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Two-variable laws for a class

of finite simple groups

Bruce Southcott

This paper presents a two-variable basis for the variety-

generated by the finite simple group PSL(2, 2n) .

1. Introduction

In a recent paper (Southcott [7]), the author gave a basis for the

laws of the variety generated by the finite simple group PSL(2, 2 ) ,

n > 2 . With one exception, the laws given there involve only two

variables, and i t was noted that Bryant [ ' ] has shown that var PSL(2, 2 )

can be defined by two-variable laws.

The two-variable basis given below consists of the two-variable laws

of the basis in [7] , and a disjunction type law which says that in a non-

abelian simple group a l l elements are either of order two or of odd order.

Laws of this type were used by Bryant and PowelI [2] to construct a two-

variable basis for the laws of PSL(2, 5) = PSL(2, k) .

2. Preliminaries

Throughout, standard group theoretic language and results are used

without comment, as are the notation, terminology and results relating to

varieties of groups, contained in Chapters 1 and 5 of Hanna Neumann [6].

In particular, variables and words are denoted by lower case Roman le t ters ;

the variety generated by the group G is denoted by varG .
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The following lemma i s the main resul t established in the proof of

Theorem 5-5.k of Cossey, Macdonald and Street [4J.

LEMMA 2 . 1 . A finite group G belongs to var P S L ( 2 , 2n) if and

only if it satisfies the following conditions:

(I) G is of exponent dividing 2(22 w-l) ;

( I I ) an element of G of order dividing 2 + 1 which

normalises a 2-subgroup centralises it;

( I I I ) subgroups of G of odd exponent are abelian.

The next lemma i s needed in Section 4 in the proof of local finiteness

of the variety defined toy the laws of Theorem 3 .1 .

LEMMA 2.2 (Kegel and Wehrfritz [ 5 ] , Theorem 2 .9) . Let G be an

infinite periodic group containing an involution i such that the

centraliser in G of every involution of G centralising i is finite.

Then G is a locally finite group and all the involutions of G are

conjugate.

3. A two-variable basis

THEOREM 3 .1 . Let

2 2-i 2 2 " 2

2n .nj+kr Zn y+K

b = \a , y a

f -22n 2 2V

c = [a 2 , xY\ bwhere

Then the following set is a basis for the laws of var PSL(2, 2 ) ;
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(2) [s, 2(2n-3

(3) c2 = 1 ,

4. Proof of the theorem

Law (k) holds in P S L ( 2 , 2n) , since each element i s e i ther of order

two or of odd order.

In a non-abelian simple group no non-identity element can commute with

a l l dis t inct conjugates of any other non-identity element. Hence, in th i s

case, we have that a l l elements are ei ther of order 2 or of odd order.

By [7] the laws ( l ) , (2) and (3) hold in P S L ( 2 , 2n) and the variety

defined by them sa t i s f ies conditions ( i ) , ( I I ) and ( I I I ) of Lemma 2 . 1 .

Hence i t s f in i te groups are precisely those of var PSL(2, 2 ) . Since a

variety i s generated by i t s f in i te ly generated groups ( [ 6 ] , Theorem 15.6l)

i t is sufficient to prove that the laws (l)-(U) define a locally f in i te

variety.

In the variety defined by laws ( l ) , (2) and (3) , the order of a f in i te

group on a given number of generators i s bounded, and hence i f the variety

defined by the laws of Theorem 3-1 is not locally f in i t e i t must contain an

inf in i te f ini te ly generated non-abelian simple group. In fac t , i t contains

no such group.

Consider an inf in i te non-abelian simple group G which sa t i s f i e s the

laws (l)-(U) of Theorem 3.1 . By laws ( l ) and (U) a l l i t s elements are

ei ther of order two or of odd order. From t h i s , we can deduce the

following facts about the maximal 2-subgroups of G .

(i) Each maximal 2-subgroup of G is the oentraiiser of

each of its non-identity elements.

(ii) Each maximal 2-siibgroup has trivial intersection with

any distinct maximal 2-subgroup; in particular with any

distinct conjugate.
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(Hi) All involutions of G are conjugates all non-identity

elements of a maximal 2-subgroup T of G are conjugate

only in the normaliser NAT) of T .

Now NQ(T)/T is an abelian group of odd exponent which is represented

faithfully by conjugation as a semi-regular group of automorphisms of T .

Using the methods of Burnslde [3] , §2U8, we deduce that NJT)/T is
tr

cyclic, and hence finite. Since all non-identity elements of T are

conjugate in NG(T) , i t follows that T is finite.

The group G thus satisfies the conditions of Lemma 2.2, and hence is

locally finite.

5. Concluding remarks

A simple argument shows that by concatenating the left-hand sides of

laws ( l ) , (2) and (3) of Theorem 3.1, we obtain a single two-variable law

which is equivalent to the set ( l ) , (2), (3).

In view of the fact that the finite groups in the variety defined by

the laws ( l ) , (2) and (3) are precisely the finite groups of

var PSL(2, 2 J i t is worth investigating whether the variety they define

is locally f inite, that i s , whether the disjunction type law is

superfluous.

If this is so, then var PSL(2, 2n) is defined by a single two-

variable law.
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