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Abstract
In this paper we study a variation of the random k-SAT problem, called polarised random k-SAT, which
contains both the classical random k-SAT model and the random version of monotone k-SAT another
well-known NP-complete version of SAT. In this model there is a polarisation parameter p, and in half
of the clauses each variable occurs negated with probability p and pure otherwise, while in the other half
the probabilities are interchanged. For p= 1/2 we get the classical random k-SAT model, and at the other
extreme we have the fully polarised model where p= 0, or 1. Here there are only two types of clauses:
clauses where all k variables occur pure, and clauses where all k variables occur negated. That is, for p= 0,
and p= 1, we get an instance of randommonotone k-SAT.

We show that the threshold of satisfiability does not decrease as p moves away from 1
2 and thus that

the satisfiability threshold for polarised random k-SAT with p �= 1
2 is an upper bound on the threshold for

random k-SAT. Hence the satisfiability threshold for random monotone k-SAT is at least as large as for
random k-SAT, and we conjecture that asymptotically, for a fixed k, the two thresholds coincide.
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1. Introduction
1.1. Random k-SAT
During the last decades the random k-SAT problem has been the focus for a large amount of work
by both computer scientists, mathematicians and physicists. In the classic version of this problem
we have n Boolean variables and m random clauses, with k variables each, giving us a random
k-CNF formula �. The clauses are chosen uniformly at random among all the 2k

(n
k
)
possible such

clauses. It is known that if α = m
n is small enough then � is satisfiable w.h.p. (asymptotically as

n→ ∞) and if α is large enough then � is unsatisfiable w.h.p. It is also known that the property
of being satisfiable has a sharp threshold [12], and it has been conjectured [5] that this thresh-
old asymptotically occurs at some density αk. This long been known for k= 2 [6], but remained
an open question for k≥ 3. It was recently shown that this also holds for sufficiently large k [9],
and that the threshold density predicted by heuristic methods from statistical physics [19, 20] is
correct. For small k≥ 3 there are so far only constant separation upper and lower bounds on the
possible value of αk, with [14, 16] giving α3 ≥ 3.52 and [10] giving α3 ≤ 4.506. The methods from
[19, 20] predict that α3 = 4.26675 . . ., but here recent computational work [18] indicates that this
value might be too large. The heuristic methods from [19, 20] also predict a highly complex geom-
etry for the set of solutions when α is close to the threshold. Some of these have been confirmed
for both other variations of random k-SAT and random colouring problems, see e.g. [7]. The large
gap between the bounds for α3 demonstrates that the classical probabilistic methods has so far not
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been as effective in the analysis of the threshold behaviour for random k-SAT as one would have
hoped. As pointed out in [1], part of the reason for this is that the different signs of the variables
in the clauses of the formula � leads to problems for the classical second moment method.

With these problems inmind we now introduce the polarised random k-SATmodel with polar-
isation p. In this model a random formula � is generated but now we choose each random clause
in the following way. We first pick a k-set C of variables uniformly at random. Next, we flip a fair
coin, and if it gives a tail we let each variable in our clause be negated with probability p, indepen-
dently of each other. Otherwise we negate with probability 1− p. For p= 1/2 this gives the usual
random k-SATmodel. For the fully polarised case p= 0, or 1, we instead get a model were roughly
half the clauses contain only negated variables and the other half only pure variables. In the SAT
literature a formula of this type is known as amonotone k-SAT formula.

Deciding satisfiability for monotone k-SAT formulae is well known to be NP-complete, this
follows from Schaefer’s [23] complexity classification of SAT problems. For k-SAT has long been
known [24] that the problem remains NP-complete even if the number of occurrences of each
variable is bounded and recently [8] similar restrictions of monotone k-SAT have been shown to
remain NP-complete. However, the random version of monotone k-SAT has not been analysed in
the existing literature. Now our randommodel allows us to continuously move between the usual
random k-SAT distribution and the distribution for random monotone k-SAT and study how the
threshold for satisfiability varies with the polarisation parameter p.

One of the appealing properties of monotone k-SAT is that satisfying assignments can be given
a very clean combinatorial description. Given a satisfying assignment for a monotone k-SAT for-
mula�, the set of variables which satisfy the pure clauses is disjoint from the set of variables which
satisfy the negative clauses. If we partition � into the two types of clauses as � = �1 ∪ �2, then a
solution for � corresponds to two disjoint sets of variables T1 and T2 such that Ti is a transversal
for the hypergraph defined by the clauses in �i. We thus have a description of a satisfying assign-
ment for � in terms of hypergraph properties more closely aligned with the classical machinery
of probabilistic combinatorics.

1.2. The Satisfiability threshold for Polarised k-SAT
Just as for random k-SAT we can prove that if the density α is below some constant, then a ran-
dom polarised k-SAT formula is satisfiable with high probability. Had the clauses all been biased
in the same direction (instead of having two types of clauses) we would get the biased k-SAT
model studied in [17]. For that model formulas become satisfiable for arbitrarily large densities,
as p approaches 0. However, for polarised k-SAT the very general results from [11] show that for
α above some constant the formula is with high probability not satisfiable, independently of p. As
the simulation data in Figure 1 show, the threshold, as given by the curve for 50% chance of sat-
isfiability, depends on p for finite n and becomes flatter for larger n. We will study the asymptotic
properties of this threshold curve.

The main result of this paper is that the probability of satisfiability is asymptotically non-
decreasing as p moves away from 1

2 , which is consistent with what the simulations in Figure 1
suggest. Our approach is to study the effect on satisfiability of adding a single clause to the for-
mula, or switching the sign of one variable in one clause, by connecting them to the number of
spine variables of the formula using the Russo-Margulis formula and a lemma from a previous
paper by the authors.

We next conjecture that for each fixed p there exists an αk(p) at which the model has a sharp
threshold. The value αk(1/2) is of course equal to αk (if they exist), and we prove that αk(p) is
within a constant factor of αk(1/2). Furthermore, we conjecture that αk(p)= αk(1/2), and we
prove the conjecture in the special case k= 2 by adapting a classical proof for the threshold value
for random 2-SAT. If our second conjecture is true we thus have an alternative, and perhaps
combinatorially more amenable, route to determining the threshold value for random k-SAT.
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Figure 1. Estimated critical densities of polarised 3-SAT for several values of n and p. From top to bottom, the curves are for
n= 50, 100, 150, 200 and 250. For n= 300 and 350 only simulations with p= 0 were run; these are the two isolated points on
the lower left. The shaded horizontal band is a range of predicted values for α3, from 4.262 [18] to 4.26675 [21].

1.3. Definitions and notation
We will frequently use asymptotic notation to describe how functions behave as n→ ∞.
O(f ), o(f ),ω(f ) and �(f ) will always be considered to be positive quantities, so that we may (for
instance) write f = −O(g) to mean that there exists a positive constant C such that f (n)≥ −Cg(n)
for all n ∈N. We will also use the notation f 
 g to denote that f = o(g).

Let {xi}ni=1 be a set of Boolean variables. We will identify TRUE (FALSE) with +1 (−1). We
say that z is a literal on the variable x if z := x or z := ¬x. A k-clause is an expression of the form
z1 ∨ z2 ∨ . . . ∨ zk, where each zj is a literal on some variable xi. We identify k-clauses C with the
k-set of literals that define them, so that we can write zj ∈ C for the clause above. We say that the
variable x occurs in C if C contains a literal on x. For any truth assignment σ ∈ {±1}n, we write
C(σ )= 1 if the clause C evaluates to TRUE when xi = σi for i= 1, 2, . . . n, and we then say that σ
satisfies C. Otherwise, if C evaluates to FALSE, C(σ )= −1.

A k-CNF (short for ‘conjunctive normal form’) is a Boolean formula F of the form F =
C1 ∧ C2 ∧ . . . ∧ Cm, where each Cj is a k-clause. For any truth assignment σ , we write F(σ )= 1 if
C1(σ )= . . . = Cm(σ )= 1 (i.e. all clauses are satisfied), and F(σ )= −1 otherwise (i.e. at least one
clause is not satisfied). If there exists a σ such that F(σ )= 1, we say that F is satisfiable and write
F ∈ SAT. If no such σ exists, we say that F is unsatisfiable and write F /∈ SAT.

1.4. The polarised k-SATmodel
Given 0≤ p≤ 1, we let �m = �m(n, k, p) be a p-polarised k-CNF with m clauses on n variables.
We will typically use � to denote a k-SAT formula from this distribution, and F to denote any
k-SAT formula which is not directly taken from this distribution.

It will be convenient later to be able to separate the randomness that depends on p from the ran-
domness that does not. It will also be useful to couple these formulae so that�m−1 is a sub-formula
of �m. With this in mind, we give the following more precise definition of how �1,�2, . . . are
constructed.

1. Let K1,K2, . . . be a sequence of k-tuples (v1, . . . , vk) of indices in {1, 2, . . . , n}, chosen
independently and uniformly at random (without replacement).

2. Let B1, B2, . . . be a sequence of i.i.d. random variables such that P(Bi = −1)=
P(Bi = 1)= 1

2 .
3. For each j= 1, 2, . . . , k, let P1j, P2j, . . . be a sequence of i.i.d. random variables such that

P(Pij = 1)= p and P(Pij = −1)= 1− p.
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4. For each k-tuple Ki = (v1, . . . , vk) and each j≤ k, let the literal zj be defined as xvj if
BiPij = 1 and ¬xvj otherwise. Then let Ci := z1 ∨ z2 ∨ . . . ∨ zk.

5. For allm ∈N, let �m := C1 ∧ C2 ∧ . . . ∧ Cm

When p= 0 or p= 1 we say that the formula�m is fully polarised. Replacing pwith 1− p yields
the same probability distribution, so we will henceforth assume (without loss of generality) that
p≤ 1

2 . Note also that although the signs that the variables occur with in a clause are positively
correlated1 for p �= 1

2 , a given variable in a given clause occurs either pure or negated each with
probability 1

2 .
Let αk(p, n) :=min

{
m/n : P(�m ∈ SAT)≤ 1

2
}
be the median satisfiability threshold. For p= 1

2
we recover the classical random k-SAT problem, and we write αk(n) := αk

( 1
2 , n

)
. We say that �m

has a sharp satisfiability threshold if for every ε > 0, the formula �m is satisfiable w.h.p. whenever
m< (αk(p, n)−ε) · n and unsatisfiable w.h.p. wheneverm> (αk(p, n)+ε) · n.

1.5. Results and conjectures
The two main questions that we will concern ourselves with is the location of the satisfiability
threshold (as a function of p or n), as well as its sharpness. Our main result is the following the-
orem, which lower bounds the threshold of the polarised random k-SAT model in terms of the
classical random k-SAT model.

Theorem 1. Let k≥ 2 be fixed.

1. For 0≤ p≤ 1
2 the probability of satisfiability is asymptotically non-increasing as a function

of p. More precisely, for any 0≤ p≤ q≤ 1
2 ,

P(�m(n, k, p) ∈ SAT)≥ P(�m(n, k, q) ∈ SAT)− o(1). (1)

2. For any 0≤ p≤ 1
2 , the satisfiability threshold αk(p, n) is bounded by

αk(n)− o(1)≤ αk(p, n)≤ 1+ o(1)
− log2(1− 2−k)

. (2)

The first part of this theorem tells us that asymptotically the location of the satisfiability threshold
is a decreasing function of p, for p≤ 1/2. In particular for p= 0 we get the following corollary.

Corollary 2. The value of the satisfiability threshold for random monotone k-SAT is at least as large
as that for random k-SAT.

The second part of the theorem tells us that the classical bounds on the location of the threshold
for random k-SAT can be generalised to polarised k-SAT as well.

In the special case k= 2 of the classical random k-SAT model, it is well known that the thresh-
old is sharp and α2(n)= 1+ o(1) [5]. Adapting this proof to the polarised model, we have shown
that it too has a sharp threshold at this location.

Theorem 3. The polarised 2-SAT problem with polarisation p has a sharp satisfiability threshold
and α2(p, n)= 1+ o(1). More precisely,

P(�m(n, 2, p) is satisfiable)=
{
1− o(1), m< n− ω

(
n2/3

)
o(1), m> n+ ω

(
(n ln n)9/10

)
,

In other words, α2(p) exists and equals α2 = 1.

1Two such variables are both pure or both negated with probability p2 + (1− p)2, which is strictly greater than 1
2 if p �= 1

2
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It is known that the width of the threshold for classical random 2-SAT is �(n2/3) [4], so it seems
plausible that the lower bound in Theorem 3 is sharp.

The location of the threshold for k= 2 is asymptotically independent of p, and we conjecture
that this holds for larger k as well.

Conjecture 4. For any 0≤ p≤ 1 and k≥ 3, the threshold of the p-polarised random k-SAT problem
asymptotically coincides with the threshold for the classical random k-SAT problem, i.e. αk(p, n)=
αk
( 1
2 , n

)± o(1).

Friedgut [12] proved a general theorem on sharp thresholds, which, as a special case, shows
that the classical random k-SAT problem has a sharp threshold. Unfortunately, this theorem is
not directly applicable to polarised k-SAT with p �= 1

2 , because introducing a polarisation breaks
some of the symmetry of classical random k-SAT.2

Conjecture 5 (Generalised satisfiability conjecture). Given 0≤ p≤ 1 and k≥ 3, there exists an
αk(p) such that for any ε > 0,

P(�m(n, k, p) ∈ SAT)=
{
1− o(1), m≤ (αk(p)− ε)n
o(1), m≥ (αk(p)+ ε)n.

If Conjecture 5 is true, then αk(p)= limn→∞ αk(p, n) exists. If Conjecture 4 is also true, then
αk(p)= αk

( 1
2
)
.

Finally, let us note that polarised random k-SAT provides a continuous interpolation between
random k-SAT and random monotone k-SAT and our results and conjectures indicate that some
properties of the satisfiability threshold do not change during this deformation. Our proof for the
first part of Theorem 1 depends on the structure of typical satisfying assignments for a formula, so
it would be interesting to see how existing results on the structure of the space of such assignments,
of the type in e.g. [3], can be adapted to the polarised model. Similarly it would be interesting to
develop a deterministic version of our deformation which could unify complexity results, like
those from [24] and [8], for k-SAT and monotone k-SAT.

2. Proof of Theorem 1
It will be convenient to work with the parametrisation p= 1

2 − b, where 0≤ b≤ 1
2 . Let

Pm(b) := P(�m ∈ SAT), where �m = �m
(
n, k, 12 − b

)
. Theorem 1 will follow from the following

proposition.

Proposition 6. For any k≥ 2 there exists a c= c(k)> 0 such that if n> c, m/n ∈ [2−1, 2k], and
b ∈ [0, 12], then P′

m(b)≤ cn− k−1
2k .

Note that P′
m might well be negative, and we have proven no lower bound. If one could show

that P′
m ≥ −o(1), this would imply Conjecture 4.

2.1. Spine variables and the Russo-Margulis formula
Before we can begin with the proof of Proposition 6, we will need some additional tools. First,
the spine variables of a random constraint satisfaction problem were introduced by Boettcher,
Istrate & Percus [15] to study the computational complexity of certain algorithms. The main idea
of the proof of Proposition 6 is to use spine variables in a slightly different way: A lemma from a
previous paper [17] by the authors uses spine variables to characterise when a satisfiable formula

2The distribution of �m is not invariant under all automorphisms of the hypercube {−1, 1}n, e.g. (x1, x2, . . . , xn) �→
(− x1, x2, . . . , xn), and Friedgut’s theorem requires such symmetries.
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can be made unsatisfiable by adding a single clause. We then combine this with using the Russo-
Margulis formula to study the effect on satisfiability of changing the sign of a single literal, which
leads to a bound on the derivative P′

m.
Spine variables were defined in [15] for both satisfiable and unsatisfiable formulae, but we will

only the need the definition in the former case.

Definition 7. Let F be a satisfiable formula and x a variable in it. We say that x is a spine variable
in F if x has the same value in any assignment satisfying F. If such an x always has value ‘TRUE’,
we say that it is a positive spine variable and that it is locked to TRUE. (Similarly for negative.)

Lemma 8 (From [17]). Let F be a satisfiable k-CNF with a set S+ ⊆ [n] of positive spine variables
and a set S− ⊆ [n] of negative spine variables. Then F ∧ C is unsatisfiable if and only if C can be
written as

C(x)=
( ∨

i∈K−
xi

)
∨
( ∨

i∈K+
¬xi

)

for some K± ⊆ S±.
In other words, F ∧ C is unsatisfiable if and only if every variable in the clause C is a spine

variable in F, and its sign contradicts the value that that variable is locked to in F.
Next, the Russo-Margulis formula [22] is a theorem from percolation theory. It is usually stated

for indicator random variables of monotone events, but we will use a slightly more general version
from [13].

Theorem 9 (Russo-Margulis, finite-dimensional case). Let I be a finite set, let the probability space
S = {−1, 1}I be equipped with the product measure Pp such that if s= {si}i∈I ∈ S is picked according
to Pp, then Pp(si = −1)= p for any i ∈ I. For any s ∈ S and i ∈ I, let s±i be s but with the i:th
coordinate set to ±1. For any real random variable X(s) on S , let the pivotal δiX be defined by

δiX(s) := X(s+i)− X(s−i).

Then, for any 0< p< 1,

∂

∂p
Ep[X]=

∑
i∈I

Ep[δiX].

Remark 10. We could have stated this result in terms of conditional expectations without defining
s±i by instead writing Ep[δiX] as Ep[X|si = 1]−Ep[X|si = −1], but the definition above is more
practical since it allows X(s±i), δiX, δjX etc. to all live on the same probability space.

2.2. Proof of Proposition 6
The proof consists of three inequalities, and chaining these inequalities together gives the desired
result. First, we will employ the Russo-Margulis formula with X := 1�m∈SAT to upper bound P′

m.

Lemma 11. Let S be the (random) number of spine variables of the formula �m−1, and let M :=
E[Sk|�m−1 ∈ SAT]. Then for all large n and any b ∈ [0, 12], P′

m(b)≤ 2k3Pm−1(b)mn−kM
k−1
k .

Then, we will use a similar argument to lower bound the difference |Pm − Pm−1|, again in terms
ofM.

Lemma 12. There is a constant c1 = c1(k) such that for any b ∈ [0, 12] and n> c1, M ≤
c1nk · |Pm − Pm−1|/Pm−1 + c1.
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The third inequality, which upper bounds |Pm − Pm−1|, is a result due to Wilson [25]. They
proved a lower bound on the width of the phase transition for a family of random constraint satis-
faction problems, including k-SAT. Crucially, this bound does not depend on the signs of variables
in the random k-SAT formula, but only on its induced hypergraph structure. The following propo-
sition is a corollary of [25, Theorem 1], see their Corollary 4 for more details. We are using their
result as it is stated in the last inequality of the proof of their Theorem 1.3

Theorem 13 (Wilson [25]). Assume that there exist α, α′, β ,N such that for all n>N and b ∈[
0, 12

]
, the formula �m

(
n, k, 12 − b

)
is satisfiable with probability at least 1− βn−1 if m< αn, and

satisfiable with probability at most βn−1 if m> α′n.
Then there exists a constant c2 > 0 such that for all n> c2, all m1,m2 such that α <mi/n< α′,

and all b ∈ [0, 12],
|Pm1 (b)− Pm2 (b)| ≤

c2 · |m1 −m2|√
n

,

We will also need some rough bounds on the location of the satisfiability threshold.

Lemma 14. For any k≥ 2, there exist constants C, c> 1 such that for any n> C, p ∈ [0, 1], and
t > 0,

P(�m(n, k, p) ∈ SAT)=
{≥ 1− 30n2/t3, m< n− t

≤ Cc−t , m> n
− log2(1−2−k) + t.

In particular, 1− o(1)≤ αk(p, n)≤ 1
− log2 (1−2−k) + o(1), with the o(1)-terms going to 0 (as n→ ∞)

uniformly in p.

The proofs of Lemmas 11, 12 and 14 are postponed to Section 2.3.

Proof of Proposition 6. We will apply Theorem 13 with m1 =m, m2 =m− 1. By Lemma 14,
the assumptions of this theorem are satisfied with α = 2−1, α′ = 2k and some large β = β(k),N =
N(k). Combining this bound with Lemma 12, we get

M ≤ c1c2nk−
1
2 /Pm−1 + c1

The first term on the right-hand side is at least c1c2nk−
1
2 � 1, while the second is O(1). So the

first term dominates, and there must be some constant c3 = c3(k) such that M ≤ c3nk−
1
2 /Pm−1.

Plugging this bound onM into Lemma 11 yields

P′
m(b)≤ 2k3P1/km−1 · m

nk
·
(
c3nk−

1
2
) k−1

k .

Sincem< 2kn by assumption and P1/km−1 ≤ 1, the right-hand side isO
(
n− k−1

2k
)
, uniformly in b.

Proof of Theorem 1. Ifm/n ∈ [2−1, 2k], then by Proposition 6 there exists a c> 0 such that

Pm
(1
2

− p
)

− Pm
(1
2

− q
)

=
∫ 1

2−p

1
2−q

P′
m(b)db≤ (q− p)cn− k−1

2k = o(1).

If m/n is not in this interval, then by Lemma 14 the two terms on the left-hand side (LHS) above
are either both o(1) or both 1− o(1), and hence their difference is at most o(1). In either case, the
inequality (1) follows.

3The quantity ε in that inequality is shown to be o(1) in their Lemma 3, but the proof works without modification for any
ε � n−1. In particular, letting ε := n−1/2 gives our stated result.
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For the lower bound in inequality (2), letm=m(n) be the largest integer such that Pm( 12 )≥ 0.6.
Then Pm+1( 12 )≤ 0.6. By Theorem 13, |Pm( 12 )− Pm+1( 12 )| = o(1), so Pm( 12 )= 0.6+ o(1). Since
classical k-SAT has a sharp satisfiability threshold property (Friedgut [12]), and Pm( 12 ) is bounded
away from both 0 and 1 (i.e. m is in the critical window), m/n= αk(n)− o(1). By the pre-
vious inequality, Pm( 12 − p)≥ Pm( 12 )− o(1), which is at least 0.6− o(1)> 0.5 by assumption.
Hence αk(p, n)≥m/n= αk(n)− o(1). The upper bound in inequality (2) follows directly from
Lemma 14.

2.3. Proofs of lemmas
The following simple inequality will be useful to us several times.

Claim 15. If we pick k elements from a set of s elements uniformly at random with replacement, the
probability that we pick k distinct elements is at least (1− k/s)k ≥ 1− k2/s.

Proof. The probability that we pick distinct elements is
∏k−1

i=0 (1− i/s)≥ (1− k/s)k, and
(1− k/s)k ≥ 1− k2/s follows from the convexity of x �→ (1− x)k for x≤ 1.

Proof of Lemma 11. To apply the Russo-Margulis formula, we must figure out what the correct
pivotals are. Recall that we constructed the random k-CNF �m from the random variables Ki, Bi
and Pij (1≤ i≤m, 1≤ j≤ k), whereKi is the ordered list of variables occurring in the ith clause Ci,
and Bi · Pij is the sign of the j:th variable in Ci. Let H := ((K1, B1), (K2, B2), . . . , (Km, Bm)) denote
the (signed, ordered) hypergraph structure of the formula �m. Note that H does not depend on
p. We will condition on H, and study the effect on X of switching the value of one of the random
variables Pij. This only affects the clause Ci, and leaves the rest of the formula �m unaffected. It is
therefore convenient to decompose �m as Fi ∧ Ci, where we define the formulae Fi := �m − Ci =∧

� �=i,1≤�≤m C�. Note that Fi is independent from Pij.
Let C+j

i and C−j
i be the two clauses obtained from Ci by letting the jth variable in Ci occur with

sign Bi and −Bi respectively. (Instead of having signs given by BiPij, as it has in Ci.) Then (still
conditional on H) the pivotal is given by

δijX = 1Fi∧C+j
i ∈SAT − 1Fi∧C−j

i ∈SAT
= 1Fi∧C−j

i /∈SAT − 1Fi∧C+j
i /∈SAT.

Applying the Russo-Margulis formula to the product space {±1}I with index set I := {1, . . . ,m} ×
{1, . . . , k} and with product measure Pp( • ) := P( • |H) leads to

d
dp

P(�m ∈ SAT|H)=
m∑
i=1

k∑
j=1

E[δijX|H].

Taking expectations over H of both sides gives us

E

[
d
dp

P(�m ∈ SAT|H)
]

=
m∑
i=1

k∑
j=1

E[δijX],

and since there are only finitely many possible (signed, ordered) hypergraphs H on n vertices, we
can exchange the order of expectation and differentiation in the LHS. In the sum on the right-hand
side all terms are equal, and thus

−dPm
db

= dPm
dp

=mkE[δm1X],
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since p= 1
2 − b. Our objective is now to bound E[δm1X]. The formula Fm = �m−1 will be used

frequently throughout the rest of this proof, so for the sake of convenience we drop the subscripts
and let � := Fm = �m−1.

Let S be the number of spine variables of � if this formula is satisfiable (and not defined other-
wise). We will now lower bound E[δm1X] in terms ofM :=E[Sk|� ∈ SAT]. Note that the pivotal
δm1X is non-zero iff exactly one of � ∧ C+1

m and � ∧ C−1
m is satisfiable. That only happens if (i) �

is satisfiable and (ii) every variable in Cm is one of the S spine variables of �. Since � = �m−1 is
satisfiable with probability Pm−1,

E[δm1X]= Pm−1E[δm1X|� ∈ SAT].

Let S+ (S−) be the set of positive (negative) spine variables (so that |S+| + |S−| = S), and let 
 be
the event {(i), (ii), |S+| = s+, |S−| = s−} for some s±. Conditional on 
, the variables of Cm form a
k-tupleKm of variables, chosen uniformly at random from the s := s+ + s− spine variableswithout
replacement. If s is large compared to k, this k-tuple will typically be the same as a sample taken
with replacements.

We therefore let K̃ = (v1, . . . , vk) be a random k-tuple chosen uniformly at random from
{1, . . . , n} with replacement, and couple it to Km such that every element in K̃ is also in Km.4 Then
K̃ =Km whenever K̃ consists of k distinct elements, which by Claim 15 happens with probability
at least 1− k2/s (conditional on 
).

For the sake of convenience, we will for any clause C = z1 ∨ z2 ∨ . . . ∨ zk define the clause −C
as −C := ¬z1 ∨ ¬z2 ∨ . . . ∨ ¬zk.

Let zj be the literal xvj if Pmj = 1 and¬xvj otherwise, and let the clausesD± be defined asD+ :=
xv1 ∨ z2 ∨ . . . zk and D− := ¬xv1 ∨ z2 ∨ . . . zk. Let C+ :=D+ if Bm = 1, and C+ := −D+ other-
wise, and analogously for C−. Then C+ = C+1

m and C− = C−1
m with probability at least 1− k2/s,

independently of �, so we can approximate E[δm1X|
] with E[1�∧C− /∈SAT − 1�∧C+ /∈SAT|
]. We
will first show that the latter expected value is≥ 0, and then bound the error in the approximation.

Claim 16. Let X̃ := 1�∧C− /∈SAT − 1�∧C+ /∈SAT. Then E[X̃|
]≥ 0.

Proof of claim. Let a be the number such that 1
2 + a= s+

s , i.e. the fraction of positive spine
variables. Each literal z2, . . . zk is pure with probability 1

2 − b and negated otherwise, while (condi-
tional on 
) each corresponding variable is a positive spine variable with probability 1

2 + a. Hence
the conditional probability that all of them disagree with the spine is

((1
2

− a
)(1

2
− b

)
+
(1
2

+ a
)(1

2
+ b

))k−1
=
(1
2

+ 2ab
)k−1

.

The first literal of D+ is xv1 , and thus disagree with the spine with probability 1
2 − a. So, condi-

tional on 
, the probability that � ∧D+ is unsatisfiable is
( 1
2 − a

) · ( 12 + 2ab
)k−1. Similarly, the

first literal of D− is ¬xv1 , which disagrees with the spine with probability 1
2 + a, so � ∧D− is

unsatisfiable with probability
( 1
2 + a

) · ( 12 + 2ab
)k−1. Together, these observations give us that

P(� ∧D− /∈ SAT|
)− P(� ∧D+ /∈ SAT|
)
=
((1

2
+a
)

−
(1
2
−a
))

·
(1
2

+ 2ab
)k−1 = 2a ·

(1
2

+ 2ab
)k−1

. (3)

4One way to do this: let v1, v2, . . . be a sequence of integers picked uniformly at random from [n] with replacement, and let
K̃ := (v1, . . . vk), but let Km be the k first distinct vi’s.
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If we consider −D+ and −D−, an analogous argument gives that

P(� ∧ −D− /∈ SAT|
)− P(� ∧ −D+ /∈ SAT|
)= −2a ·
(1
2

− 2ab
)k−1

. (4)

Since C± is equally likely to be D± as −D±, averaging gives

E[X̃|
]= P(� ∧ C− /∈ SAT|
)− P(� ∧ C+ /∈ SAT|
)= 1
2
[
(3)+ (4)

]
= a ·

((1
2

+ 2ab
)k−1 −

(1
2

− 2ab
)k−1

)
︸ ︷︷ ︸

=: f (a,b)

.

If a=0 or b=0, then f (a, b)= 0 and hence E[X̃|
]= 0. Otherwise, if b> 0 and a �= 0, then a and
f (a, b) have the same sign, and their product is positive.

But as we noted earlier, this is not quite the expected value of the pivotal δm1X. The probability
that the k-tuple K̃ (drawn with replacement) equals Km (drawn without replacement) is at least
1− k2/s by Claim 15. But then δm1X = X̃ with probability at least 1− k2/s (independently of 
),
and since |δm1X − X̃| ≤ 2,

E
[
δm1X

∣∣
] ≥ E[X̃|
]− 2P
(
δm1X �= X̃

∣∣
) ≥ −2k2

s
.

Recall that 
 = {� ∈ SAT, all variables in C are spines, |S+| = s+, |S−| = s−}. The probability that
all variables in C are spine variables in � is

(s
k
)
/
(n
k
)≤ (s/n)k, and if some variable is not, then

δm1X = 0. Thus

E

[
δm1X

∣∣∣� ∈ SAT, |S+| = s+, |S−| = s−
]
=
(s
k
)(n
k
) ·E

[
δm1X

∣∣∣
]≥ −
( s
n

)k · 2k
2

s
.

The conditional expectation E
[
δm1X

∣∣� ∈ SAT, S= s
]
is a weighted average, over all s± with

s+ + s− = s, of the LHS above. Since each such term is at least−2sk−1k2/nk, their weighted average
is also at least this large. By taking expectation over S, we find that

E[δm1X|� ∈ SAT]≥ −2k2

nk
·E[Sk−1|� ∈ SAT].

Our aim is to bound P′
m(b) in terms of M :=E

[
Sk
∣∣� ∈ SAT

]
. By Jensen’s inequality and the

convexity of z �→ z
k

k−1 ,

E[Sk−1|� ∈ SAT]≤ (E[Sk|� ∈ SAT])
k−1
k =M

k−1
k ,

and plugging that into the previous inequality leads to

E[δm1X|� ∈ SAT]≥ −2k2

nk
M

k−1
k .

Recalling that dPm
dp =mkE[δm1X] and E[δm1X]= Pm−1E[δm1X|� ∈ SAT],

dPm
dp

≥ −Pm−1
2mk3

nk
M

k−1
k .

Recalling also that dPm
dp = − dPm

db (since p= 1
2 − b) gives the desired result.

Proof of Lemma 12. The difference Pm−1 − Pm is the probability of the event A := {�m /∈ SAT,
�m−1 ∈ SAT}. Since we want to lower bound this, let B := {Cm has same sign on all variables} and
consider the probability of A∩ B.
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Conditional on {�m−1 = F} for some satisfiable formula F, by Lemma 8 the event A∩ B occurs
iff the k variables in Cm are either all negated and among the s+ positive spine variables, or all pure
and among the s− negative spine variables. The probability of this is

(s+
k
)+ (s−

k
)(n

k
) · p

k + (1− p)k

2
.

Since the function p �→ pk is convex on [0, 1], the second factor is at least 2−k. Note also that
t �→ (t

k
)
is a convex function on the non-negative integers, and hence the first factor is at least

f (s) := 2
(s/2
k
)
/
(n
k
)
, where s := s+ + s−. The standard bounds (t/ek)k ≤ (tk)≤ (t/k)k are valid for

t ≥ k, so for s≥ 2k we have that f (s)≥ 2(s/2en)k. If instead s< 2k, f (s)≥ 0> λ · (sk − (2k)k) for
any λ > 0. In either case,

f (s) ≥ 2(2en)−k · (sk − (2k)k
)
.

Then, by taking expectation over satisfiable �m−1 (and hence over S),

P(A∩ B|�m−1 ∈ SAT)≥E[2−kf (S)|�m−1 ∈ SAT]

≥ 2(4en)−k ·
(
E[Sk|�m−1 ∈ SAT]− (2k)k

)
.

Noting that the LHS is at most P(A|�m−1 ∈ SAT)= (Pm−1 − Pm)/Pm−1 and solving for M =
E[Sk

∣∣�m−1 ∈ SAT] gives the desired inequality.

Proof of Lemma 14. The first inequality is an easy corollary of Proposition 21: Given � :=
�m(n, k, p), k≥ 3, uniformly at random remove all but 2 literals from each clause to get a 2-
SAT formula �′. Any satisfying assignment to �′ is also a satisfying assignment to �, and
�′ is a p-polarised 2-SAT formula. Hence P(�m(n, k, p) ∈ SAT)≥ P(�m(n, 2, p) ∈ SAT), and by
Proposition 21 this probability is at least 1− 30/(nε3) form< (1− ε)n. For the second inequality
we will upper bound the expected number of satisfying assignments.

Claim 17. Let qi := P(C(σ )= −1) be the probability that a σ ∈ {±1}n with i coordinates set to
‘TRUE’ does not satisfy a random p-polarised k-clause C. Then qi ≥ 2−k − k2/n.

Proof of claim. Let K, K̃ be random k-tuples (v1, . . . vk) and (ṽ1, . . . ṽk), chosen uniformly at ran-
dom from the set {1 . . . , n}, without and with replacement respectively. By Claim 15, we can
couple K, K̃ such that they are equal with probability at least 1− k2/n. Like in Section 1.4, let
the random variable B equal ±1 with probability 1

2 , and Pj = 1 with probability p (and −1 oth-
erwise). Let zj := xvj and z̃j := xṽj if BPj = 1, but zj := ¬xvj and z̃j := ¬xṽj otherwise. Finally, let
C := z1 ∨ . . . ∨ zk and C̃ := z̃1 ∨ . . . ∨ z̃k be k-clauses.

Conditional on B= 1, the events {z̃j(σ )= −1}kj=1 are independent and each occur with the
same probability ρ(σ ). Conditional on B= −1, they also occur independently, but with prob-
ability 1− ρ. Hence the probability that σ does not satisfy C̃ is 1

2 (ρ
k + (1− ρ)k)≥ 2−k. But

C = C̃ with probability at least 1− k2/n, so the probability that σ does not satisfy C is at least
2−k − k2/n.
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Let m> −n/ log2(1− 2−k)+ t. The logarithm of the expected number of satisfying assign-
ments to �m(n, k, p) is then equal to

log2

( n∑
i=1

(
n
i

)
(1− qi)m

)
≤ log2

(
2n · (1− 2−k + k2/n)m

)

≤ n ·
(
1− log2(1−2−k+k2/n)

log2(1− 2−k)︸ ︷︷ ︸
(i)

)
+ t log2 (1− 2−k + k2/n)︸ ︷︷ ︸

(ii)

.

By doing a first-order Taylor expansion of the increasing and convex function r �→
1− log2(1− 2−k + r)/ log2 (1− 2−k) at r = 0, we see that (i)≤ 2kk2/n for large n. The first term
above is therefore atmost 2kk2. For n> 2k+1k2, the second term (ii) is at most t log2 (1− 2−k−1)<
−2−k−2t. The second inequality of the proposition follows.

3. Proof of Theorem 3
For the classical 2-SAT problem, the threshold value of c= 1 was established by Chvátal & Reed
[5] by exploiting some of the structure specific to 2-SAT. Our proof is fairly similar to theirs, but
with some minor complications.

A 2-clause is of the form x∨ y, which is logically equivalent the implication¬x⇒ y, and also to
the implication ¬y⇒ x. Thus, a 2-SAT formula with m clauses on n variables can be represented
by a digraph G with 2m arcs on the following 2n vertices: {x1, . . . , xn,¬x1, . . . ,¬xn}. We call any
directed cycle in G a bicycle5 if it contains both xi and ¬xi for some i. It is clear that the formula is
unsatisfiable if the digraph contains a bicycle, because from a bicycle the contradiction xi ⇔ ¬xi
can be derived. Less obviously, this is an ‘if and only if’-condition.

Lemma 18 (Aspvall, Plass & Tarjan [2]). A 2-SAT instance is satisfiable if and only if there is no
bicycle in the associated digraph of implications.

We will establish upper and lower bounds on the satisfiability threshold by applying the second
and first moment method to certain structures related to bicycles.

Definition 19. A unicycle (short for unique bicycle) is an even length bicycle with a unique repeated
variable x and with that variable occurring precisely twice, once as x and once as¬x, at diametrically
opposed points along the cycle.

A pretzel is a directed path � → �1 → . . . → �t → �′, where each �i is a literal on zi, the zi’s are
distinct, and �, �′ are literals on some variables z, z′ ∈ {z1, . . . , zt}.

A pair of edges is conjugate if the corresponding implications are contrapositives of one another
(i.e. both implications arise from the same clause).

Lemma 20. For directed graphs G we have the following.
(∃ unicycle ∈G)⇒ (∃ bicycle ∈G)⇒ (∃ pretzel ∈G)

Proof. The first implication is clear: any unicycle is a bicycle. For the second one, let C ⊆G be
a bicycle. Pick a maximal path P ⊂ C such that the literals in P are on disjoint variables. We can
then write P as �1 → �2 → . . . → �t for some t > 0, where each �i is a literal on a variable zi, and
the zi’s are distinct.

Let �, �′ be the unique literals in C such that � → �1 and �t → �′, or in other words the
immediate predecessor and successor to P. It follows from the maximality of P that �, �′ are
literals on some variables in the set {z1, . . . , zt}. (If � or �′ were a literal on a variable not in

5Our notation follows that of [5] and later papers on 2-SAT.
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this set, we could extend P to a larger path of literals on disjoint variables.) Hence the path
� → �1 → �2 → . . . → �t → �′ is a pretzel.

We will use the first moment method to show that for any 0≤ p≤ 1 there is no pretzel (w.h.p.)
when m< (1− ε)n (and hence there is no bicycle). We will use the second moment method to
show that for p= 0 there is a unicycle (w.h.p.) when m> (1+ ε)n (and hence there is a bicycle).
Then Proposition 6 will imply that the same is true for every 0≤ p≤ 1.

Proposition 21. For any ε = ε(n), if m< (1− ε)n then the probability that there exists a pretzel is
at most 30/(nε3).

Proof. We will begin by upper bounding the expected number of pretzels with t + 1 edges. Note
that no arc in a pretzel is conjugate to another arc in it, so they all correspond to distinct 2-clauses.
Furthermore, a pair of variables xi, xj can occur in at most one 2-clause (since we pick such pairs
without replacement).

There are at most nt ways to choose the t variables zi, and then at most t2 ways to choose z and
z′ from the t-set {z1, . . . zt}, so there are at most ntt2 ways to choose the variables in a pretzel.

The probability that each of the t + 1 pairs of variables zz1, z1z2, . . . , zt−1zt , ztz′ occurs in some
2-clause in the 2-SAT formula is at most (m/

(n
2
)
)t+1. Conditioned on these t + 1 pairs occurring

as 2-clauses, what is the probability that the signs of variables in all of them are such that the
corresponding arcs in the digraph form a directed path? In other words, that the 2-clauses form
implications � ⇒ �1 ⇒ . . . ⇒ �t ⇒ �′, where the �i’s are literals on the variables zi.

We reveal the signs of variables in clauses in order: First, condition on the event that z1 occurs
pure in the first clause (whose variables are z and z1), i.e. �1 = z1 so that the clause is ¬� ∨ z1, for
either � = z or � = ¬z. This is equivalent to the implication � ⇒ z1.

Then, in order for the next clause (with variables z1, z2) to form an implication of the form
z1 ⇒ •, the variable z1 must occur negated in it, but the sign of z2 is not constrained. In other
words, the second clause must be either ¬z1 ∨ z2 or ¬z1 ∨ ¬z2. The probability of this event is 1

2 .
But if we instead condition the first clause being � ⇒ ¬z1, the probability that the next clause is
¬z1 ⇒ • is also 1

2 .
Similarly, for each subsequent clause (with variables zi, zi+1), the sign of zi in it must be the

opposite of the sign that zi had in the previous clause, which happens with probability 1
2 inde-

pendently of previous clauses. The probability that all these t events occur is
( 1
2
)t . The expected

number of pretzels is thus at most

E[# pretzels]≤
2n∑
t=1

ntt2 ·
(

m(n
2
)
)t+1 (

1
2

)t

= 2
n

·
2n∑
t=1

t2
(

m
n− 1

)t+1

<
2
n

(
n

n− 1

)2n
·

2n∑
t=1

t2
(
m
n

)t+1

.

By the assumption onm, mn < 1− ε. But then the sum above is at most

∞∑
t=1

t2(1− ε)t+1 = (1− ε)2(2− ε)
ε3

<
2
ε3

,

so that the expected number of pretzels is at most
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2
n

(
n

n− 1

)2n
· 2
ε3

< 4e2 · 1
nε3

.

Hence there exists a pretzel whenm< (1− ε)n with probability ≤ 30/(nε3).

Proposition 22. Let p= 0 and 1
2 > ε � n−0.1( ln n)0.9. Then if m> (1+ ε)n there exists a unicycle

(with high probability).

Proof. By assumption, (n ln n)0.9 
 εn. Let t = t(n) be a sequence of odd integers such that
(n ln n)0.9 
 t9 
 εn. We will consider only unicycles on precisely 2t vertices and show that at
least one such unicycle is present with high probability.

The unicycles are much more constrained for the fully polarised 2-SAT problem than for the
classical 2-SAT problem. Since clauses of the form xi ∨ ¬xj occur with probability 0, there will
be no arcs of the form xi ⇒ xj or ¬xi ⇒ ¬xj in the digraph of implications. In other words,
the digraph becomes bipartite, with the vertices partitioned into the sets V+ := {x1, x2, . . . xn}
and V− := {¬x1,¬x2, . . . ¬xn}. The proof of Theorem 4 of [5] uses the second moment method
applied to the number of unicycles on the complete digraph, and we will describe how to adapt
the proof to instead count the number of unicycles on the complete bipartite digraph.

First, note that the total number of possible clauses in the fully polarised model is 2
(n
2
)
, com-

pared to 4
(n
2
)
in the original model. Note also that a path from xi to ¬xi has an odd number of

edges, so it is necessary that t is odd.
Let (n)t denote the falling factorial n(n− 1) . . . (n− t + 1). A directed path �1 ⇒ . . . ⇒ �t ,

where each �i is a literal on the variable zi, is determined by the underlying sequence of variables
zi together with whether �1 = z1 or �1 = ¬z1, so there are 2 · (n)t paths of length t in the complete
bipartite digraph. Note that 1> (n)t/nt > (1− t/n)t , and since t 
 √

n by assumption, 2 · (n)t =
(1+ o(1)) · 2nt . Similarly, the complete digraph on 2n vertices has (2n)t = (1+ o(1)) · (2n)t paths.

Keeping these differences inmind, the estimates in Theorem 4 of [5], pages 625–626, of the first
two moments of the number of unicycles on 2t vertices carry through with minimal alterations:
Replace all powers of 2n with powers of n, every power of 2 with a power of 1, except in estimate
(iii), and replace 4

(n
2
)
with 2

(n
2
)
throughout the proof of said theorem. In the end, all of these

alterations cancel out, and we reach the same conclusion that as long both

t9/εn= o(1), and (5)

tn(1− ε)t/ε = o(1), (6)
then there exists at least one unicycle (w.h.p.) wheneverm> (1+ ε)n. Condition (5) holds by our
choice of t. To show that (6) holds, we deal with tn/ε and (1− ε)t separately. Note that εt �
t10/n� ln n, so

(1− ε)t ≤ exp (−εt)= exp (−ω( ln n))= n−ω(1).
On the other hand, tn/ε < t9n/ε = o(n2) by our choice of t. It follows that tn(1− ε)t/ε = o(1).
Hence both (5) and (6) hold, and the theorem follows.

Proof of Theorem 3. Proposition 21 and Lemma 20 together show that �m(n, 2, p) is satisfiable
w.h.p. for anym≤ n− ω(n2/3). For the upper bound, by Theorem 1:

P(�m(n, 2, p) /∈ SAT)≥ P(�m(n, 2, 0) /∈ SAT)− o(1).
Proposition 22 and Lemma 20 together show that �m(n, 2, 0) is unsatisfiable w.h.p. for any
m≥ n+ ω((n ln n)9/10), so the right-hand side above is 1− o(1). In other words, �m(n, 2, p) is
unsatisfiable w.h.p.6

6Note that Lemma 14 depends on the lower bound on the 2-SAT threshold (Proposition 21), while the upper bound on the
2-SAT threshold (Proposition 22) depends on Theorem 1, which in turn depends on Lemma 14. But there is no circularity of
reasoning here, since the upper and lower bounds on the 2-SAT threshold do not depend on each other.
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