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This work investigates the effect of surface roughness on cylinder flows in the postcritical
regime and reexamines whether the roughness Reynolds number (Reks) primarily governs
the aerodynamic behaviour. It has been motivated by limitations of many previous
investigations, containing occasionally contradictory findings. In particular, many past
studies were conducted with relatively high blockage ratios and low cylinder aspect
ratios. Both of these factors appear to have non-negligible effects on flow behaviour, and
particularly fluctuating quantities such as the standard deviation of the lift coefficient.
This study employs a 5 % blockage ratio and a span-to-diameter ratio of 10. Cylinders of
different relative surface roughness ratios (ks/D), ranging from 1.1 × 10−3 to 3 × 10−3,
were investigated at Reynolds numbers up to 6.8 × 105 and Reks up to 2200. It is found
that the base pressure coefficient, drag coefficient, Strouhal number, spanwise correlation
length of lift and the standard deviation of the lift coefficient are well described by Reks

in postcritical flows. However, roughness does have an effect on the minimum surface
pressure coefficient (near separation) that does not collapse with Reks . The universal
Strouhal number proposed by Bearman (Annu. Rev. Fluid Mech., vol. 16, 1984, pp.
195–222) appears to be nearly constant over the range of Reks studied, spanning the
subcritical through postcritical regimes. Frequencies in the separating shear layers are
found to be an order of magnitude lower than the power law predictions for separating
shear layers of smooth cylinders.
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1. Introduction

For more than a century, the flow over circular cylinders has garnered the attention of
fluid dynamics researchers. This is due to a combination of their geometric simplicity
and axisymmetry, and their relevance to real-world applications. A host of studies on
smooth circular cylinders has helped advance our understanding of how the aerodynamic
forces and wake change as the Reynolds number is varied over a wide range. However,
engineering structures seldom have perfectly smooth surfaces due to factors such as
imperfections in surface finish, paint and corrosion. At Reynolds numbers of O(105) and
above, a range of considerable relevance to many applications, the surface roughness
has a strong influence on flow separation and the wake and, in turn, the lift and drag.
This motivates further study of the flow over cylinders focusing on the effects of surface
roughness, also noting that this Reynolds number range has been difficult to explore in
practice with standard wind-tunnel-based experiments. Therefore, a reliable, consistent
and comprehensive data set addressing these areas is necessary to unravel how the flow
behaviour and underlying flow physics vary over this crucial range.

Broadly, the flow over circular cylinders can be classified into subcritical, critical,
supercritical and postcritical regimes (Roshko 1961; Achenbach 1971; Güven, Farell &
Patel 1980). These regimes are represented schematically in figure 1. They reflect key
changes in the location of turbulent transition in the separating shear layer or boundary
layer as the Reynolds number (Re = U∞D/ν, with U∞ the free-stream velocity, D the
cylinder diameter and ν the kinematic viscosity) is increased. The regimes can also be
identified by the variation of the drag coefficient, CD. In subcritical flow (104 � Re � 105

for a smooth cylinder), the transition to turbulence occurs in the shear layers in the near
wake of the cylinder and CD remains fairly constant with increasing Reynolds number.
As the Reynolds number is increased further (Re ∼ O(3–4 × 105)), this transition moves
upstream to occur in the separating shear layers very close to the separation point. When
transition occurs in this key region, it allows the separated shear layers to reattach to
the surface and separate at a later position further towards the rear of the cylinder. This
separation zone near reattachment, marked by laminar separation, transition to turbulent
flow and reattachment, is known as the laminar separation bubble (LSB).

The formation of the LSB delays the eventual final separation of the boundary layer
allowing the pressure to recover and, hence, results in a significant drop in CD from that
in the subcritical state. It is in this range that the minimum CD with respect to Reynolds
number is observed. Further increase in Reynolds number (Re � 4 × 105 for a smooth
cylinder) causes upstream movement of the transition in the boundary layer that results in
intermittent and asymmetric formation of the LSB followed by no LSB and, thus, leads
to increasing CD in the supercritical regime. In the postcritical regime (Re � 6 × 106 for
a smooth cylinder), the transition to turbulence in the boundary layer occurs sufficiently
upstream on the cylinder surface that CD becomes nearly insensitive to Reynolds number.
However, the higher momentum in the turbulent boundary layer enables it to remain
attached for longer than the laminar counterpart, resulting in a lower CD than for the
subcritical case. The Reynolds numbers at which these transitions occur are sensitive to
the turbulence intensity of the incoming flow and the surface roughness.

In addition, an increase in cylinder surface roughness causes (i) a decrease in the critical
Reynolds number, i.e. the Reynolds number of minimum CD, (ii) an increase in minimum
CD and (iii) an increase in CD in the postcritical regime (see Fage & Warsap 1929;
Achenbach 1971). These changes are illustrated in figure 1.
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Figure 1. Schematic illustrating the four distinct high-Reynolds-number flow regimes over a smooth circular
cylinder and the changes induced by increasing surface roughness. (Plot not to scale. Values are estimated from
Schewe (1983) and the current investigation.)

Owing to the difficulty of reaching Reynolds numbers corresponding to large engineered
cylindrical structures subject to atmospheric winds (i.e. postcritical Reynolds numbers
∼107) in wind tunnels, Szechenyi (1975) proposed the use of surface roughness to simulate
postcritical flows since increasing surface roughness decreases the critical Reynolds
number. Quantitatively, this is based on a curve collapse achieved when the mean CD and
the fluctuating lift coefficient, σCL , of cylinders of different surface roughness are plotted
against a Reynolds number based on the degree of roughness (Rek = ρU∞k/μ where
k denotes roughness height); see figures 3 and 4 from Szechenyi (1975). This Reynolds
number is referred to in the current work as the roughness Reynolds number.

Supporting this collapse, Batham (1973) observed that mean pressure distributions on a
rough cylinder at postcritical Reynolds numbers are similar to those of a smooth cylinder
in turbulent incident streams at Re ∼ 107. Following this, Güven et al. (1980) attempted to
develop a theoretical framework to explain the effect of roughness on the boundary-layer
development and separation points. Although they found an asymptotic postcritical CD
at large Reynolds numbers and roughness, they opined that the flow phenomena cannot
sufficiently be determined through a single parameter, Reks , and that a ( joint) description
of Reynolds number and surface roughness is necessary. This conclusion was based on
the large scatter in the collapse of the CD and σCL curves when results from different
works (Achenbach 1971; Szechenyi 1975; Güven et al. 1980) were taken into account.
Nakamura & Tomonari (1982) then posited that appropriately placed roughness strips
are more effective than distributed roughness for simulating postcritical flows since the
postcritical CD of a cylinder with roughness strips is closer to that of a smooth cylinder. In
contrast to the Re(k/D) dependence proposed in Szechenyi (1975), a different similarity
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Experiment Data Aspect ratio Blockage Relative roughness
k/D × 103

Achenbach (1971) P, τ 3.3 16.67 % 1.1, 4.5, 9+
Batham (1973) P, C 6.6 5 % 2.2
Szechenyi (1975) P 4–9.3 7–23 % 0.15–2
Güven et al. (1980) P, B 3.08 17.8 % 2.5–6.2+
Buresti (1981) P, C 6.6–23 3–10 % 0.91–12.35
Nakamura & Tomonari (1982) P 3.3 15.5 % 0.9–10
Ribeiro (1991) P, C 6 12 % 1.8
Chakroun, Rahman & Quadri (1997) P 5.98 16.6 % 1.1–2.3
Zan & Matsuda (2002) F 10 2.5 %∗ 0.1
Eaddy (2019) P, C 5.7,9 12 %, 8 % 0.74,2.48,4.22
van Hinsberg (2015) P, F 10 10 % 1.2+
Current P, C, W 9.8 5 % 1.1–3+

Table 1. A non-exhaustive list of previous investigations concerning rough cylinders and the measurement
techniques used. P, CD, CL obtained from integration of pressure distribution; F, CD, CL obtained from total
force measurements; τ , skin-friction measurements; B, boundary-layer measurements; W, wake measurements;
C, spanwise correlations. *Porous walls and a suction plenum were also used to reduce blockage effects.
+Values given are the equivalent sand grain roughness measures (Nikurdase 1933).

parameter, Re(k/D)0.6, was found to result in a better collapse of the base pressure and
pressure recovery obtained from cylinders of different roughness.

More recently, Eaddy (2019) measured the fluctuating lift coefficient and axial
correlation length of lift for two different roughnesses and concluded that Roughness
Reynolds number falls short in collapsing the fluctuating properties. While a comparison
of results from different works (given in Güven et al. 1980) does raise concerns about the
validity of a collapse based on roughness Reynolds number, the considerable differences
in blockage and aspect ratios amongst these studies weaken the significance of such
a conclusion. The sensitivity of the flow to geometrical features of the set-up has
already been discussed in Güven et al. (1980) and Nakamura & Tomonari (1982), and
is particularly evident in the difference in the fluctuating lift and spanwise correlation
obtained from cylinders of two different aspect ratios in Eaddy (2019) (see figure 3b).
These differences in the set-ups of previous studies are highlighted in table 1.

Also evident from table 1 is the high wind-tunnel blockage ratio that has been a feature
of the majority of previous works. Results were corrected for blockage effects through
a technique originally proposed by Allen & Vincenti (1944), and later substantiated for
cylinder flows by Farell et al. (1977). However, support for the assumption that blockage
effects can be fully corrected comes from the collapse of only the mean drag coefficient
and to a lesser extent, the surface pressure post correction. The applicability of this
correction to the more sensitive fluctuating parameters, e.g. fluctuating lift, is less certain.
The majority of the previous studies did not measure the fluctuating lift, and the few that
did (Szechenyi 1975; Eaddy 2019) report scatter owing to differences in geometry of the
set-up. Moreover, the conclusions of Eaddy (2019) and Szechenyi (1975) are inconsistent.

Fox & West (1990), with experiments on smooth cylinders at a subcritical Reynolds
number, concluded that a minimum aspect ratio of 7 is required to isolate the flow over
the mid-span of the cylinder from the influence of end effects. Although their work does
not involve rough cylinders at postcritical Reynolds numbers, it underlines the need for
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using high aspect-ratio cylinders with low wind-tunnel blockage. While more recent works
(e.g. Zan & Matsuda 2002; van Hinsberg 2015) incorporate such a set-up, these were
limited to only a single surface roughness. Thus, despite a long history, there is still
a need for a more comprehensive and consistent data regarding flow over cylinders of
different roughnesses at postcritical Reynolds numbers. Not only to ascertain the validity
of simulating postcritical flows with larger roughness, but also to explain the influence of
surface roughness on flow parameters in general.

Moreover, measurements of pressures at a single cross section and the consequent
derived coefficients of pressure drag and lift for the cylinder are incomplete without
information about the extent of the spanwise correlation of the flow. As mentioned
previously, in the subcritical and the postcritical regimes, (spanwise) organised vortex
shedding is observed in cylinder wakes. Through the critical and supercritical regimes,
however, this vortex shedding is less organised because of the variation of separation angle
across the span caused by the high sensitivity of the LSB (Bearman 1984). This results
in lower spanwise coherence through the critical regime. One measure of the spanwise
correlation is the axial correlation length of the lift coefficient, Λ given by

Λ =
∫ ∞

0
R(s) ds, (1.1)

where R(s) is the correlation coefficient between the coefficients of lift measured at
spanwise locations, z = 0 and z = s (Norberg 2003). For smooth cylinders, the axial
correlation length varies from 4–5D in the subcritical regime to ∼0.5–1.5D in the
critical and supercritical regimes (Duarte Ribeiro 1992). Axial correlation lengths in the
postcritical regime for smooth cylinders are unknown due to the difficulty in reaching
high Reynolds numbers. In addition, estimates of Λ for rough cylinders are only available
for a few Reynolds numbers and roughnesses. Of studies reporting on this, Ribeiro
(1991) determined the correlation length for cylinder wrapped with a sandpaper roughness
of k/D = 1.8 × 10−3 at a Reynolds number of 4 × 105 as ∼3.9D, and Batham (1973)
determined it to be ∼3.2D for a relative roughness of k/D = 2.2 × 10−3 at a Reynolds
number of 2.8 × 105. Eaddy (2019) measured the axial correlation length in postcritical
flows for two different roughnesses at two aspect ratios. It is of note that the higher aspect
ratio (span to diameter, AR = 9) set-up led to Λ between 2D and 3D, while an aspect ratio
of 5.7, which is closer to that of Batham (1973) (AR = 6.6) and Ribeiro (1991) (AR = 6)
was found to have a larger correlation length (Λ ∼ 6D − 8D). On the other hand, Buresti
(1981) with hot-wire measurements in the wake, estimated the correlation length to be
∼4D in postcritical flows for rough cylinders. Information about the variation, if any, of
this correlation length with roughness is limited but is required to infer the net fluctuating
lift force across some length of the cylinder.

Shear-layer frequency content, fKH , corresponding to Kelvin–Helmholtz waves for a
smooth cylinder in the subcritical regime is known to follow a power-law dependence
based on Reynolds number, and the theoretical framework behind such a dependency was
given in Prasad & Williamson (1997) (also see Thompson & Hourigan 2005). As Reynolds
number increases, the energy in the shear layer becomes more distributed and only a
broadband signature is found (Lehmkuhl et al. 2014). The existence of such frequencies
at postcritical Reynolds numbers and/or in the wake of rough cylinders has not been
established, with table 1 highlighting the scarcity of wake and shear-layer measurements
for rough cylinder flows.

Through the current study, we aim to provide a more comprehensive and consistent data
set of lift and drag coefficients, surface pressure distributions, and spanwise correlation
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lengths, providing the variation of these properties with roughness and Reynolds number
in postcritical flows. This data tests the validity of whether flow parameters collapse based
on roughness Reynolds number alone. With the help of various measurement techniques,
we aim to explore similarities and differences between the wakes from cylinders of
different surface roughnesses at the same postcritical Reynolds number, and also at
the same Roughness Reynolds number. This exploration augments our understanding
of the influence of surface roughness on the flow over and forces on circular cylinders,
enabling the prediction of aerodynamic loads at Reynolds numbers often relevant to large
engineered structures. In addition, information about wake width and wake frequencies
helps in understanding and predicting the aerodynamics of multiple cylindrical structures
in close proximity.

For the remainder of this paper, further discussion is split into three sections.
Section 2 gives the geometric details of the set-up and describes the data acquisition and
postprocessing. Results are discussed in §§ 3, and 4 summarises the key conclusions from
the current work.

2. Methodology

2.1. Experimental set-up
Experiments were conducted in a closed circuit wind tunnel with a 2000 mm tall and
4000 mm wide rectangular cross section. The turbulence intensity of the incoming flow is
1.35 % at the centre of the cylinder, which is positioned 4600 mm downstream from the
start of the working section. At 35 m s−1 (corresponding to a Reynolds number of ∼4.5 ×
105 based on cylinder diameter), displacement thickness and momentum thickness of the
vertical boundary layers are ∼12 mm and ∼10 mm, respectively, near both the floor and
the roof of the test section at the point where cylinder is installed. Outside the boundary
layers, variation in the local mean velocity is within 0.5 % of the global mean measured
along the axis of the cylinder.

The diameter of the cylinder, D, is 204 mm including the thickness of the sandpaper
backing cloth and the average roughness height. It spans the height of the tunnel
(2000 mm), thereby resulting in an aspect ratio of ∼9.8 and blockage ratio of ∼5 %. It
consists of two separate spanwise sections to facilitate the installation of pressure taps.
The lower section is made of steel to lend overall strength, while the section with pressure
taps is made of aluminium. To increase the uniformity in diameter, the steel section is
formed by turning a cylinder of larger diameter while machined bulkheads are inserted
inside the aluminium section at regular intervals. The resulting variation in the diameter
of the cylinder over the entire span is <1 %. These two sections are joined from inside
in order to reduce the degree of non-uniformity on the outer surface. The seam due to the
joint between these two sections is ∼0.5 mm and 1.4D away from the nearest measurement
plane and, hence, is expected to have negligible influence on the measurements. The
cylinder is also fixed at the roof of the tunnel to further reduce the vibrations and the
influence of any gap flow.

The desired uniform surface roughness is achieved by wrapping sandpaper around the
bare cylinder. The spanwise seam from joining the two ends of the sandpaper is at 180◦
(i.e. in the wake region). The types of sandpaper used, and the corresponding average
roughness heights k are given in table 2.

Equivalent sand grain roughness, ks, is the uniform sand grain height that generates
a similar frictional velocity deficit in a fully rough flow determined from Nikurdase
(1933). Achenbach & Heinecke (1981) conducted experiments to determine values of ks of
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Sandpaper grade P40 P60 P80 P100

Average grain size, k (μm) 412 262 196 157
Relative roughness, k/D × 103 2.01 1.28 0.96 0.76
Equivalent sand grain roughness, ks/D × 103 3 1.9 1.4 1.1

Table 2. Different grades of sandpaper used and the corresponding roughness measures.

4.5 × 10−3 and 1.1 × 10−3 for 40 grit and 120 grit sandpapers thereby yielding ks/k
of 1.57 and 1.43, respectively. A similar average conversion factor of ks/k ∼ 1.5 for
sandpaper grits was found in Speidel (1954). In the absence of experiments to determine
the exact value of ks for the sandpapers used in the current work, the conversion factor
ks/k = 1.5 is used for all of the grits examined to ascertain the equivalent sand grain
roughness.

Four cross sections along the span are chosen for pressure measurements, located at
heights of 0D, −1D, 1D and 2D, where 0D is for the spanwise mid-plane of the cylinder
and the axis is positive towards the roof. Each of these cross sections consists of 30
uniformly distributed pressure measurement locations that were installed after wrapping
the sandpaper onto the surface. These locations contain a 20-mm-long hypodermic tube
of 2 mm outer diameter and 1.5 mm inner diameter, which is attached from inside of the
cylinder and positioned carefully to end at the backing cloth of the sandpaper so not
to protrude above the trough of the roughness elements. Flexible PVC tubes of length
2200 mm were then used to connect these hypodermic tubes to the pressure measurement
system. Cross-sectional measurement planes, the joint between the sections, and the
pressure ports are illustrated in figure 2.

2.2. Data acquisition and postprocessing
Pressure at the above-mentioned locations was sampled at 2000 Hz for at least 120 s
using a TFI synchronous Differential Pressure Measurement System. An amplitude and
phase correction was applied to the instantaneous pressure data to account for the length
and diameter of pressure tubing. The recorded pressure data was transformed into the
frequency domain and a transfer function was applied before transforming the data back
into the time domain. This transfer function was computed based on the length and
the diameter of the pressure tube following the procedure given in Bergh & Tijdeman
(1965) and is reported in figure 18 in Appendix A. The amplitude response of the
theoretical transfer function falls below 0.4 at ∼500 Hz and below 0.25 at f ∼ 630 Hz.
The pressure signals were cut off at ∼630 Hz and spectra from these signals reported in
this investigation were only plotted until 250 Hz. The test duration amounts to more than
600 shedding cycles at the lowest Reynolds number presented here and more than 2000
shedding cycles at postcritical Reynolds numbers, which form the crux of the discussion.
Sectional mean and fluctuating pressures presented here were obtained from tests of
longer duration (∼5000 shedding cycles) and these tests were also used to establish the
convergence of CD and σCL for the shorter tests.

Flow parameters at each Reynolds number were measured at least three times and the
data reported includes 90 % confidence intervals based on t-distribution statistics. The
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U
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Figure 2. Schematic of the set-up showing a cylinder with sandpaper attached, its dimensions and
measurement planes on the left, pressure tap locations at the top right and placement of the cylinder in the
working section of the tunnel at the lower right.

confidence interval (CI) of a parameter is computed using

CI(x) = t(n − 1)α/2 × σx√
n
, (2.1)

where t(n − 1)α/2 is the critical t-value for a significance level of α and n − 1 degrees of
freedom. Here, n is the number of tests, x is the parameter of interest and σx is the standard
deviation of the parameter across the repeat tests. For the current investigation α is chosen
to be 0.10, thus yielding a two-sided 90 % confidence interval. Thus, if the same tests and
processing were to repeat a number of times, the confidence intervals present the bounds
inside which the sample mean lies 90 % of the time.

Instantaneous coefficients of pressure drag and lift were obtained by integrating the
circumferential pressure distributions and the corresponding mean and standard deviations
were then obtained from these instantaneous coefficients. All the data presented here is the
mean of the four spanwise measurement planes except in figure 8 for which instantaneous
pressure distributions from the mid-plane are presented. Within the postcritical regime,
variation in the coefficient of drag measured from different cross sections was within 2 %
of the spanwise mean for all roughnesses tested and this variation reduced with decreasing
roughness.

In an attempt to reduce the error in estimates of the drag coefficient, CD, the
minimum pressure coefficient, CPm , and the base pressure coefficient, CPb , due to linear
interpolation of the discrete pressure distribution, the mean pressure distribution along
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each cross section was interpolated using modified Akima interpolation (Akima 1970)
before obtaining these parameters. This method was chosen over the traditional linear,
cubic or spline interpolation since it minimises potential overshoots near the separation
region. The effectiveness of this interpolation method was tested using continuous
distributions obtained from computational fluid dynamics (CFD) and also from finer
surface pressure measurements from the literature (Achenbach 1971; Güven et al. 1980;
Ribeiro 1991; Cheung & Melbourne 1995; van Hinsberg 2015). Amongst the different
circumferential pressure distribution profiles tested, the maximum deviation in estimates
between the interpolated CD, CPm and continuous CD, CPm are 0.8 % and 2 %, respectively,
while the difference between the linear CD, CPm and continuous CD, CPm estimates are 1 %
and 4 % respectively.

A TSI 1201 platinum hot film was used with a 1750 constant temperature anemometer
to measure the magnitude of the instantaneous planar velocity and, hence, estimate the
predominantly streamwise velocity distribution in the immediate wake. This allowed a
quantification of the shear layer thickness and frequency content in the separating shear
layers. A 50-μm-wide, 1-mm-long single-axis film with its axis parallel to the axis of the
cylinder was mounted on a traverse system for this purpose. Velocity calibrations were
performed to obtain a fifth-order polynomial to convert from voltage measurements of
the film to the flow velocity. The upper frequency limit, fc(−3 dB) for this arrangement
is determined through a 1 kHz square wave input as 12.5 kHz (based on Freymuth 1977;
Brunn 1995). Data from this hot film was acquired at 50 kHz for a period of at least 60 s
(∼1200 shedding cycles at the lowest speed of measurement). Spectra for the separated
shear layer were obtained through velocity time series lasting 240 s (figure 17) and are
plotted only to 6 kHz and the shear layer frequencies discussed were <300 Hz, well below
fc.

The blockage ratio of the set-up was only 5 % and, hence, the influence of the closeness
of wind-tunnel walls is expected to be small. Nevertheless, mean values of CD, CP and Re
are corrected for blockage according to the procedure described in Roshko (1961) (based
on Allen & Vincenti 1944) in order to provide easier comparison with the literature. (The
accuracy of the blockage correction for the mean coefficients of drag and pressure has
been previously verified by Farell et al. 1977.) The fluctuating properties such as σCP and
σCL have not been corrected for blockage since the applicability of blockage corrections
to these parameters has not yet been established and the corrections are likely small. The
maximum difference between the raw and the blockage corrected coefficients of drag is
3 %.

3. Results and discussion

3.1. Drag and lift coefficients
Figure 3 plots, for a number of studies, the relationship of both the mean drag coefficient,
CD, and the fluctuating lift coefficient, σCL , with Reynolds number. For clarity, the results
of only the smoothest and the roughest cylinder in the current study are given in this figure.
Figure 3(a) includes CD measurements from the sectional pressure measurements of van
Hinsberg (2015) while those obtained from their force measurements are excluded. Within
the postcritical regime, the degree of agreement in CD amongst the works is high, and
perhaps surprising given the differences in the aspect and blockage ratios of their set-ups
(see table 1). A reduction in aspect ratio is expected to decrease drag since the fluid feeding
from the edge of the cylinder increases the base pressure (Basu 1985). Considering the
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Figure 3. A comparison of (a) the mean drag coefficient and (b) the fluctuating lift coefficient in this study
with earlier works. Confidence intervals were calculated as described in § 2.2: · · � · · Achenbach (1971),
ks/D = 1.1 × 10−3; · · • · · van Hinsberg (2015), ks/D = 1.2 × 10−3; · · � · · Güven et al. (1980), ks/D =
3.11 × 10−3; · · � · · Eaddy (2019), ks/D = 1.2 × 10−3, k/D = 0.8 × 10−3, aspect ratio 9; · · � · · Eaddy
(2019), ks/D = 1.2 × 10−3, k/D = 0.8 × 10−3, aspect ratio 5.7; · · � · · (brown) current, ks/D = 1.1 × 10−3;
· · � · · (red) current, ks/D = 3 × 10−3.

large difference in the blockage ratios amongst the different set-ups (from 5 % to 18 %);
this agreement is indicative that blockage corrections work well for the predictions of CD.

Figure 3(b) gives the variation of the fluctuating coefficient of lift with Reynolds
number. The scatter in measurements of σCL across different investigations is
comparatively larger than that of CD owing to its higher sensitivity to aspect ratio, blockage
ratio, mode of generation of roughness and method of measurement (Norberg 2003). In
particular, the influence of aspect ratio and blockage is also evident in the difference in
σCL obtained from two different set-ups of the same roughness in Eaddy (2019). While
their larger aspect ratio (AR = 9) results for similar roughness agree well with the current
study, σCL values from the smaller aspect ratio (AR = 5.7) are considerably higher.

On the other hand, σCL reported in van Hinsberg (2015) is much lower than that for
the current study at the same Reynolds number (∼0.1 compared with ∼0.25) despite
both set-ups having similar aspect ratio and relative roughness. A possible cause of this
discrepancy is the method of generating and representing roughness. While van Hinsberg
(2015) used plasmatic metal coating to generate surface roughness, the current work uses
sandpaper. The roughness of a sandpaper is expected to be more randomly distributed than
that obtained from machining the surface. The agreement in the mean CD indicates that the
influence of the roughness on the broad flow features is similar in the two investigations.
The relatively large disagreement in σCL could, in part, be due to the distribution of
roughness and the resulting variation across different methods of generation.

In addition to the mode of roughness generation, the technique used for determining σCL
in the two studies is also different. van Hinsberg (2015) measured the instantaneous forces
on the entire cylinder using a force balance to determine the fluctuating lift coefficient. In
contrast, for the current study, the time-varying lift coefficient and its standard deviation
are obtained through the integration of instantaneous pressure coefficients at a single
cross section of the cylinder. This suggests that the spanwise correlation of fluctuating
force components plays an important role; this will be examined in more detail in § 3.5.
Moreover, preliminary experiments during the initial phase of the current study revealed
high sensitivity of σCL to the presence of a gap between the cylinder and wind-tunnel walls
that is required in order to measure forces using external balances. Kacker, Pennington &
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Figure 4. (a) Mean coefficient of drag, CD, and (b) fluctuating coefficient of lift, σCL for different
roughness. Confidence intervals were calculated as described in § 2.2: · · � · · (red), ks/D = 3 × 10−3;
· · � · · (green), ks/D = 1.9 × 10−3; · · • · · (blue), ks/D = 1.4 × 10−3; and · · � · · (brown), ks/D =
1.1 × 10−3.

Hill (1974) reported that an airgap between the active and dummy cylinder as small as
0.1 mm could result in lift force measurements 5–10 times smaller than the actual value.
Jones, Cincotta & Walker (1969) also found that gaps of 0.7 mm could have significant
effects on the flow configuration over a smooth cylinder. More information about the
influence of this gap and differences between lift coefficients measured through total force
and cross-sectional pressure methods for smooth cylinders is given in Norberg (2003).

Limited and widely varying data amongst different studies and increased sensitivity of
the lift to the parameters of flow set-up makes comparisons of σCL for rough cylinders
particularly difficult. Scarcity of information about σCL for different roughnesses in the
postcritical regime was a major motivation behind this work and the results presented here
aim to address this knowledge gap.

Figure 4 gives the variation of the mean coefficient of drag and the fluctuating lift
coefficient with Reynolds number for different roughnesses. Flow parameters in the
critical/supercritical regime where the cylinder flow experiences combinations of laminar
separation, transition to turbulence in the shear layer, turbulent reattachment, intermittent
turbulent separation and asymmetric shedding are very sensitive to disturbances in the
flow and, hence, the confidence intervals are larger. This region of high sensitivity extends
up to Re ∼ 2.3 × 105 for the smoothest roughness tested and up to Re ∼ 1 × 105 for the
roughest tested in the current work. Owing to the higher sensitivity of the lift to the
pressure distribution near separation, these confidence intervals for the measurements of
σCL are larger than those of CD. Tests for the same roughness and similar Re are found
to intermittently contain the LSB for different proportions of time resulting in a wide
range of σCL , thus making it difficult to infer representative trends through the critical
regime. The reader is referred to Cadot et al. (2015) for more information regarding the
flow configuration and the stability of LSB through the critical regime. Note that § 3.4
explores the intermittency of the LSB and the influence of roughness in further detail.
Repeatability is improved beyond the critical regime and the observed variations with
Reynolds number are relatively smooth.

An increase in roughness leads to a reduction in the critical Reynolds number, the
Reynolds number at which CD is minimum. Roughness particles promote the transition
to turbulence near the surface of the cylinder and, hence, an increase in roughness leads
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to an earlier transition in the boundary layer, i.e. transition to turbulence immediately after
separation, and the LSB occurs at a lower Reynolds number for larger roughness. From
the current tests, the critical Reynolds number of the roughest surface tested (ks/D =
3 × 10−3) is ∼1 × 105 while that of the smoothest surface tested (ks/D = 1.1 × 10−3)
is ∼2 × 105. Beyond the critical Reynolds number, the flow configuration changes from
stable reattachment of the separation bubble on both sides of the cylinder to asymmetric
reattachment and eventually to no reattachment on the two sides of the cylinder (Cadot
et al. 2015). This results in an increase in CD increase as Reynolds number increases in
the supercritical regime. Increasing roughness causes the LSB to become more unstable,
thereby leading to a lower range of Re where an intermittent LSB occurs and, hence,
a smaller supercritical regime. By destabilising the LSB, roughness promotes coherent
vortex shedding over the span of the cylinder and, hence, increases the forces on the overall
span of the cylinder since the flow separates earlier when the LSB is absent.

At postcritical Reynolds numbers, the boundary layer in the adverse pressure gradient
region is turbulent and hence, separates later than the laminar boundary layer of subcritical
regime. Due to this delayed separation, the postcritical CD is lower than that of the
subcritical CD for a given roughness. On the other hand, an increase in surface roughness
causes an earlier separation of turbulent boundary layers in adverse pressure gradients due
to an increased momentum deficit near the wall (Song & Eaton 2002; Aubertine, Eaton &
Song 2004). Thus, at a fixed postcritical Re, CD increases with an increase in roughness.
The mean coefficients of drag CD are found to be ∼0.87 and ∼1.01, respectively, for
the smoothest and roughest cylinders at the highest Reynolds number of the current tests
(6.8 × 105).

Similar to CD, the postcritical σCL increases with increasing roughness. Power spectra
of the velocity fluctuations given in figure 16 reveal an increased energy content at the
shedding frequency for increased roughness. This indicates that an increase in roughness
results in larger fluctuations and hence a larger σCL . At Re ∼ 6.7 × 105, σCL is 0.28 and
0.34, respectively, for the smoothest and roughest cylinder tested.

3.2. Circumferential pressure distributions
Mean and standard deviation circumferential pressure distributions presented in this study
are the average of distributions over the four spanwise locations. To better highlight
variations, these spanwise averages are presented only for half of each circumference.
These half-circumference pressure distributions are the average of the upper and lower
halves of the cylinder. Across all the postcritical Reynolds numbers (Re ≥ 3 × 105) and
roughnesses tested, the maximum deviation, |CP(θ) − CP(360 − θ)| is 0.1 and this is
seen in the large gradient region of 0◦ ≤ θ ≤ 90◦. Over 100◦ ≤ θ ≤ 180◦, this maximum
reduces to <0.01. The mean deviation across all the tests is less than 0.08 for 0◦ ≤ θ ≤
180.

Figure 5 gives the circumferential mean pressure coefficient of cylinders of different
roughnesses at postcritical Reynolds numbers. For a given roughness, the coefficient of
pressure over the upstream region of the cylinder (∼(300◦–0◦–60◦)) does not exhibit any
noticeable change with Reynolds number, generally following the potential flow solution.
The observable changes with increasing Reynolds number are a decrease in the coefficient
of pressure in the downstream/base region (∼(100◦–180◦–260◦)), and an increase in the
coefficient of pressure in the acceleration region (∼(75◦–90◦)).

To examine these changes in further detail, three additional variables are introduced.
Base pressure, CPb , is the mean coefficient of pressure over the downstream side of

975 A36-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

84
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.846


Influence of surface roughness on postcritical flow

1.0

0.5

–0.5

–1.0

–1.5

–2.0

–2.5

–3.0

0

1.0

0.5

–0.5

–1.0

–1.5

–2.0

–2.5

–3.0

0

0° 90° 180° 0° 90° 180°

Azimuthal angle Azimuthal angle

CP

Decreasing roughness

offset = –0.5

Increasing Re
offset = –0.5

(a) (b)

Figure 5. Circumferential distributions of mean coefficient of pressure: �, ks/D = 3 × 10−3; �,
ks/D = 1.9 × 10−3; �, ks/D = 1.4 × 10−3; ♦, ks/D = 1.1 × 10−3; red solid line, Re ∼ 3 × 105; green solid
line, Re ∼ 4 × 105; blue solid line, Re ∼ 5 × 105; and brown solid line, Re ∼ 6.7 × 105. (a) Effect of Reynolds
number for different roughness. (b) Effect of roughness for different Reynolds number. Note that successive
families of curves have been offset in the pressure coefficient by −0.5.

the cylinder. Minimum pressure, CPm , is the minimum coefficient of pressure on the
cross-sectional surface. Wake angle, θw, is the angle at which a linear regression fit of the
coefficient of pressure profile from CPm to CPb intersects CPb . Both CPm and θw given are
the mean of the values found on each half of the cylinder. Furthermore, all three variables
presented are the corresponding spanwise averages over a sample of four cross sections.
The definitions of these variables for a representative CP distribution are given in the
figure 6(a).

While CPb forms the prominent contribution to the coefficient of drag, CPm is indicative
of the degree of deceleration of flow velocity near the surface of the cylinder, i.e. the lower
the CPm the higher the velocity outside the boundary layer. In addition, θw is a nominal
estimate of the separation angle obtained from the circumferential mean CP distribution.
This estimate is smaller than the actual separation angle given by θs by ∼5◦ (Güven et al.
1980); indeed, this correlates well with the θs measurements of Achenbach (1971) as seen
in figure 6(b).
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Figure 6. (a) Parameters of coefficient of pressure, (b) variation of wake angle, (c) variation of coefficient of
minimum pressure, (d) variation of coefficient of base pressure, (e) pressure rise to separation with Reynolds
number and ( f ) base pressure vs separation angle. Confidence intervals were calculated as described in § 2.2
Current: · · � · · (red) ks/D = 3 × 10−3; · · � · · (green) ks/D = 1.9 × 10−3, · · • · · (blue) ks/D = 1.4 × 10−3;
· · � · · (brown) ks/D = 1.1 × 10−3; · · � · · van Hinsberg (2015) ks/D = 1.2 × 10−3; · · � · · Achenbach
(1971), ks/D = 1.1 × 10−3; · · � · · Güven et al. (1980), ks/D = 3.11 × 10−3, · · � · · Güven et al. (1980),
ks/D = 2.5 × 10−3.

On the surface of a smooth cylinder, the laminar boundary layer in the subcritical flow
separates earliest, near ∼80◦ on a smooth cylinder, followed by a turbulent boundary
layer, between ∼100–110◦ on a smooth cylinder and a boundary layer with a LSB in the
critical regime separates more downstream, between ∼120◦–140◦ on a smooth cylinder
than the latter (Basu 1985). A similar trend is observed in the measurements of θw against
Reynolds number from the current results. At subcritical Reynolds numbers, θw is ∼75◦
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for all the roughnesses tested and an increase in Reynolds number results in an increasing
θw until it reaches a maximum (∼108◦ and ∼125◦ for the roughest and the smoothest
cylinder, respectively). A further increase leads to a decrease in the wake angle and at
large postcritical Reynolds numbers the wake angle approaches an asymptotic value of
∼95◦. This indicates that the separation angle also reaches an asymptotic value of ∼100◦
in agreement with Achenbach (1971).

Similar to the wake angle, the base pressure coefficient increases and then decreases
with increasing Reynolds number. The peak in the base pressure occurs in the critical
regime and coincides with the peak in the separation angle and also the minimum drag
coefficient. As the Reynolds number is increased further, the change in base pressure
decreases until eventually approaching an asymptotic value of ∼ − 0.95. The convergence
of CPb with roughness at large Reynolds numbers is slightly wider than that of θw. Changes
in the minimum pressure, CPm are in the opposite direction, i.e. an increase in Reynolds
number causes a decrease and then an increase in CPm , before eventually approaching an
asymptotic value. Unlike θw and CPb , the asymptotic value in the minimum pressure at the
highest Reynolds numbers tested is a function of roughness, with larger roughness leading
to a higher CPm , i.e. larger deceleration of the flow.

For the smoothest cylinder tested (ks/D = 1.1 × 10−3), the changes in θw, CPb and
CPm when the Reynolds number is increased from Re ∼ 4 × 105 to Re ∼ 6 × 105 are
approximately 4 %, 6 % and 5 %, respectively. The corresponding changes for the roughest
cylinder tested (ks/D = 3 × 10−3) are 1 %, 3 % and 2 %, respectively. At the largest
Reynolds number tested (Re ∼ 6 × 105), the changes in these quantities, (θw, CPb and
CPm) from the smoothest cylinder to the roughest cylinder tested are 3 %, 5 % and
14 %, respectively. These observations indicate that while the flow near and beyond
separation becomes nearly independent of roughness at large Reynolds numbers, flow in
the deceleration region and particularly near the minimum pressure is still dependent on
the degree of surface roughness, even though it is relatively independent of the Reynolds
number.

Amongst different investigations, the degree of scatter in the pressure rise to separation
CPb − CPm is slightly larger than that in CD and CPb (note the different y-scales in
figure 6c,e). This is in contrast to the proposal of Güven et al. (1980) and Farell et al.
(1977) that the pressure rise to separation is less sensitive to the effects of aspect ratio and
blockage than CPb and CPm . The present rough cylinder data show that the base pressure
results among different studies have a smaller scatter followed by the minimum pressure.
The deviation in the pressure rise to separation is a consequence of that in minimum
pressure. In this regard, the use of spanwise variation of minimum pressure to ascertain
the effects of blockage and aspect ratio in the postcritical region is recommended over the
base pressure distribution that has been used before (Stansby 1974; Fox & West 1990).

Blockage corrections to pressure distributions (Allen & Vincenti 1944; Roshko 1961)
do not include the effect of wake blockage on pressure gradients (Farell et al. 1977)
and is a possible cause of the larger scatter in the pressure distribution parameters from
different studies when compared with that of CD. Another limitation in the application
of blockage corrections is that the corrected CP distributions do not directly correspond
to the corrected CD values since the corrections are independent. In this context, one
should exercise care in applying the corrections to predict the pressure distributions
free of wind-tunnel influences, since an agreement in the blockage corrected CD does
not imply agreement in the blockage corrected CP. Moreover, corrections to σCL are
unavailable since the influence of blockage on the fluctuating parameters is still uncertain.
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This emphasises the importance of data obtained from a high-aspect-ratio and
low-blockage set-up similar to that used in the current work.

Since wake angle and base pressure appear to be in good correlation, the coefficient of
base pressure, CPb , is plotted against the wake angle θw in the postcritical regime (Re ≥
3 × 105) in figure 6( f ). The data plotted are obtained from tests of different roughnesses,
i.e. different minimum pressure (see figure 6c) and, thus, a different pressure distribution
before separation. Hence, a good correlation across different roughnesses indicates that the
base pressure is a strong function of the separation angle and only a weak function of the
flow before separation in the postcritical regime. From figure 6(b), in postcritical flows, an
increase in roughness at a constant Reynolds number or an increase in Reynolds number
for a fixed roughness lead to a decrease in the separation angle. Figure 6( f ) indicates that
the change in base pressure coefficient arising due to a change in the separation angle
is similar for all roughnesses tested. Since the base pressure coefficient forms the major
contribution to the coefficient of drag, this results in the drag coefficient being similar
in postcritical flows regardless of whether the separation angle is a result of increasing
roughness or increasing Reynolds number. This forms the basis for collapse of CD when
plotted against roughness Reynolds number, Reks , and this is further discussed in § 3.7.

3.3. Fluctuating pressure coefficient
Figure 7 gives the distribution of the fluctuating pressure coefficient on the cylinder surface
at different Reynolds numbers and roughnesses. The two significant trends with increasing
Reynolds number post the critical regime are an increase in σCP over the circumference
(more evident in the downstream region); and an upstream movement of the angle at
which σCP is maximum. A peak in σCP is an indication of boundary-layer separation in
the vicinity and since separation moves upstream with increasing Reynolds number, the
location of maximum σCP also moves upstream. The smaller local maximum near ∼160◦
might indicate shear-layer roll up closer to the surface of the cylinder near that region. This
smaller peak is less significant at lower Reynolds numbers (near Re ∼ 3 × 105) especially
for the smoother cylinders due to weaker vortex shedding at those Reynolds numbers. For a
given roughness, an increase in velocity leads to an increase in the turbulent kinetic energy
near the surface, causing an overall increase of σCP as the Reynolds number is increased.
Moreover, earlier separation is also expected to cause larger fluctuations in the downstream
region of the cylinder.

Figure 7(b) gives the variation of σCP with roughness for various Reynolds numbers.
For a given Reynolds number, σCP increases over the circumference of the cylinder with
an increase in roughness. In addition, the peak in σCP increases and moves upstream as
roughness is increased for a fixed Reynolds number. This change is similar to that seen
when Reynolds number is increased for a fixed roughness.

3.4. Power spectra of lift and Strouhal number of vortex shedding
Figure 8(a) gives the power spectral density (PSD) of fluctuations in the lift coefficient at
a Reynolds number of 6.7 × 105 for different roughnesses. A similar distribution with a
significant peak is seen in the majority of the tests (all at postcritical Reynolds numbers)
indicating the presence of strong periodic vortex shedding. Since the lift force is induced
by the alternating vortex shedding, the second half of the lift cycle must mirror the first
half, which means only odd harmonics can contribute to a periodic signal. This can be
seen in the presence of the third harmonic throughout the postcritical regime.
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Figure 7. Circumferential distributions of the fluctuating coefficient of pressure: �, ks/D = 3 × 10−3; �,
ks/D = 1.9 × 10−3; �, ks/D = 1.4 × 10−3; ♦, ks/D = 1.1 × 10−3; red solid line, ∼3 × 105; green solid line,
∼4 × 105; blue solid line, ∼5 × 105; and brown solid line, ∼6.7 × 105. (a) Effect of Reynolds number for
different roughness. (b) Effect of roughness for different Reynolds number. Note that successive sequences of
curves have been offset in pressure coefficient by −0.1.

Achenbach & Heinecke (1981) found that energy of lift fluctuations is distributed in
a narrow band of frequencies for rough cylinders through the critical regime, while on
the other hand Szechenyi (1975) and Batham (1973) found a broadband spectra without
an obvious dominant frequency near the critical Reynolds number. A clear shedding
frequency was found in the lift spectra for all tests except for ks/D = 1.4 × 10−3 and
ks/D = 1.1 × 10−3 at Reynolds numbers near Re ∼ 2 × 105. As an example, gives time
histories of the coefficients of pressure, lift and drag (plotted against a non-dimensional
convective time scale, tU∞/D, also referred to as t∗ henceforth) observed for ks/D =
1.4 × 10−3 at a Reynolds number of 1.64 × 105 are given in figures 8(b), 8(c) and 8(d),
respectively.

For 0 < t∗ ≤ 1200, a stable LSB exists on both sides of the cylinder, which can be
inferred from the lower mean CD and mean CL of ∼0. The presence of the LSB delays
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Figure 8. (a) Frequency spectra of the lift coefficient for different roughnesses at Reynolds number of 6.7 ×
105: red, ks/D = 3 × 10−3; green, ks/D = 1.9 × 10−3; blue, ks/D = 1.4 × 10−3; brown, ks/D = 1.1 × 10−3.
(b) Coefficient of pressure vs time on ks/D = 1.4 × 10−3 at Reynolds number of 1.64 × 105. (c) Spectra of CL
for different time intervals. (d) Time history of CL and CD of that test.

separation, increases the base pressure and, hence, decreases CD. For t∗ > 1200, the LSB
near (θ ∼ (300◦–250◦)) becomes unstable and intermittent leading to increased CD and a
non-zero mean CL. The onset of instability is found to occur over the entire span but since
the LSB becomes intermittent, the separation line in the spanwise direction at a given
instant of time is expected to be jagged and, hence, vortex shedding is incoherent (Bearman
1984). This is also seen in the frequency spectra of the sectional lift coefficient from two
different periods, 0 < t∗ ≤ 1200 and 2500 < t∗ ≤ 3700. A dominant frequency is present
in the spectrum when the LSB is stable on both sides of the cylinder, while the spectrum
resulting from an asymmetric intermittent LSB is broad range. The spectrum for the
entire duration of the test (t∗ = 7500, t = 120 s) is broadband in nature and, hence, these
Reynolds numbers were excluded from figure 10 despite there being strong periodicity over
a short period. In addition, the Strouhal number pertaining to the wake flow when there is
a dominant frequency or a narrow band in the energy spectrum while in the ‘two-bubble’
state is higher than the Strouhal numbers in both subcritical and postcritical regimes and
is ∼0.32. Bearman (1969) also found a higher frequency in the ‘two-bubble’ state.

This intermittent LSB is absent for the two rougher cylinders (ks/D = 1.9 × 10−3

and ks/D = 3 × 10−3) in the current tests. Thus, the prevalence of an intermittent LSB
reduces as the roughness is increased, i.e. the supercritical regime becomes smaller as the
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a

b

UVf
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U∞ hs

Figure 9. The length and velocity scales used in the calculation of universal Strouhal numbers, StR and StB;
red dashed line, mean shear layers.
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Figure 10. (a) Strouhal number and (b) the Roshko number (top), StR, and the Bearman number (bottom),
StB, for different roughnesses. Confidence intervals were calculated as described in § 2.2. Plots: · · � · · (red),
ks/D = 3 × 10−3; · · � · · (green), ks/D = 1.9 × 10−3; · · • · · (blue), ks/D = 1.4 × 10−3; · · � · · (brown),
ks/D = 1.1 × 10−3.

roughness is increased. In other words, surface roughness is found to promote coherent
shedding in the Reynolds number space (in agreement with Achenbach & Heinecke 1981).

The Strouhal number of the vortex shedding initially increases and then decreases
with the Reynolds number, similar to the changes in wake angle and base pressure. This
variation of Strouhal number with Reynolds number for different roughnesses is given
in figure 10(a). For a given roughness, the Strouhal number decreases with an increasing
Reynolds number in the postcritical flow, indicating that the wake width increases (Roshko
1961). This increase is a consequence of the upstream movement of the separation angle
and results in reduced base pressure and, thus, increased drag. An increase in roughness
at a given postcritical Reynolds number also increases wake width and, hence, decreases
the Strouhal number. Current data also confirm the prediction of Achenbach & Heinecke
(1981) that the postcritical Strouhal numbers for rough cylinders are smaller than those
for smooth cylinders. In line with the asymptotic behaviour of separation angle, base
pressure and coefficient of drag, the Strouhal number eventually approaches asymptotic
values at large Reynolds numbers (∼0.2 for the roughest surface tested and ∼0.21 for the
smoothest).

Two proposed universal Strouhal numbers: the Roshko number, StR, (Roshko
1954, 1961) and the Bearman number, StB, (Bearman 1967) were computed for the current
tests and the results are presented in figure 9. While the Roshko number uses wake width
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and velocity near the separation point, the Bearman number makes use of lateral vortex
separation and velocity near the separation point as the characteristic length and velocity
scales, respectively. The Roshko number (Roshko 1954) is calculated as

StR = fhs

Us
, (3.1)

where f is the frequency of shedding, Us is the velocity at the edge of the boundary layer
near the separation, and hs is the lateral (cross-stream) spacing between the shear layers
when they become parallel. Here Us can be estimated through Bernoulli’s equation as

Us = U∞(1 − CPb)
0.5. (3.2)

From simple momentum considerations:

− CPbhs = CDD. (3.3)

On the other hand, the Bearman number (Bearman 1967) is

StB = fb
Us

, (3.4)

where b is the lateral spacing between the centres of vortices of the same sign. Here f is
the frequency of shedding, a is the longitudinal spacing between vortex centres, UVb is the
velocity of vortex centres relative to the body (stationary cylinder in this investigation) and
UVf is the velocity of vortex centres relative to the freestream (U∞ = UVf + UVb). From
(3.4),

StB = fba
aU∞(1 − CPb)

0.5 ,

fa = UVb,

StB = b
a

UVb

U∞
1

(1 − CPb)
0.5 .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.5)

Kronauer’s stability criterion states that the vortex street aligns itself such that the
vortex-street drag coefficient, CDS , is minimum with respect to the aspect ratio, b/a. This
criterion can be simplified to

b
a

UVb

U∞
= F (CD St) . (3.6)

where F is a function resulting from the stability criterion. Further information on the
evaluation of the Bearman number is given in Appendix A.2.

Thus, the Roshko and the Bearman numbers for a given Reynolds number can be
estimated using the coefficient of drag, CD, the Strouhal number of shedding, St, and the
base pressure coefficient, CPb . In these calculations of StR and StB, measured values (and
not blockage-corrected ones) of CD, St and CPb are used, since the influence of blockage
and blockage corrections on the vortex street is uncertain (Bearman 1967). The variation
of StR and StB with Reynolds number for various roughnesses is given in figure 10(b).

Over the range of Reynolds numbers and roughnesses tested, StB has less scatter than
StR. The values of StR and StB were found to be ∼0.14 and ∼0.17 in excellent agreement
with those found by Adachi (1997) at similar Reynolds numbers on rough cylinders.
The scatter in both StR and StB increases in the critical regime owing to uncertainties
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of measurements. Moreover, a slight downward trend in StR is found with increasing
Reynolds number suggesting that perhaps StR is not truly universal. On the other hand,
the variation in the postcritical regime is still small over the Reynolds number range
considered but there is a noticeable spread with roughness. It is of note that the tests in the
supercritical regime where periodic shedding is sporadic are omitted in these calculations.

3.5. Spanwise correlation of the lift
The one-sided, axial correlation length of lift Λ is determined following the procedure
outlined in § 2.1 of Norberg (2003) and the results are given in figure 11. A sample
calculation for the correlation length is given in Appendix A. Owing to the sparse
spanwise distribution of pressure measurements, there is some scatter in the calculated
axial correlation length. Despite the scatter, it is clear that Λ does not vary significantly
with roughness or Reynolds number in the postcritical regime. Broadly, Λ takes the value
of ∼3D in the subcritical regime and drops to ∼1.5D in the critical regime indicating a
drop in coherence due to the intermittent separation. In the postcritical regime, Λ is ∼4D
for all the roughnesses tested. These results are in excellent agreement with Buresti (1981)
where correlation lengths were found using hot-wire measurements. This agreement is
surprising given the difference in aspect ratios between the two set-ups and the method
of measurement. As mentioned previously, correlation lengths of ∼3.2D and ∼3.9D were
found at particular postcritical Re by Batham (1973) (AR = 6.6), Ribeiro (1991) (AR = 6),
respectively, and the current results are in good agreement with them. However, Eaddy
(2019) reported correlation lengths of ∼2.5–3.4D for an aspect ratio of 9 and 6D for an
aspect ratio of 5.7. The turbulence intensity of the free stream in Eaddy (2019) was 4.4 %,
and this could be the cause of the slightly lower correlation lengths for the larger aspect
ratio set-up. It is interesting that an AR of 5.7 in Eaddy (2019), which is similar to that
in Ribeiro (1991) and Batham (1973), resulted in a much higher correlation length. An
increased blockage and vibration in their low aspect ratio set-up could also contribute
to this discrepancy. The difference in fluctuating lift coefficient between the two set-ups
supports this hypothesis.

A correlation length of ∼4D thus appears to be the best estimate for postcritical flows
over rough cylinders. This length is significantly larger than the Λ ∼ 1.5D for smooth
cylinders at similar Reynolds numbers (Batham 1973; King 1977; Blackburn & Melbourne
1996), indicating that the roughness increases spanwise uniformity of the flow in the
Reynolds number range of Re = 3 × 105 to 6.5 × 105. Schewe (1983) showed that the
transition to the postcritical regime for smooth cylinders begins at Re = 2.5 × 106. Hence,
it is likely that the smooth cylinder results of correlation lengths at 3 × 105 ≤ Re ≤
6.5 × 105 were obtained in flow regimes that contain LSBs, thus explaining the lower
correlation lengths. While the difference in axial correlation length of lift between smooth
and rough cylinders at the same Reynolds number is significant, all roughnesses tested
showed similar correlation lengths implying that the magnitude of the roughness has little
effect on the extent of spanwise correlation in the range of Reynolds numbers tested.

3.6. On behaviour of the flow beyond Re ∼ O(106)

The largest Reynolds number tested in the current work is 6.7 × 105 and all of the variables
measured, i.e. CD, σCL , CPb , CPm , θw, St and Λ, appear to have reached or are close to
their asymptotic values with respect to increasing Reynolds number. This observation is
in agreement with those of Güven et al. (1980), Buresti (1981) and Nakamura & Tomonari
(1982) up to the largest Re tested in those works. Shih et al. (1993) and Adachi (1997)
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Figure 11. Axial correlation length of lift for different roughness and Reynolds numbers. Confidence intervals
were calculated as described in § 2.2. Plots: � (red), ks/D = 3 × 10−3; � (green), ks/D = 1.9 × 10−3; • (blue),
ks/D = 1.4 × 10−3; � (brown), ks/D = 1.1 × 10−3.

investigated rough cylinders at Reynolds numbers up to O(107) and observed no evidence
of the drag curve turning over as the Reynolds number was increased further towards the
upper limit of those experiments.

On the other hand, the uncorrected drag coefficient, CD in Achenbach (1971) for ks/D =
9 × 10−3 decreased from ∼1.3 at Re ∼ 3 × 106 to ∼1.2 at Re ∼ 3 × 107. The magnitude
of decrease in CD was smaller in the blockage corrected drag coefficients, ∼1.04 at Re ∼
3 × 106 to ∼1 at Re ∼ 3 × 107. In addition, van Hinsberg (2015) found that for larger
Reynolds numbers, CD, σCL , St and to a minor extent CPb and CPm reached a peak before
decreasing slightly beyond Re ∼ 106. However, these trends were found to occur only with
the data obtained from the flow generated through the larger total pressures (i.e. higher
Mach numbers).

For a fixed diameter, larger Reynolds numbers result in larger Mach numbers, thus
increasing the effect of compressibility of the working fluid. Jones et al. (1969)
investigated Reynolds numbers from 0.4 × 106 to 14 × 106 on smooth cylinders at Mach
numbers ranging from 0.1 to 0.6. CD vs Re for Mach numbers above M > 0.2 showed the
drag reaching a peak prior to remaining almost constant or decreasing slightly. Moreover,
this behaviour was exacerbated on increasing Mach number. Thus, further investigations as
Re → O(107) over a range of Mach numbers are recommended to understand the influence
of compressibility on different flow variables.

3.7. The roughness Reynolds number and curve collapse
In postcritical flows, the influence of an increase in roughness is similar to that of an
increase in Reynolds number, i.e. the minimum pressure, CPm , increases while base
pressure, CPb , and wake angle, θw, decrease. From figure 6, it is also clear that CPb and
θw approach asymptotic values with increasing roughness similar to the variation with
increasing Reynolds number. The peak in the fluctuating pressure distribution moves
upstream and σCP in the downstream region of the cylinder increases with increasing
roughness, and these changes too are qualitatively similar to those that occur with
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Figure 12. (a) Mean drag coefficient and (b) fluctuating lift coefficient as a function of Roughness Reynolds
number: · · � · · (red), ks/D = 3 × 10−3; · · � · · (green), ks/D = 1.9 × 10−3; · · • · · (blue), ks/D = 1.4 × 10−3;
· · � · · (brown), ks/D = 1.1 × 10−3.

increasing Reynolds number. On the other hand, axial correlation length is ∼4D in the
postcritical regime for all roughnesses tested and, hence, the magnitude of spanwise
correlation of forces is the same for all roughnesses tested in postcritical flow.

The variation in all the above-mentioned properties is similar whether it is a result of a
change in Reynolds number or a change in roughness. This, combined with the difficulty
of achieving postcritical Reynolds numbers while maintaining acceptable blockage and
aspect ratio in most wind tunnels provides the support for the use of roughness to simulate
the effect of postcritical flow proposed by Szechenyi (1975).

Figure 12 gives the variation of bulk properties, mean drag and fluctuating lift as
functions of Roughness Reynolds number, Reks = (ρU∞ks)/μ = Re(ks/D). In postcritical
flows and for a given Roughness Reynolds number, the maximum deviation from the mean
CD among different roughnesses tested is only ∼3 %. While the corresponding difference
in the fluctuating coefficient of lift is higher (within 10 %), this is of the order of the
experimental error in predictions of σCL as seen in figure 12(b).

Figure 13 gives the mean and fluctuating pressure distribution from different
roughnesses at varying Reynolds numbers but at the same Roughness Reynolds number
of 720. It is evident that the differences in mean CP are only in the acceleration region
and CP nearby and postseparation is similar for all roughnesses. In the fluctuating pressure
distribution, the peak of σCP occurs near the same azimuthal angle. However, quantitative
differences in σCP in the downstream region are larger than those in the mean CP and these
contribute towards the differences in σCL .

Mean base pressure, CPb , wake angle, θw, the total contribution of base CP to the
drag coefficient, CDbase , and the contribution of upstream CP to the drag coefficient,
CDrest , Strouhal number, St, and the axial correlation length, Λ, are plotted against
Roughness Reynolds number in figure 14. The wake angle, which, as described previously
is representative of the separation angle in the postcritical regime, is fairly constant at a
given Roughness Reynolds number irrespective of the roughness used to achieve it. As
can be seen in figure 6( f ), CPb is a strong function of θw. Consequently, the base pressure
and the contribution of the pressure distribution in the base region to drag is constant for
a given Roughness Reynolds number. The contribution of the upstream region of drag
is a function of roughness since flow in the acceleration region and CPm is a function
of roughness even at large Reynolds numbers. However, this contribution is minor when
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Figure 13. Circumferential distributions of (a) mean pressure and (b) fluctuating pressure coefficients at
Roughness Reynolds number of 720: � (red), ks/D = 3 × 10−3; � (green), ks/D = 1.9 × 10−3; � (blue),
ks/D = 1.4 × 10−3; ♦ (brown), ks/D = 1.1 × 10−3.

compared with the contribution of base pressure, leading to only a minor deviation in the
total drag coefficient.

Since the separation angle, drag coefficient and base pressure collapse with Roughness
Reynolds number, it follows that wake parameters also collapse with roughness Reynolds
number thereby leading to a collapse of the Strouhal number. Strouhal number found from
spectral peaks of the lift fluctuations is plotted against roughness Reynolds number in
figure 14(e).

To summarise, the mean drag coefficient and the Strouhal number collapse well
when plotted against roughness Reynolds number, since wake (∼ separation) angle and
consequently, base pressure and wake width collapse with roughness Reynolds number.
On the other hand, the minimum pressure and the fluctuating lift coefficient are more
sensitive to local flow perturbations and, hence, different roughness levels and Reynolds
numbers lead to differences in σCL .

However, the asymptotic values of the base pressure, and the separation angle in
postcritical flows for smooth cylinders (from Güven et al. 1980) are different from those
of rough cylinders in the current tests. A collapse of the drag coefficient with roughness
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Figure 14. Variation of (a) wake angle, (b) base pressure coefficient, (c) base pressure contribution to drag,
(d) upstream pressure contribution to drag, (e) Strouhal number and ( f ) axial correlation length of lift with
roughness Reynolds number: · · � · · (red), ks/D = 3 × 10−3; · · � · · (green), ks/D = 1.9 × 10−3; · · • · ·
(blue), ks/D = 1.4 × 10−3; · · � · · (brown), ks/D = 1.1 × 10−3.

Reynolds number that includes data from smooth cylinders is hence expected to have a
larger deviation than found by Güven et al. (1980). Moreover, axial correlation lengths
for smooth cylinders in postcritical flows are unknown and the similarity among spanwise
flow over smooth and rough cylinders in postcritical flows is still uncertain.

Thus, the use of roughness Reynolds number is recommended in instances for which
postcritical flow of a slightly rough cylinder is simulated using a rougher cylinder at a lower
Reynolds number. Since the deviation in the collapse of CD through roughness Reynolds
number is only from the minimum pressure region, this collapse would work well if the
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Figure 15. Mean, fluctuating in-plane velocity distribution and spectra of fluctuations at point of maximum
σV in the wake of the cylinder of roughness, ks/D = 3 × 10−3: black, Re ∼ 1.9 × 105; red, Re ∼ 3.8 × 105.

roughnesses tested have similar characteristics and cause similar deceleration in the flow.
This explains the collapse of CD observed in Szechenyi (1975) (since all the roughnesses
were generated from glass beads) and the current work, and the deviations observed when
different roughnesses were taken into account in Güven et al. (1980). The comparisons
in Güven et al. (1980) were also from flow set-ups of different geometrical properties
and investigations that attempt the curve collapse while incorporating different kinds of
roughness elements in the same set-up are required to further identify the limitations to
the curve collapse using roughness Reynolds number.

Szechenyi (1975) proposed three thresholds in the roughness simulation i.e. Reδ ∼ 200
as the lower limit for the return of coherent vortex shedding, Reδ ∼ 1000 as the lower limit
after which the coefficients of drag, lift and the Strouhal number remain fairly constant,
and a relative roughness ratio of δ/D = 2.2 × 10−3 (where δ is the diameter of the glass
beads used to generate roughness) as the upper limit after which the coherence in vortex
shedding breaks down. For the roughnesses tested in the current study, the lower limit of
Reks at which the coherent shedding reestablishes intermittently is ∼300 while the steady
nature (i.e. less uncertainty in the estimates) of the fluctuating lift coefficient, Strouhal
number and the axial correlation length of lift are established at ∼500. As mentioned
previously, increase in roughness in the current experiments stabilises vortex shedding
rather than disrupting it and coherent vortex shedding is seen at all Reynolds numbers
for relative roughness, ks/D = 3.1 × 10−3. Moreover, Buresti (1981) found coherent
shedding with relative roughness as high as k/D = 12 × 10−3. This discrepancy among
the observations is probably due to the use of glass beads in Szechenyi (1975) to generate
roughness while sandpaper was used in Buresti (1981) and the current experiments.

3.8. Intermediate wake measurements
Mean and fluctuating velocity profiles and the PSD of velocity at 3 diameters downstream
of the 40 grit cylinder are given in figure 15. These are measured using a single-axis
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Figure 16. Mean, fluctuating in-plane velocity distribution and spectra of fluctuations at point of maximum

σV in the wake at, Re ∼ 3.8 × 105: black, ks/D = 3 × 10−3; red, ks/D = 1.1 × 10−3.

hot-film anemometer with its axis parallel to the axis of the cylinder and, hence, the hot
wire is sensitive to the total in-plane velocity. This total in-plane velocity is denoted by V
while y is the cross-stream distance from the centre of the cylinder.

For a fixed roughness, the mean velocity in the wake decreases with an increase in
Reynolds number and this increase in the velocity deficit leads to higher drag. Fluctuations
in the velocity increase with increasing Reynolds number, albeit at a lower rate than the
mean velocity. Power spectra of the velocity fluctuations (at the point at which fluctuating
velocity is maximum) show that energy content over the entire frequency range is higher
for the larger Reynolds number tested. Similar to the observation from CL spectra, Strouhal
number of the dominant frequency decreases slightly as the Reynolds number increases in
the postcritical regime.

Velocity profiles and spectra downstream of two different roughnesses but at the same
Reynolds number are given in figure 16. The mean velocity deficit is similar for the two
roughnesses while the wake width is slightly smaller for the lower roughness. Consistent
with the fluctuating lift coefficient, σCL , and the fluctuating coefficient of pressure, σCP ,
the fluctuating velocity shows a clear increase with increasing roughness, indicating an
increase in the turbulent kinetic energy. While the energy density over the broad frequency
range is similar for both roughnesses, the dominant shedding frequency has more energy
for the larger roughness, possibly because this roughness is well into the postcritical
regime. This shows that at a given Reynolds number, energy fluctuations are larger for
the larger roughness and that the increased energy is concentrated predominantly at the
shedding frequency.

Wake profiles for the cylinders with relative roughness ks/D = 1.9 × 10−3 and ks/D =
1.1 × 10−3 through the near and intermediate wake are given in Appendix A.

3.9. Wake frequencies
Figure 17 shows the PSD of velocity fluctuations at different downstream locations in the
wake for two roughnesses, ks/D = 1.9 × 10−3 and ks/D = 1.1 × 10−3, at Reks ∼ 550. At
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Figure 17. Frequency spectra of velocity fluctuations in the wake: (a) ks/D = 1.9 × 10−3 at Re = 2.9 × 105

and Reks =∼ 550 and (b) ks/D = 1.1 × 10−3 at Re = 4.7 × 105 and Reks =∼ 510. Spectra obtained at the
location of the cross-stream maximum velocity fluctuation at distance downstream from the centre of the
cylinder: black, 0D; green, 0.25D; blue, 0.5D; red, 1D; brown, 6D.

each of these locations, a spectrum is obtained from the time history of in-plane velocity at
a point where σV/Vref is maximum in the cross-stream profile. The energy in fluctuations
before separation is lower than that postseparation over the entire frequency range. Spectra
in the shear layer (at 0.25D, 0.5D and 1D) have the highest energy among the measurement
range and, moreover, a plateau in the PSD is found at higher frequencies of fD/U∞ ∼
1–3. These frequencies also had a higher spatial amplification factor, α, Khor, Sheridan &
Hourigan (2011) confirming that these are the frequencies at which shear-layer instabilities
grow fastest. Furthermore, as one moves downstream, the frequency in the shear layers
reduces slightly indicating an increase in shear-layer thickness. A similar plateau is found
at postcritical Reynolds numbers for smooth cylinders in Lehmkuhl et al. (2014) and was
considered a signature of Kelvin–Helmholtz frequencies, fKH , in the shear layer. While
shear-layer frequencies in the smooth cylinder follow the power law suggested by Prasad
& Williamson (1997) ( fKH/fV ∝ Re0.67), fKH in the current results is an order of magnitude
lower for the same Reynolds number. For instance, at a Reynolds number of 3.8 × 105, the
power law for smooth cylinders predicts fKHD/U∞ ∼ 30 while the current results show
the broadband (non-dimensional) frequency between 1 and 3.

To further investigate this deviation, the momentum thickness of the shear layer, Θ was
computed according to the procedure outlined in Khor et al. (2011) and the results are
tabulated in table 3. Since the hot-film anemometer measures the total in-plane velocity,
current values of momentum thickness are expected to be only approximate. The key
takeaway however, is that the momentum thickness of the shear layers for rough cylinders
is an order of magnitude higher than that of the predicted smooth-cylinder momentum
thickness, ∼0.003 at 0.5D according to the correlation given in Khor et al. (2011) at the
same Reynolds number. Since the boundary-layer thickness is larger on rough surfaces
than on smooth surfaces for a given postcritical Reynolds number, separated shear layers
are also expected to be thicker.

The empirical power-law correlations of fKH and Θ/D vs Re for smooth cylinder flows
do not contain data from the postcritical regime where shear layers are expected to be
turbulent and, hence, thicker than laminar shear layers. Moreover, as the Reynolds number
increases, the energy content of the turbulent shear layer is expected to be distributed over
a wider range of frequencies thereby making it difficult to discern an exact value for fKH .
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Relative roughness ks/D Re Θ/D at (x/D = 0.25) Θ/D at (x/D = 0.5)

1.4 × 10−3 2.9 × 105 0.0092 0.0212
1.4 × 10−3 3.8 × 105 0.0112 0.0239
1.1 × 10−3 3.8 × 105 0.0068 0.0203
1.1 × 10−3 4.7 × 105 0.0092 0.0224

Table 3. Momentum thickness (Θ/D) of the shear layer at different streamwise locations.

However, current predictions of momentum thickness agree remarkably well with those
of shear-layer frequencies when the inverse proportionality between the frequency and
shear-layer thickness is taken into account, i.e. while the frequency peak of shear layers is
an order of magnitude smaller than that obtained from the smooth cylinder correlations,
the momentum thickness is an order of magnitude larger.

4. Conclusions

This study has drawn new insights into the aerodynamic behaviour of roughened cylinders
at postcritical Reynolds numbers and elucidates prior inconsistencies in the literature for
this flow. We have presented a new consistent, reliable and comprehensive data set that
minimises the confounding effects of blockage and aspect ratios, and the variability they
can induce. The motivation for this study was the variable and sometimes contradictory
conclusions drawn from a number of previous studies on rough cylinders at high Reynolds
numbers, making it difficult to use prior literature findings for reliable prediction and
application.

This work consists of wind tunnel experiments covering the precritical to the postcritical
Reynolds number range based on cylinders of aspect ratio, AR = 9.8, positioned in a wind
tunnel with a blockage ratio of 5 %. We quantify the key parameters of the flow such as the
drag and lift coefficients, circumferential pressure distributions and their corresponding
spectra, and the axial correlation length of lift for relative roughness ratios, 1.1 × 10−3 ≤
ks/D ≤ 3 × 10−3, and Reynolds numbers, 0.5 × 105 ≤ Re ≤ 6.7 × 105. Analysis of these
results leads to several important findings.

(i) Corrections to the influence of wind tunnel walls work well for the mean drag
coefficient, CD. The blockage corrected drag coefficients from the current work are
in good agreement with those from Achenbach & Heinecke (1981), Güven et al.
(1980) and van Hinsberg (2015) despite widely varying blockage. On the other hand,
there is a non-negligible scatter in parameters like CPb and CPm across different
investigations. This difference brings into question the applicability of blockage
corrections to CP, especially at large blockages (>15 %) found in Güven et al. (1980)
and Achenbach & Heinecke (1981).

(ii) Moreover, Eaddy (2019) found a large (∼30 %) increase in σCL for an increase in
aspect ratio from 5.7 to 9 and blockage from 8 % to 12 %. The blockage corrections
to the fluctuating coefficient have not been verified yet thereby necessitating the use
of a low-blockage and high-aspect-ratio set-up in order to get accurate measurements
of the fluctuating coefficient of lift.

(iii) We present, for the first time, the fluctuating lift coefficient, σCL for a range of
surface roughnesses in the postcritical flows measured through a low-blockage and
high-aspect-ratio set-up. Despite having similar geometrical parameters (and similar
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CD), current results of σCL vary significantly from those of van Hinsberg (2015) for
a similar relative roughness. Possible causes of the discrepancy are the differences
in the method of generation of surface roughness, the measurement technique along
with the influence of gaps between the tunnel walls and the cylinder present in the
set-up of van Hinsberg (2015).

(iv) This study reveals a strong correlation between the separation angle (quantified
through wake angle, θw) and the base pressure (quantified through CPb) of the
cylinder in the postcritical regime that is consistent across the range of roughnesses
tested. The wake angle, θw, and, consequently, the base pressure, CPb , Strouhal
number, St, and the coefficient of drag, CD, decrease with increasing Reynolds
number for a given roughness in the postcritical regime. On the other hand,
minimum pressure, CPm , and the fluctuating coefficient of lift, σCL , increase
with increasing Reynolds number. These quantities eventually approach asymptotic
values at large Reynolds numbers. Amongst these quantities, only the asymptotic
value of CPm strongly depends on the degree of roughness and is not well described
by only the roughness Reynolds number. Measurements by Jones et al. (1969) in
a pressurised wind tunnel suggest that at very high Reynolds numbers the drag
coefficient could reach a maximum and then decrease slightly as the Reynolds
number is increased further. This might be caused by compressibility effects since
the Mach number was not negligible in those experiments. Further studies at very
large Reynolds numbers (∼107) and different Mach numbers are recommended to
understand the influence of compressibility better.

(v) Time histories and frequency spectra of the lift signal revealed that intermittency
of the LSB disturbs coherent vortex shedding and no dominant frequency exists
in such a flow. This supercritical flow is found to occur over a smaller range of
Reynolds number as roughness increases, i.e. coherent (spanwise) and periodic
vortex shedding exists over a larger Reynolds number space for higher roughness.
A distinct frequency in shedding is found at all the Reynolds numbers tested for
a cylinder with relative surface roughness ks/D ≥ 1.9 × 10−3 but not for ks/D ≤
1.4 × 10−3 at Reynolds numbers near Re ∼ 2 × 105.

(vi) This study reports the axial correlation length of lift for a range of roughnesses at
Reynolds numbers Re ≤ 6.7 × 105 . In excellent agreement with the broad estimates
of Buresti (1981), the axial correlation length, Λ, at Re ≥ 3 × 105 is ∼4D for
all roughnesses tested. This length is significantly higher than that for smooth
cylinders (∼1.5D) at similar Reynolds numbers (King 1977) indicating an earlier
reestablishment of coherent shedding with increasing roughness.

(vii) This work also quantifies the velocity distributions in the wake of rough cylinders
in postcritical flows. We show that the flow velocity at 3 diameters downstream of
the cylinder decreases as the Reynolds number or roughness is increased. For a given
Reynolds number, the velocity in the wake recovers faster in the streamwise direction
for the lower roughness.

(viii) Momentum thickness of the shear layer for rough cylinders is found to be Θ/D ∼
0.02 at 0.5D downstream of the cylinder. This is an order of magnitude higher than
that of empirically predicted momentum thickness for smooth cylinders at the same
Reynolds numbers. Consequently, the frequencies in the shear layer postseparation
for the rough cylinder are found at fKHD/U∞ ∼ 2–3, an order of magnitude lower
than the smooth cylinder predictions.

(ix) Flow properties such as CD, σCL and CPb are plotted against the roughness Reynolds
number, Reks , for different roughnesses, the conclusions are as follows.
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(a) Across the range of surface roughness tested, the wake angle follows a consistent
trend with the roughness Reynolds number. The strong correlation between the
wake angle and base pressure leads to a collapse of base pressure. This further
results in a collapse of the Strouhal number and the drag coefficient with the
roughness Reynolds number.

(b) The deviation in the mean drag coefficient, CD, among different roughnesses
is within 3 % of the mean CD for the range of roughness Reynolds number
considered. The major contribution for the CD collapse is from the agreement
of base pressure between different roughnesses at the same roughness Reynolds
number (indicated by the collapse of CPb with Reks), while the deviation is due
to differences in the degree of deceleration before separation caused by different
roughness (represented by CPm).

(c) The correlation of σCL with Reks is more consistent (deviation within ∼10 %
of the mean of different roughness) than that reported by Szechenyi (1975) and
Eaddy (2019). Geometrical differences in the set-ups used by those authors are
the likely cause of this discrepancy. In particular, it appears that the low cylinder
aspect ratio and high blockage ratio play an important role.

(d) The similarity parameter to collapse variables in the current study is Reks =
Re(ks/D), which is different from the Re(k/D)0.6 dependence proposed by
Nakamura & Tomonari (1982). Nakamura & Tomonari (1982) used polystyrene
particles to generate the distributed roughness and adopted the roughness
parameter, k, as the size of roughness particles, while the current study
makes use of sandpaper and uses the equivalent sand-grain roughness, ks. This
difference could be the cause of the difference between the two similarity
parameters, but this aspect should be investigated further.

(e) Reynolds numbers of large engineered structures or even their components are
often difficult to achieve in standard wind tunnels while maintaining acceptable
blockage and aspect ratios. Current results support the argument that, with the
knowledge of surface roughness and Reynolds numbers for real-life structures of
interest, a similar flow scenario can be achieved in wind tunnels at a much lower
Reynolds number provided that roughness is tuned to match the Roughness
Reynolds number (within the range of Re � 7 × 105 and 1.1 × 10−3 ≤ ks/D ≤
3 × 10−3).
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Appendix A

A.1. Transfer function used for pressure measurements
Figure 18 gives the transfer function calculated based on the length of the tube used to
measure the pressure signal (from Bergh & Tijdeman 1965). This transfer function is
applied to all the pressure measurements in the current investigation.
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Figure 18. Transfer function applied to the pressure measurements.

A.2. Evaluating axial correlation length of lift
Figure 19 gives the coefficient of correlation between the fluctuations of lift coefficients
measured at different spanwise locations. The correlation coefficient is defined as

R(s) =
Σ

(
CL(0) − CL(0)

) (
CL(s) − CL(s)

)
√

Σ
(

CL(0) − CL(0)
)2

√
Σ

(
CL(s) − CL(s)

)2
, (A1)

where Σ indicates the summation over all the time steps in the duration of the test, CL
indicates the time average lift coefficient in that test, CL is the instantaneous lift coefficient
at each time step, CL(0) indicates the lift coefficient at the reference position (measurement
plane at −1D) and CL(s) indicates the lift coefficient at the same instant measured at a
spanwise separation of s.

A model function is fit over the discrete spanwise measurements in order to estimate the
axial correlation length of lift. This function is given by (Norberg 2003)

R(s) = α exp
(−s

Λ1

)
+ (1 − α)

(
1 +

(
s

CΛ2

)n)−1

, (A2)

where C is sin(π/n)/(π/n).
For each of the tests, (A2) is used as a curve fit to the correlation functions by varying

α, Λ1, Λ2 and n. The axial correlation length is then determined by

Λ = α(Λ1) + (1 − α)(Λ2). (A3)
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0.2

0 2 4 6 8 10

Figure 19. Correlation between the lift coefficients measured at different spanwise locations. Surface
roughness, ks/D = 1.4 × 105. Reynolds numbers: red, Re ∼ 0.7 × 105; green, Re ∼ 1.64 × 105 (same test as
figure 8); blue, Re ∼ 1.68 × 105; brown, Re ∼ 6.4 × 105.

For instance, the correlation lengths for the distributions in the figure 19 are 3.4, 1.9, 1.4
and 3.8, respectively, for the range of Reynolds number provided. Figure 19 also highlights
the uncertainty associated with the flow configuration in the supercritical regime.

A.3. Evaluating the Bearman number
From the potential flow model, the vortex drag coefficient, CDS , caused by two rows of
staggered point vortices is given by (Milne-Thomson 1962; Bearman 1967)

CDS = 4
π

(
UVf

U∞

)2 [
coth2 πb

a
+

(
U∞
UVf

− 2
)

πb
a

coth
πb
a

]
, (A4)

where

CDS = DS

0.5ρU2∞a
. (A5)

Here, a and b are the longitudinal (streamwise) and lateral (cross-stream) separations of the
vortices, and U∞ = UVb + UVf is the freestream velocity, with UVb and UVf the velocity
vortices relative to the body and the velocity of vortices relative to the freestream at the
separation point, respectively. Finally, DS is the drag due to the vortex wake.

From (A5),

CDSa = CDD ⇒ CDS

UVb

f
= CDD ⇒ CDS

UVb

U∞
= CD

fD
U∞

⇒ CDS

UVb

U∞
= CD St. (A6)

Again, noting that U∞ = UVb + UVf gives

CDS

(
1 − UVf

U∞

)
= CD St. (A7)
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Figure 20. Relationship between bUVb/aU∞ and CD St evaluated from Kronauer’s stability criterion.

Kronauer’s stability criterion states that for a given UVf /U∞, the aspect ratio, b/a, of
the resulting vortex street is the one that corresponds to the minimum drag coefficient,

∂CDS

∂

(
b
a

) = 0. (A8)

From (A4) and (A8),

2 cosh
πb
a

=
(

U∞
UVf

− 2
)

sinh
πb
a

(
cosh

πb
a

sinh
πb
a

− πb
a

)
. (A9)

To summarise, there are three unknown parameters so far, CDS , UVf and (b/a).
Equations (A4), (A7) and (A9) can be used to solve for these unknowns. Given the product
CD St, bUVb/aU∞ can thus be estimated. The variation of bUVb/aU∞ for a range of CD St
is given in figure 20 and this relationship forms (3.6).

b
a

UVb

U∞
= F (CD St) . (A10)

Thus, measurements of CD, St and CPb can be used to evaluate the Bearman number
StB,

StB = b
a

UVb

U∞
1

(1 − CPb)
0.5 . (A11)

A.4. Velocity profiles in the wake of rough cylinders
Figures 21(a) and 21(b) give the mean and fluctuating velocity profiles, respectively, for
the ks/D = 1.9 × 10−3 cylinder near the cylinder surface. While mean velocity increases
steeply through the shear layer, fluctuating velocity increases, reaches a peak and then
decreases. Since the difference in Reynolds number is small, there appears to be no
significant difference in the mean and fluctuating velocity profiles between the two
Reynolds numbers. The shear layer is slightly wider for the higher Reynolds number
indicating that there was longer growth and, hence, slightly earlier separation. This
observation is supported by the trends observed in θw previously.
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Figure 21. Mean and fluctuating velocity profiles downstream of the cylinder: (a,b) ks/D = 1.9 × 10−3 at
(blue) Re = 2.9 × 105 and (red) Re = 3.8 × 105; (c,d) Re ∼ 3.8 × 105 over (blue) ks/D = 1.9 × 10−3 and
(red) ks/D = 1.1 × 10−3; and (e, f ) Reks ∼ 530 over (blue) ks/D = 1.9 × 10−3 and (red) ks/D = 1.1 × 10−3.

Figures 21(c) and 21(d) give the mean and fluctuating profiles, respectively, at the same
Reynolds number for varying roughness. For a given Reynolds number, an increase in
roughness leads to a wider shear layer (ascertained from the fluctuating velocity profile)
at the same position downstream of the cylinder, implying an earlier separation for larger
roughness. Figures 21(e) and 21( f ) give the mean and fluctuating profiles, respectively, at
the same roughness Reynolds number for varying roughness. It is evident that the velocity
profiles are very similar, further reinforcing that the separation angle and, hence, the shear
layer and wake width close to the body of the cylinder postseparation is similar for different
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Figure 22. Mean and fluctuating velocity profiles downstream of the cylinder: (a,b) ks/D = 1.9 × 10−3 at
(blue) Re = 2.9 × 105 and (red) Re = 3.8 × 105; (c,d) Re ∼ 3.8 × 105 over (blue) ks/D = 1.9 × 10−3 and
(red) ks/D = 1.1 × 10−3; and (e, f ) Reks ∼ 530 over (blue) ks/D = 1.9 × 10−3 and (red) ks/D = 1.1 × 10−3.

roughness at the same roughness Reynolds number. This also agrees with the previous
observation of the Strouhal number collapse with roughness Reynolds number.

Figure 22 gives the velocity distribution further downstream of the cylinder. As
mentioned previously, owing to the limited range of Reynolds numbers tested for a given
roughness, the differences in the wake between the two Reynolds numbers are almost
insignificant. On the other hand, for a given Reynolds number, a decrease in roughness
increases the velocity deficit and wake width close to the cylinder. This velocity deficit
also diffuses faster for the smoother cylinder than that of the rougher cylinder indicating a
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faster velocity recovery. Mean and fluctuating velocity profiles are similar for different
roughnesses at the same roughness Reynolds number, especially beyond 3 diameters
downstream of the cylinder.
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