https://doi.org/10.1112/50010437X08003886 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X08003886

H. CHAPDELAINE
DEFINITION 5.2. Let (r,7) € Z/fZ x (H, N K). We define

C((T, T), S) _ Z s1gn(Qr(m, Tsl)) 6727rirn/f7 RC(S) >1,
. Q7 (m, n)|
() \{(m,n)€Z?\(0,0)}

where Q- (z,y) = Az? 4+ Bxy + Cy? and (+n,) = Stabr, (7)(7)-

A direct calculation shows that if (r,7) is equivalent to (', 7') under the action of I'o(f),
then (((r, 7),s) =C((r',7'), s). Let A€ Z and AA; be an integral O-ideal. Let r be the image

of the integer A/A inside Z/fZ. Then from (35) one readily sees that
U(AA-, f, w1, 8) = (((r,T), 5).

Now we want to define a dual zeta function to ((r, 7), s) (dual in the sense of the functional
equation).

DEFINITION 5.3. Let (r,7) € Z/fZ x (H, N K). We define

8, ), 8) 1= 2 3 W, Re(s) > 1, (36)
(e )\(0#(m,n)=(r,0) (mod f)) T

where (£n,) = Stabr, (5)(7).

Note that the matrix 7, preserves the congruence (r, 0) (mod f).

o~

There is a functional equation which relates (((r, 7), s) to ¢((r, 7), s).

THEOREM 5.1. Let (r,7) € Z/fZ x (H, N K). Then we have

_Fw1 (S)C((’F, 7-)7 5) = le (1 - S)E((’I", 7_)7 1- 3)7 Re(s) < _17 (37)
where F, (s) = disc(Q,)¥?m~T'((s + 1)/2)2.

Proof. Note that the left-hand side of (37) makes sense when Re(s) < —1, since ¢ admits a
meromorphic continuation to C (see [Cha, Corollary 8.1]). All of the essential ingredients
in the proof of the previous theorem can be found in [Sie68]. For a detailed proof, see
[Cha, §8.3]. O

~

By the previous theorem we can now evaluate the zeta function (((r,7),s) at negative
integers. The key result concerning these special values is due to Siegel.

~

THEOREM 5.2 (Siegel [Sie68]). For any even integer n < 0 we have that {((r, 7), n) is a rational
number.

Proof. In [Sie68], Siegel gives explicit formulas for the values (((r, 7), n) for odd integers n > 1.
These values are equal to a certain power of 7w times a rational number for which he gives an
explicit formula involving Bernoulli polynomials. Using the functional equation of {((r, 7), s) and
Siegel’s explicit formulas for the values of {((r, 7),n), where n > 1 is an odd integer, we deduce

~

the rationality of (((r, 7), n) for even integers n <0. O

5.2 Archimedean zeta function associated to a class in (Z/fZ X ’HS (No))/To

In this section we want to associate to any class in (Z/fZ X HI(,O(NO))/fo a well-defined
Archimedean zeta function. We first start by stating a useful elementary lemma.
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LEMMA 5.1. Let 7 € H, N K such that (disc(Qr), p) =1 and let

(£77) = Stabsp, z(1/p)) (T)-
Then ~y, € SLa(Z) where ~;, is well defined up to +1.

Proof. See the proof of [Cha, Lemma 8.1]. O

Remark 5.1. Tt is easy to show that if 7 is reduced, i.e. if red(7) = vy where vy is the standard
vertex on the Bruhat—Tits tree and red is the reduction map, then (disc(Q;), p) = 1. However, the
converse is false. We can therefore think of the reduced requirement as a finer notion compared
with the more naive condition (disc(Q;),p) = 1.

PRrROPOSITION 5.1. Let (r,7), (', 7") € Z) fZ x HZ?(NO) and assume that red(7) =red(7’) = vp.

Then if (r', 7') = (r, 7), Le. if there exists a v € [y such that (', 7') =~ * (r, 7), then we have

(((7”, T)> S) = C((Tlv 7—,)7 S) and C((T> T*)a 8) = C((Tlv T/*)7 8)7
where 7* = 1/(fNo7) and 7% = 1/(f No7’).

Proof. Since 7 and 7/ are reduced we have y=(25) € To(f). It thus follows that (((r,7),s)
=(((r', "), s). Let us show the other equality. A direct calculation reveals that

d ¢/fNo\ [T\ (7"
be() a 1 N 1 '
It follows that (r, 7*) and (', 7"*) are To(f)-equivalent and thus (((r, 7%), s) = {((r/, 7*),s). O

We have thus succeeded to attach well-defined Archimedean zeta functions to any class of
(Z]fZ x H?(NO))/fO. So far we have not used the level Ny-structure built in HS(NO). The
next object we define is a zeta function attached to a good divisor § € D(Ny, f) and a pair
(r,7) €Z/ fZ x HS (No).

DEFINITION 5.4. Let 6 =3, n(do,)[do, 7] € D(No, f) be a good divisor and (j, ) € Z/fZ
X HS(NO) with red(7) =wvo and j € (Z/fZ)*. Then we define:

~

(1) C(5j7 (1’ 7—)7 ‘9) = ZdO|N0,r€Z/fZ n(d07 T)dSC((T‘j, dOT)? S);

~

(2) C*((Sjv (17 T)? S) = Zd0|N0,r€Z/fZ n(NO/d()’ r)dé{((—rj, dOT*)? S) where 7% = 1/(fNOT)'

With the help of Proposition 5.1 it is an easy exercise to show that ((d;, (1,7),s) and
¢* (04, (1,7),s) depend only on the class of (1,7) modulo =~ when 7 is reduced. We have the
formulas ((d4;, (1,7), s) = ((d;, (a, 7), s) and (*(day, (1, 7), s) = (*(d5, (a,7), s) for all a € Z/ f7Z.

Remark 5.2. Note that there is a hat on zeta functions appearing on the right-hand side of
Definition 5.4(1) and (2). One can think of % as an involution on the set Z/fZ x (H, N K)
given by (r, 7) — (—r, 7*) where 7% = 1/(fNp7). This involution * allows us to relate our p-adic
invariant w(r, 7) to the Gross—Stark p-units; see [ChaO7b]. If we restrict this involution to the
distinguished subset (Z/fZ)* x H]? (No, f), then we obtain a map

x1(Z/f2)* x HS (No, f) = (Z/ fZ)* x HS" (No)
(r,7) — (=1, 77),

where 7* =1/(fNo7) and cond(O*) = f - cond(O). Note that if Q,(x,y)= Az? + By + Cy?,
then Q,«(z,y) = sign(C)(C Nof?2% + Bfzy + (A/No)y?).
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5.3 The special values ¢*(8, (r, 7), 1 — k) as integrals of Eisenstein series Fy(r, 2)

We would like to state a result which relates periods of Eisenstein series to special values of the
Archimedean zeta functions ((d,, (1, 7), s) and (*(d,, (1, 7), s).

PROPOSITION 5.2. Let (j,7) € Z/ fZ x HS (No) where j € (Z/fZ)* and red(r) = vo. Then, for
all odd integers k > 1, we have:

(1)

Yrx &2 -~
3¢7(65, (L, 7), 1 — k) = / Q- (2, )" 35, 2) dz
&2
vré1 ~
= 22 Q- (2, D For (4, 2) dz;
&1

(2)
V&2 ~
SC((Sjv (L T)) 1- k) = QT(Z7 1)k_1F2*k(ja Z) dZ;
&2

where 7 =1/(fNoT), & =00, & =0, (£7;) = Stabr, (1) with ct +d > 1 for v, = (2}).

Proof. The second equality of part (1) follows from (3). The proof of parts (1) and (2) is similar
to the proof of [DDO06, Proposition 3.2]. For a detailed proof see [Cha, Lemma 9.2]. a

6. P-adic zeta functions and p-adic Kronecker limit formula

DEFINITION 6.1. Let § € D(No, f) be a good divisor and let (j, 7) € (Z/fZ)* x Hy (No) such
that (disc(@r), p) = 1. We define the p-adic zeta function

G850 (1,7).9) 1= 5 [ (Qgr(F,0) ™ dfgloe = 7,50} o)

1

= 507 [ (Qel )™ dig{oe = 3,00}, 0), (39)

where (z) denotes the unique element in 1 + pZ, that differs from = by a (p — 1)th root of unity.
This zeta function makes sense for any s € Z,, and as usual (£v,) = Stabr, (7).
COROLLARY 6.1. For an even integer n < 0 congruent to zero modulo p — 1, we have
(L=p™2")C* (8, (1, 7), 0) = (85, (1, 7),m).
Proof. Combine Proposition 5.2(1) with Theorem 1.1(1). O
Remark 6.1. We thus see that our p-adic zeta function interpolates rational values of the
Archimedean zeta function ¢*(d;, (1, 7), s) at negative integers.

LEMMA 6.1. The derivative (¢;)'(d;, (1,7),0) at s =0 is given by

/X log, (Qr (7, 1)) dji; {€ — 1€} (x,y)  where € = .

W =

(&) (95, (1,7),0) = —
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Proof. This is a direct calculation using (38). Note that the integral over X of log,(Qs-(fz,y))
= log, 2+ log,, Q7 (z,y) is the same as log, Q- (z, y) since the total measure is zero so that the
constant term log, f? vanishes. O

We can now deduce a p-adic Kronecker limit formula.

THEOREM 6.1. Let (r,7) € (Z/fZ)* x Hy (No) with T reduced, i.e. red(t) =vg. Then

3(¢p) (6r, (1,7),0) = —log, N, /g, (u(dr, ). (39)
Proof. From Theorem 2.2 we have
log,, u(dr, 7) = /X log,, (v — Ty) djir{00 — yr00}(z, y). (40)
Replacing 7 by 77 in the previous identity gives us
logy u(6r, %) = [ 10g, (o = 779) dfir{50 = 702 ()} 2. ) (4
However, v; = v,0. Therefore, adding (40) and (41) and using Lemma 6.1 gives (39). O

PROPOSITION 6.1. We have 3¢* (6, (1, 7),0) = ord,(u(d,, 7)).

Proof. Combine Corollary 2.1 with Proposition 5.2(1) after having set k = 1. O
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