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Abstract. Let 7 be a cuspidal automorphic representation of GL3(Ag), unramified at p and of
cohomological type at infinity. We construct p-adic L-functions, which interpolate the critical
values of L(r, s) and which satisfy a logarithmic growth condition. We obtain these functions
as p-adic Mellin transforms of certain distributions y, on Z; having values in some fixed number
field and which are of moderate growth. In the p-ordinary case we obtain the bound
l1=(U)]y < |i1aar(U)l, for open subsets U < 7, where fuyy,,, denotes the invariant distribution
on Z,.
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Introduction

Let A denote the ring of ad¢les of the field of rational numbers and let = be a cuspidal
automorphic representation of GL3(A). We want to study the p-adic analytic
properties of the critical values of the automorphic L-function L(x,s) attached
to . This depends on a p-adic variation of L(r, s) as follows. Let / € IN be any critical
integer for . The corresponding critical integer on the left-hand side of the func-
tional equation is 1 — / and we shall concentrate on the critical integers on this side.
We fix a prime number p > 2 as well as a character  : Q"\A* — C* of finite order
and we define X, to be the group of all continuous, C,-valued characters on Z.
X, has the structure of a p-adic Lie group and it contains all characters
1 Q\A" — C* of conductor f, = p® a p-power, which are of finite order. We then
want to study the relations among the twisted values L(r ® ny, | —[) as y varies
over all characters with conductor a p-power and infinity component y., = id.
In particular we may ask whether the function y+— L(n ® ny, 1 — [), after dividing
by some period Q(n) € C*, can be continued to a p-adic analytic function
L,: X, — C, and which are the properties of this analytic extension.

The existence of (bounded) p-adic L-functions has been proved for automorphic
representations of GL; and GL; (cf., for example, [M-SwD]). In the higher rank
case examples of p-adic L-functions have been obtained only under very special
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assumptions on the representation z: they are known to exist in the case of the sym-
metric square L-function on GL,, which using the Jacquet-Gelbart lift provides
examples of p-adic L-functions for GLj (cf. [Sch 1]) and for automorphic
representations on GL,, having an H-model (cf. [A-G]).

Our aim is to examine the group GLj3, the only assumptions that we will make on
the representation n being that = appears in the cohomology of the symmetric space
of GLj with trivial coefficients and that the p-component of = is unramified. In par-
ticular, unlike in the case of the symmetric square L-function on GL;, it is not poss-
ible to apply the g-expansion principle. Under these assumptions we prove
the existence of p-adic analytic functions, which interpolate the values
L(n ® ny, 1 — ) and which satisfy a logarithmic growth condition.

The construction of these p-adic L-functions is based on a representation of the
twisted values as an integral of y against a certain distribution. For the moment
we shall assume that 7 has nonvanishing cohomology with coefficients in some finite
dimensional representation of GL3(C) and we let / € IN run through the critical
integers of 7 ® n (cf. Remark 1.6). Only using the fact that n, is spherical we con-
struct a family of distributions p, ; = u'][’ ,on Z; such that for all idele class characters
y with conductor a p-power and infinity component y,, = id

/ ;(,,11[2, du! , = some explicit factors x L(n @ ny, 1 — 1),
whereas this integral vanishes if y,, = sgn (cf. Corollary 1 in Section 2.2 for a precise
statement). We then prove that the occurrence of n in cohomology implies:

e There is an Q(n) € C* such that p, ,(U)/Q(n) has values in a finite extension
E/Q for all critical integers / and all open subsets U C Z;.

Let us now assume that 7 embeds into cohomology with trivial coefficients. In this
case the only critical integers are s = 1, 0 and we further obtain for y, = p, | (cf. the
Notations for the definition of |- |,):

e There is a number /& € N such that |u,(U)/Q(n)], < I,uHaar(U)lllj for all open
subsets U < Z,, where pyy,,, denotes the invariant distribution on Z,.

e For all prime numbers ¢ # p the absolute values |u,(U)/Q(n)|; are bounded for
any A extending the ¢-adic valuation on E.

(cf. Theorems 2 and 4 in Sections 3.2 and 5.1). If, in addition, we assume = to be
p-ordinary with respect to i, we obtain the bound

o |1 (U)/Q7)|, < |ityaar(U)l, for all open subsets U < Z,.

(cf. Remark 5.4). In particular, we can not deduce boundedness of u,.

Using the integration theory developed in [V], we then obtain the p-adic
L-functions as the Mellin transform of u, (cf. Corollary 3 in Section 5.2).

Our construction is based on a formula which gives us control over the behaviour
of the values L(m ® ny, 1 — /) as y varies. This formula is proved in Section 1
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and it expresses the twisted values as certain linear combinations of period integrals,
which involve a fixed cusp form belonging to 7 but also an Eisenstein series belonging
to an induced representation Ind(1, y). In Section 2 we construct the distribution
and using the formula from Section 1 calculate its integral against characters. In
Section 3 we use the integrality structure on the cohomology to deduce the
algebraicity of the values of pu,;/Q(m). In Section 5 we finally prove in the case
of constant coefficients the bounds on the growth of u, and explain how to apply
the integration theory of [V] to construct p-adic L-functions. The main difficulty
here is to control the behaviour of the Eisenstein cohomology classes constructed
from the representations Ind(1, y). In particular Section 4 will be entirely devoted
to a calculation of the denominators of these classes in the non-torsion part of
the (integral) cohomology using the theory developed in [Ha 2]. The restriction
to constant coefficients is mainly made to simplify the calculations in Section 4 (but
cf. also Remark 3.5).

We want to remark that the cohomological interpretation of the values of the
L-function obtained in this work seems to indicate that the boundedness of the dis-
tribution g, is equivalent to a certain relation between the restriction of cuspidal
cohomology classes from GL; to GL, and Eisenstein cohomology classes on
GL, (cf. Remark 5.4).

We finally want to mention that the (purely analytic) construction of the
distributions p, , described in this work generalizes to the groups GL, over any
number field.

NOTATIONS

We denote by K, ~ the compact subgroup SO,(R) < GL,(R) and by Z2(RR) the con-
nected component of 1 of the center Z,(R) of GL,(R). gl, resp. so, is the Lie algebra
of GL,(R) resp. SO,(R). We denote by id the trivial character of R*, sgn is the
signum homomorphism sgn(x):= x/|x|, x € R* and we set a(x):= |x| for x € A*.
We shall use the following level groups: K(n, p¢) < GL,(Z,) is the subgroup of
matrices which are congruent to 1 mod p° and Ky(n, p°) resp. K (n, p¢) denotes
the subgroup of matrices (k;;) € GL,(Z,) satisfying k,,; = 0(p¢), j=1,...n — 1 resp.
ky=0@°),j=1,...n—1and k,, =1 (p°).

We also fix an additive character 1 = ®,1,: Q\A — C* of conductor Z, i.e.Z; is
the largest ideal contained in the kernel of 7, for £ # oo.

We denote by d,,, resp. 6, o the modulus of B,(Q,) resp. B,(A), where B, is the
group of upper triangular matrices. Unless stated otherwise, any induction will
be unitary.

Finally C, is the completion of an algebraic closure of (Q, and | - |, is the absolute
value on C,; normalized by ||, = ¢~

Welet i,: Q— C, be an embedding and we also denote by | - |, the absolute value
on Q induced by i,.

https://doi.org/10.1023/A:1026569231434 Published online by Cambridge University Press


https://doi.org/10.1023/A:1026569231434

256 JOACHIM MAHNKOPF

1. A Calculation of the Twisted Values of L-Functions

Let 7 be a unitary cuspidal automorphic representation of GL3(A). We fix a rational
prime p > 2 and assume that the p-component =, is unramified and that there is an
lo € 2N such that the component at infinity 7, is isomorphic to the induced rep-
resentation Ind(D,, id). Here, by D;, we understand the discrete series representation
of GL,(R) of lowest weight /[y + 1 and the representation is induced from the
parabolic subgroup P < GL3(R) of type (2, 1). Because 7, is unramified we have
m, = Ind(yy, iy, 43) with unramified characters y;: Q; - C* i=1,2,3.

Welet y: Q"\A* — C* be an idéle class character with conductor f/ = p¢ a power
of p and infinity component y., = id. We choose a (auxiliary) prime ¢ different from
p such that n, is unramified and we make a choice of a pair of idele class characters
n, 1 Q"\A* — C*, which are of finite order and satisfy the conditions

° ﬁ,/ =p, ﬁ] =pq (le 7’]q|zz 75 1)’
* Moo =Moo

’
o Mplz =mylz

This is equivalent to a choice of primitive Dirichlet characters if': (Z/pZ)* — C*
and 77 : (Z/pgZ)"* — C* such that fi(—=1) =#'(=1) and 7|z, = 7|22y We
set b=0 if n,, =1id and b =1 if ., = sgn and we put y,:= n' ' We let 1 € N
be any integer satisfying 0 < / < /y/2 and / = b modulo 2 and for any such / we define
the induced representation

1-1/2 —(-1 /2y

II(y):= Ind g, Ay, 'o /<, nyo

For / > 2 the intertwining operator
Eis: I1(x) > A(GL2(Q)\GLy(A))
V> D enonano V09

is then defined by an absolutely convergent series. In the case / = 2 we note that the
representation Il(y) always ramifies at ¢ and Eis is defined using an appropriate
analytic continuation. We denote by A, the image of Il(y) under Eis. Similarly
we define V(m) to be the subspace of L3(GL;(Q)\GL3(A)), on which the represen-
tation 7 can be realized.

We want to choose a pair of automorphic forms (¢, £;) on GL3 x GL, belonging
to the representation 7 x I1(y) and such that its Mellin transform computes the
values L(n ® yn, 1 — ). A Mellin transform for forms on GLj; x GL; is given by
the zeta integral of the Rankin—Selberg—Convolution, which for any two forms
¢ € V(n), E € A, reads

19 £ = [ o|(¢ )] derer-2ag
GL2(Q\GLo(A)
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(cf. [J-S 1], ch. 3). The integral converges because ¢ is rapidly decreasing and F is
slowly increasing (cf. [Pi-Sh], Theorem 3).
We first deal with E, and choose a section

1/12 = ®zl//2,,5 € Ind(ocl’l/z, 110;(05’(1’1/2)) = ;7’_1 ® I(y)

as follows.

For any finite place £ # p,q the representation Ind(ocl 172 2 1o, ey of - /2)) is
unramified and we let x// be the spherical function normalized by x// (D=1

At the place ¢ we let i, , be the essential vector in Ind(«, /2, 1o .7, oc‘(’ 1/2)). Since
the restrictions of n, and 17 , to Z, are different this representation has conductor ¢
and using [Ca], p. 306 we find that tﬁ is supported on B>(Q,)Ky(2, g). We therefore
may normalize 1,07 4 DY setting x/// q(l) =1.

At the place p we distinguish: If y #1 we let 1// be the essential vector in
Ind(o "2, g 1,2, ~1/?). This representation has conductor p°,e>1 and using
[Ca], p. 306 we ﬁnd that w is supported on B(Q,)Ko(2, p¢). Hence, we may
normalize 1// ,(1)=1and obtaln

0 (k) = 1,10 ,(b2)1b1 /b2 1, (d)

for
b= (bl bi) € B(Q,), k= (‘C’ fl) e Ko(2, p°).

If y=1 we let xp" be the unique section in Ind(x'/2, 5, 0 ~1/?), which is
supported on B2(QP)K()(2 p) and which is given by lp”(g) = nop(b2)|b1/b2| for
elements g = bk in the support.

At infinity we know that there is a proper, irreducible submodule HO < Ind(og

«'=1/2)), which is isomorphic to Dy_;. We let l// =" be an arbitrary but ﬁxed

sectlon in 1'10 i.e. zpo does not depend on .

We set =1 ®lﬁ and E,:= Eis(y,).

Next, to define ¢, we choose a Whittaker function w = ®,w, € W(x, t) as follows.

For any finite place ¢ # p, ¢ we choose w, to be the essential vector in W(n,, 7).

For £ = gweletw, € W(n,, 7,) be a Whittaker function such that the restriction of
wy to GLy(Q,) via the embedding g+ (¢ ) is supported on N2(Q,)(; |)Ko(2, ¢) and
for k = (“ b) € Ko(2, g) we have

o W]

It is an immediate consequence of Theorem F in [Gel-Kaj] that such a Whittaker
function exists.

For £ =p we proceed as follows. We denote by 7 < GL3(Z,) the Iwahori
subgroup consisting of elements k € GL3(Z,), which modulo p are congruent to

1172,
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upper triangular matrices. We let xp; € Ind(u;, uy, u3) be the I-invariant vector
defined by

W(g) = { u(b)s3/(b), for g=bwop. be By(Q,).pel
prest 0, else.

Here, by wy we understand the Weyl group element

()

and u is given by

*

by
mw:HMMbez( by
i by

) € B3(Qp)

We then define w, € W(mn,, 1,) as the image of 1//[17 under the isomorphism

Ind(uy, o, 3) = Wi(mp, 1)
Voo w(@)i= [y o, WOrng)Ty(n) dn

(cf. [J-S 2], (3.2) Proposition).

At infinity, again, let wo be an arbitrary but fixed Whittaker function in
W (Moo, Too)-

We set w = ®,w, and let ¢ € V(n) be the cusp form belonging to the global
Whittaker function w.

We will use the following convention: we identify GL3(Q,) with its image in
GL3(A) under the map given by embedding into the p-component. Thus by
ue GL3(©p) we also understand the adelic matrix (1,...,1,u,1,...,1), where
all entries away from p are equal to 1. Also, we write for short X, :=
GL2:(ON\GL2AA), G(xp):= X icz/rzy 1pD7p(i/f) denotes the local Gauss sum, 7
the primitive Dirichlet character attached to the idele class character y and we write
Lg(m, s) to indicate that we omit the local factors at all places £ € S from the Euler
product.

THEOREM 1. Let y: Q"\A* — C* be a character with conductor f = p°® where
e =2 and infinity component y., =id. Then, for all | € N such that 0 <[ < [/2
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and [ =b (mod 2) we have

P(1/2)- L(n @ yn, 1 — 1)
L ip/f yIf

v
—A. 3 12, 0 /X Ki (g 1) ’/lf E,(g)dg.

i€(Zp/pe Zp)* je(Zp p¢ Lp)*
YELp[p®Zp

In the above formula P(T) = P,y _(T) € C[T]is a polynomial, which only depends
on the choice of the infinity components ., and wy, and

A=A G T Glm) T GG LG 1 = 2D Lig (@', D)7,

where (= mn}n&}(p) and the algebraic number A'; e Q* is independent of .
Moreover, the coset A’y - Q" is even independent of I.

The Proof of Theorem 1 will occupy the rest of this section. First we define the
Whittaker function

@)= LGy 2D [ E gt dn.
Na(A)
Here, L(71j,, s) denotes the Dirichlet L-Function. Of course, L(7 ', ~', 207" v, is
the Whittaker function of E,. v, decomposes into an infinite product

Vy = QrtooVyt @ Voo,

and using [Ge-Sha], p. 80/81 we know that v, ,(1) =1 for £ # p, g. For any two
Whittaker functions w, € W(n,, 70) and v, € W(I1,(y), 7,) we denote by

I(wg, vg, 8):= / We|:<g l>:|v5(g)|detg|;1/2 dg
N2 (Q\GL2A(Qp)

the local zeta integral of the Rankin—Selberg convolution. The starting point of the
proof of Theorem 1 is the decomposition of the global zeta integral into a product
of local integrals

K¢, E,5) = [ [10we, ve. 9),
12

where w = ®w, resp. v = ®,v, is the Whittaker function of ¢ resp. E. The proof of
this equality is the same as the one of (3.3) Proposition in [J-S 1], even if E is
not cuspidal. We write for short

L ip/f ylf
MZU(Z»]’yaf)Z 1 ]/f €N3(Qp)
1

and denote by /1 - ¢(g) := ¢(gh) the right translate of ¢ by & € GL3(Ay). Then in our
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case this decomposition takes the form

S () I ¢, Ey 5)

i,y

= LG i 207 [TE00e vies ) > 0, D) 1@ - 1wy, v, ).
t#p Lj.y

To prove the Theorem we therefore have to examine the local integrals appearing
on the right-hand side.

At all finite places £ # p, g the Whittaker function wy is the essential vector und v, ,
is the unique GLy(Z,)-invariant vector satisfying v, (1) = 1. As an immediate conse-
quence of (4.1) Théoréme in [J-P-S 2] we get

I(We, vy 0, 8) = L(ng @y, s + 11— 1/2)L(me @ gy, s — (1 — 1/2)).

Next we look to infinity. Using the notation of [Kn], ch. 3, the representations of
the Weil group Wy of R attached to n,, and 7, ® sgn read

o = (10, 0) & (+, 0), (sgn ® 7o) = (b, 0) ® (=, 0).
In particular, we deduce from [Kn], (3.6)
LTso, 8) = 22m) " SHD g =2 (s + 1, /2)T(s/2)
and
L(7toe ® sg, 5) = 2(2m) O/ Dg=G6+D2 (g 4 [0 /2)T((s + 1)/2).

This implies that L(ns ® 7., ) does not have a pole ats = /and ats = 1 — /for all
[ satisfying 0 < / < ly/2 and which are congruent to b modulo 2. Using [J-P-S 3] we
deduce that there is a polynomial P(T) = P,,_ y_(T) € C[T] such that

I(Woo, Voo, 8) = P(s) L(Too X 1o ® T2, 5).

We want to determine the central value of the quotient of local factors

L(Too X Moo ® Hgo, s)
L(Too ® Noor S+ 1 — 1/2)L(Ttoo @ N s — ([ — 1/2))°

LEMMA 1.1. We have

Loo(s) =

21-2Ug = T T(1/2) 72, if n, =id,

Loo(1/2) = { (—1)=D2022 g =L PR (1 4+ 1)/2)2, if 5, = sgn.

Proof. Using the formula for the decomposition of the tensor product of two
representations of the Weil group

LCoyemry=_I+mt+r)®d(—m,t+7r) (I > m)
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and [Kn], ch. 3.6, we see that
L(Dy, ® Dy—1,8) = L(Dy, s +1 — 1/2)L(Dy,, s — (I — 1/2)).

Since the local factors are muliplicative in direct sums and 7. ® 7, =2 Ind(D;,, 1)
as well as Hgo ® Noo =2 Dy we deduce that

L(Dy1, 5)
L5 +1— 1/ L. s — (1 — 1/2))

We first assume 7, = id, i.e. / = 0 (mod 2). Specializing s+ 1/2 and using the for-
mulas in [Kn], ch. 3.6, we obtain

Loo(s) =

Loo(1/2) =212 01727 ' (12 — 1/2) 7.
Applying the duplication formula of the I'-function to I'(—//2 + 1/2) this becomes

1 TOT(=1/2)

_~2,_—
Loo(1/2) = 2727 TATCD

Using the rule

T

R SV |
=2 =-16 z sin(mz)

as well as sin(rn/)/ sin(n//2) = 1, we see that L.,(1/2) equals the expression in the
Lemma. The case 1., = sgn being analogous this proves the Lemma.

Using the lemma we finally obtain at the Archimedean place

T(Woos Voos 8) = AP~ LTt @ 1oy, s + 1 — 1/2) L7100 ® Ny, s — (I — 1/2)),

where 4 € Q" does not depend on .
At the place ¢ we know since 7, is unramified and 7,7, is ramified that the local
factor does not depend on g

L(ﬂ:q ® anqa S) = 1

On the other hand the behaviour of the restriction of w, to GL»(Q,) implies that
IeSGL,(0,)Wq(8)V;,4(g) does not depend on g and Lemma 1.4 b.) (see below) then
proves

I(wy, vy.4,5) = vOl(Ko(2, g

At the place ¢ = p again we know since 1, and y,n, are ramified that

L, ®1,y, 5) = L(1my @ M7, 5) = 1.
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Collecting our results so far we arrive at the equation

> on, a1 ¢, Eys)

ij,y
=Lig(n®n,s+1—-1/2)L(n® yn,s — (I — 1/2))x
x L "1y, 207 g7 vol(Ko(2, q)) An*~' P(s)x

X Y D) 1wy, v, p, )
0.y
and it remains to calculate the local integral at p. We denote by w, |G, the restriction
of w, to GLy(Q,) via the embedding g+ (¢ ,).
PROPOSITION 1.2. Let w € W(m,, 1,) be invariant on the right under the Iwahori

subgroup T < GL3(Z,). For every character y,, of Q; of conductor [ = p® we define
the Whittaker function

, L ip/f y/f
Wy, (g):= > n,D M) w| g LI
ff(zp/.ﬂ‘lfl Zpy*. je(@p/p°Lp)* 1

YeZp/p®Zp

For e = 2 the restricted function w, |Gy, satisfies the properties:
® The support of wy |G, is contained in Nz(Qp)(pvi2 1)K()(Z,f).
e Fork= (i’ 2) € Ko(2,f) we have

e—2
pr |GL2 [ <‘D 1) k]
e—2

= P G(,m)G(n,) w 1 n, (ad)y, (d).

In particular w, |G, is completely determined by these properties.

Proof.For any k = (‘CZ Z) € Ky(2,f) we have the Iwasawa decomposition
. T L R LR
a Z 1 zpl/f vif B cpi+fd f cpi+fd " f P
< "= 1 dilf e
1
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where
ad
_ b 0
k=|cpilf +d el
c cip/f +d cy/f
0 0 1

Together with the right Z-invariance of w, this yields

a b
wy, | gl ¢ d
1
pi ad™! ﬂ(l— cpi >+b_]
= S| g ST SN )T
21 1 gilf
1

Changing the summation variables according to the bijections

i i(ad™" —i(ep/fd))",  yr>ya(l = (cpiffd +cpi)”t  and  ji>d7
we obtain

a b
wylglc d
1
B L ip/f y/f +bjlf
=an<i(ad"—i%) )xpn,z,(d“j)w g 1 I

ij.y 1
L ip/f y/f
=, dygm(d™") Y n, (D) w| g Ljif
iy 1

The last equality holds because ad~' —i(cp/fd) = ad™' (p) and f, = p. Thus, com-
paring with the definition of w;, we obtain

a b
w, gl ¢ d =n,a'd )y, (d " Yw, (g)
1

for any k = (‘Z 3) € Ky(2,f), which is already a partial prove of the second claim.
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To prove the Proposition we now start to calculate the values wy |g,(g) for

g= (Z 2) € GLy(Q,) as follows. A simple matrix calculation yields
Wy lGL, ()
1 ay/f +bj/f\ (a b L ip/f
= > n,(1mG) w U ey/f +diff || ¢ d 1
ij.y 1 1 1

Using the behaviour of the Whittaker functions on the left under N3(Q,) we obtain

wolon@ = Y LmOudilf) Y. tey/f)x

JE(Zyp/p°Zp)* YELy/p°Ly
a b 1 ip/f
X Z m@Owl|c d 1
i€(Zy/p="Zp)* 1 1

The first sum evaluates to

- . y—1,,—2 d G . 2 ’ f d Z*
Z X,,r]f,(])r,,(d]/f): {6]1 n[éls(e.) (xpmy),  for €

JeZo P Ly
Together with the character relations
for cefZ
S e =17 2
— 0 else
YELy[p* Ly

we see that wy |g,(g) # 0 implies d € Z; and ¢ € f7,. The decomposition

€= 0 )0 )

then proves that the non-vanishing of w; |g,(g) implies

*

gem@p(% Jron.

Taking into account the behaviour of w; on the right under Ko(2, /) we only have to
calculate the values of W, lgL, at diag(a, 1), a € Q; to completely determine w |G,
From the above expression for w; |g,(g) we deduce

a 1 ip/f
a .
‘vzp|GL2[< 1)] — et Y mow | I
i€(Zy/p*="Zp)* 1 1
a
=fGom) Y. nrylai/pTHw 1
"E(Zp/pgilz‘p)* 1
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Again, using that

> nrplai/p) =0

i€(Zy/p="7p)"

for v,(a) # e — 2 we find

e—2
supp O Jor) € V0K

which proves the first claim of the proposition. To prove the second claim only the
value of w, |G, at diag(p°~2, 1) has to be determined, but this is easily done: since
Yie,pe1z,y M@ %i/p*™") = p*>G(n,) the above expression immediately
yields

pe—2 2 e—2 4
wlows| ()] = oG |

Thus the Proposition is proven.

Applying Proposition 1.2 and taking into account the behaviour of v,, under
elements of Ky(2, p¢) we find for our local integral at the place p

> () 1wy, v, . 8)

i,y
pe—Z
_ pe? o
= fp° 2G(Xp’7§)G(’7p)Wp 1 Vyp ( ) Ip° 2|p 1/2/ dk.
! 1 Ko2.f)

To prove Theorem 1 we therefore have to determine the values of the Whittaker
functions.

LEMMA 1.3. For o € Z, we have
o

Wp 1 = |a|p:u3(u)'
1

Proof. The support of np}) is contained in B3((Q,)woZ and in view of the definition of
w, we have to determine the set of elements n € N3(Q,), which satisfy

o
Woh 1 € B3(Q,)woT.

https://doi.org/10.1023/A:1026569231434 Published online by Cambridge University Press


https://doi.org/10.1023/A:1026569231434

266 JOACHIM MAHNKOPF

By a quite elementary calculation this set is found to consist of all elements

I u v
n= 1w eN(Q))
1

satisfying the conditions u € p*Z,, v € p*Z,, ¢ € Z,, where k:=v,(2) and in this
case we have

o 1 1 u/a v/a
Won 1 = 1 Wo 1 w .
1 o 1

Thus, using the definition of /!, we get

o
N {( 1 1 ):| - ﬁer’k.’w.vepk,’/p |O€71 |P'u'3(a) ‘E[,(M + W) dudvdw.

celp

Since 1, is trivial on Z, the last expression is equal to pF

proven.

Uz(a) and the Lemma is

LEMMA 1.4. (a) The restriction of v,, to Q; is given by

) [(a )}_{n},(fx)loclffz’n(),,‘,(f)G(xp) for v,(@) >0
o4 1 -

0 else.

(b) For k = (Z b) € Ko(2, g) we have

d

A Y-

Proof. (a) Using [Ge-Sha], p. 80/81 and taking into account that , , =1, ® x//gqp
we obtain from the definition of v, ,

v;g,p|:<°C 1):| = Tlo,p(—1)’1,)(0()%1;(—06)|O€|;/ Z/( ) 2’p|:<1 u}q)]rp(u) du.
ne?7 v Vpl)=n

To evaluate the integral we have to determine the values 1//%[(1 ul/9<>:| We know

that the essential vector lpg’p is supported on the subset B2(Q,)Ko(2, /) C GL2(Q,).
On the other hand GL,(Q,) is the disjoint union

.....
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and we have

()= 0 ) Y emon( s Juen

if v,(u/a) = 0 and

1 —o/u %pvﬂ(”/“) 1 1
<1 M/OC) - pr(“/“) (pvp(u/“) 1> ( vap(”/“)>

1
eBz(Qp)(p_vp(u/a) 1)Ko(z,f).

if v,(u/2) < 0. This implies that wg,p[(l ! )] £ 0 only if v,(u) < — e +v,(x) and

ujo

using the above decomposition together with the definition of lpg’p we obtain

[( 1)} — @, S e, 0" / 7 1)t (u) d

n < —e+v,(0) Vp(u)=n

The integral occurring in the above line is given by

_ )G if n=—e
/V o Zp(u)Ty(u) du = { 0 else,

7

which immediately implies v, , = 0 for v,(«) < 0. On the other hand, for v,(x) = 0 we
obtain

Vx,p|:(a 1)i| = ’1;;(06)|0<|f;770,p(P76)f721G(Xp)

and part (a) of the Lemma is proven.
(b) Taking into account the behaviour of v, , under Ko(2, ) we see that it is enough
to calculate the value

o (30 R P (A

We know that xpg, 4 s supported on By(Q,)Ko(2, q) and comparing entries we see that

11 0

is equivalent to u € —1 4 gZ,. Moreover, for u € —1 4 gZ, we have

(e )= D6 )
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and since l//% ; 18 the essential vector we deduce that

‘px,q[<1 —1Fu i)] = lul ™ 1410 () = 1

for u € =14 g7Z,. We thus obtain

1
y = du,
x-q|:<1 1>:| /;1+q%q !

which proves the Lemma.
Using Lemma 1.3 and 1.4 and vol(Ky(2, p©)) = (1 + p~1)~'p~2, the local integral

o (D) I(u - wy, v, ,, 8) is now easily calculated, which completes the com-
L,y 'p PIp P> Lp
putation of the global integral. Together with the functional equation

LG ' 2h) =

—1 ! ) 2/ y ) B
2(r(2)1) _D G(z "o ") L(io. 1 = 21)

we obtain the claim of Theorem 1. This finishes the proof.

Remark 1.5. The special values Ly (r ® ', [), [ = 1 appearing in the definition of
A do not vanish. This follows from the non-vanishing of L(x ® #’, /), which is
due to the convergence of the Euler product in the case / > 1 and due to [J-S 3]
in the case / =1 and the regularity of the local factor L(r, ® 17, s) for Re(s) > 1
(cf. [J-S 1], Proposition 1.5. (ii1)).

Remark 1.6. In the proof of Theorem 1 we have seen, that the critical integers for
n ® m are all integers

le{—l/)24+1,-lh+2,...,01/2}
such that

_ b (mod2) if />0
'=V14b (mod2) if I<0.

Hence, the integers 1 — /, where 0 < / < [j/2 and / = b (mod 2) are precisely the criti-
cal integers on the left-hand side of the functional equation.

Remark 1.7. The crucial part in the proof of Theorem 1 was the construction of a
Whittaker function w, such that the local zeta integral at the place p does not vanish.
This was due to the properties of w; as described in Proposition 1.2 and the existence
of such a Whittaker function follows from Theorem F in [Gel-Kaj]. We were using
their idea to construct w, .
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2. Construction of the Distribution

In this section we shall construct a family of distributions y; on Z;, whose p-adic
Mellin transform interpolates the critical values L(n ® ny, 1 — /). The construction
is based on the properties of certain period integrals, which we are going to define
first.

2.1. PERIOD INTEGRALS ATTACHED TO 7

Weletv: Q"\A* — C* be anidéle class character with conductor f, = p* a p-power
and infinity component v, = id, i.e. v corresponds to an even Dirichlet character
v: (Z/,Z)* — C*. In particular v satisfies the same properties as y and in Section
1 we have defined the vectors y, € I1(v) (with v replaced by y). For any character
v# 1 and e > e, we define the section ¥, ,. by

1 e—e,
U, (@)= p My, [g<p 1) }

Here and in the following we keep the convention from Section 1 and identify
(1’_l 1) € GL(Q,) with the adelic matrix whose components outside p are equal

to 1. In particular we have ¥, ., =, for v # 1. We also define sections y, ,. for
e>1by

1 e—1
Y e(g)=p "y, [g<p 1) }

In particular we have , , = ;.
For any ¢ € Z; and e > 1 we now define the vectors i, . as the Fourier transform

Vo p(g)i= > v O, (),

2
d(p©)
where the sum runs over all characters v: Q"\A* — C* with conductor f,|p¢ and
infinity component v, = id. We also define sections lp(v’,pe and x//?’pe by replacing

Y, in the above definitions by lpﬁ?, in other words, since 1,(p) =1 we have
Vep =1 ® lﬁ?’p‘,. The sections ¥ . still factorize

lpe,pf = l//e.p",f ® Yoos

where the finite part ¥ . , is defined by replacing i, in the above definitions by ¥,
and Y, is the infinity component of , as defined in Section 1. We also note
the following properties:

® Ve =, for e =% (mod p°), (2.1

k
b lp(,[’H |:g(p pk>j| = r]p(pk) lp(,p”(g) for k € Zs (22)
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b
o Vo) = a0 Tor k= (1 1) € K2, 23

The first two properties are immediate (note that v,(p) = 1) the third one follows
from an easy calculation, taking into account the behaviour of ¥, . under
Ko(2,p%) and n,lz: = 1,7

The family of sections {/ .} ,- as well as the cusp form ¢ satisfy a distribution
relation. We set

= w(P)s(PP)p. (2.4)

LEMMA 2.1. (a) For every ¢ € Z; and e = 2 the following holds:

2 G | VD SR e

l/E(Ap/[)U+1 Z/’>*
d=c(p®)

(b) We have
2 2
p 1 u/p v/p
ve@ = > ¢lg P L w/p
uw=0,...p—1 1 1

v=0,...p2—1

Proof. (a) The claim follows from a straightforward calculation using

-1
lpv,pfﬂ (g) = p_l lp\gp" [g (p 1>i|

and the character relations

— petl
Yowo={y
l’G(Zp/.ﬂH'lZ/J)* P AL

I=1(p)

(b) By an easy calculation one verifies that the vector lp; satisfies the relation

LI p*opu v
usy/ P ne= Y e pow
p2 u,w=0,....,p—1 1

v=0,....p2—1

which immediately implies the claim, because the above relation is preserved under
intertwining operators.

We define the Eisenstein series £ ,c as the images of the vectors , . under Eis. It is
immediate that the Eisenstein series E ;- satisfy the same properties (2.1)-(2.3) as
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well as the distribution relation

-1
Ee,P" |:g <p 1)] = pl Z Eé/’peﬂ (g)

[/€<Lﬂ/p:'+1 Ap)*
I=c(p®)

foree 7, and e > 2.

We may now introduce the period integrals on which our analysis of the values of
the automorphic L-function will be based: for any elements 7,; € Z; and y € Z,
we define

o L ip/f y/f
P(i,j,y; p°) 12/ ¢ ( 1) 1 j/f | |Eip(g)ds.
GL2(O\GL2(A) ]

We note that P(i, j, y; p°) still depends on the choice of the components at infinity we,
and Y, as well as on the integer / and the character 1. We write P} if we want to
indicate the dependence on / and 7.
LEMMA 2.2. Let e = 2. For any j € Z; satisfying j' = 1 mod p°® we have

PG, jj', y: p) =, () P(1,], 0; p°).

Proof. Since j/ = 1 mod p¢ and f, = p we obtain using (2.1) and (2.3)

El,pf |:g<1 j/l)j| = El,p"(g)~

Therefore, changing the integration variable like g|—>g(1 j,,l) and using right
invariance of ¢ under Z we find

. L i /pt y/f
P jj' v p) = / p 1| | Eiee)de.
X,\ 1 1

_j!
Changing the integration variable like g+ g(l J | y) we obtain

L B
.oy e g e—1
Pl’ » Vs = p . E € d .
(@.Jj i p%) /}“45 ( 1) 1 i | | Brr@)de
1

Finally, changing the integration variable like gr—)g((’-""_”wlﬂ}’)il 1) and taking
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into account that ¢ is invariant on the right under Z, we obtain

PG, jj', yi p°)
_/ o (g ) Y g[GP J
~ I 7 Nk i) |
1

Since ij’ — p~'j~!'y =i (mod p), property (2.3) implies

-y e—1:—1,,—1
El,pf[g((l] —PU) 1)}=n;‘(i)E1,pv(g),

which proves the lemma.

From now on we shall assume that e > 2. It is then obvious by Lemma 2.2 that the
periods P(i, j, y; p°) only depend on j (mod p°) and i (mod p). Foranyj € (Z,/p°Z,)*
we therefore may define P(j; p¢) := P(1,J, 0; p°).

PROPOSITION 2.3. Foralle = 2, the period integrals P(j; p°) satisfy the distribution
relation

PG p*) =n,(0" W oM Y PG A wfipth.

weZ,/pZ,

Proof. Replacing ¢[(¢ )u] by the expression in Lemma 2.1 we obtain

i | l—}—pe_lu w—i—pe_lv ]
» s of
. e g .
yPGip)=> | ¢ ( 1) P . j+fw || Eip(g)dg
uvwd Xa
L 1
| l—i—p‘"’lu w4 p<ly ]
S rf 1
_ -1 g . /2
=n,p )Z/d)( 1) { J+fw El,p"|:g< 1)}61&
u,v,w Pf
i 1

The last equality follows by the change of integration variable g+ g(” _zp,l) and
using Equation (2.2). Replacing E| p¢|g P 1)] by the expression in Lemma 2.1
and using (2.3), we further obtain for the right hand side of the above equation (note

https://doi.org/10.1023/A:1026569231434 Published online by Cambridge University Press


https://doi.org/10.1023/A:1026569231434

EISENSTEIN COHOMOLOGY 273

that 7,(¢) = 1 since e > 2)

1 +p“”1u w+pe’1v

1
S »f :
o Y ol (¢ ) C e | [Eefe( )]
reoh of
1

Changing variables g g(' ) this equals

671_‘_671[)67114 W_{_peflv

1
f rf
np(p—l)pl Z/ ¢ <g 1) i € + efw E) peni(g) dg.
ey X o
e=1(p°) pf
1

Using the periods this may be written

yPG:p) =n,(p7 )" Y P+ p T g + efw, w+ v fp).

u,v,w

=160)
Since ¢! + ¢ 'p*~lu =1 mod p, Lemma 2.2 then shows
VPGP = 0,0 )P Y POL G+ ofw, 05 fp).
zzl‘?;)")
We write ¢ = 1 + fo, where o € Z,,/pZ,. Because ¢ = 1 (mod p°), e > 2 we find
¢ +¢fw=j+f(oj +w) (mod pf).

Thus, by the change of summation variable wr— — oj + w we finally obtain

PG ) =m,(pp* Y P(Lj+wf, 0 p.
weZ,/pZ,

This proves the Proposition.

For any integer e > 2 and any pair (5, /) such that 0 < / < [j/2 and / = b (mod 2)
we define

WG +PLp) =,y G+DDLyp) = 0)0)~ P PG p°).

To simplify the notation we mostly write g, instead of 4. It is immediate by Prop-
osition 2.3 that 4, defines a distribution on 7, and using the distribution relation
we may extend , to all cosets j + p°Z, with e € IN.
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2.2. THE p-ADIC MELLIN TRANSFORM
We want to integrate y,; against characters y and the result is given in the following

proposition:

PROPOSITION 2.4. For any idele class character y of conductor f = p°, e = 2 and
infinity component y., =id and any integer 0 <1 < ly/2 such that | =b (mod 2)
we have

L LMy du] =BP(1/2) - L(n @ yn. 1 — 1),
z

where the factor in front of the integral is given by

Al 2p? —e_ (1+))e
B=A m(ﬂp(l’)y) P

and A has been defined in Theorem 1. For any character y with conductor a p-power
and infinity component y., = sgn the above integral vanishes identically.

Proof. Using the identity

o | B A

(note that v,(—1) = 1), we immediately find

w(=Jj +pr) = w(j +pr),

which proves the vanishing of the integral in the case y,, = sgn. We now assume
%so = 1d. In this case we want to derive the Proposition from Theorem 1 and proceed
as follows. Using the inverse Fourier transform we immediately obtain for y # 1

E@= Y 5p@Ey.

ce(Zy/p°Zy) /1)

Plugging this into the integral occurring in Theorem 1 we obtain

P(1/2) L(r @ yn, 1 = 1)

. L ip/f y/f
=A Z IRUBYAG) /X ¢ ( 1) L Jjif | | Eep(g)dg.
(E(L,;/pf”/é’i)*/(:tl) * 1

Changing variables like g+ g(1 e) and using (2.3) we obtain for the right-hand side

Ui Vf i
ALY @@ | K (g 1) L ar | B

iy
ce(Zp [P Lp)* /{£1)

https://doi.org/10.1023/A:1026569231434 Published online by Cambridge University Press


https://doi.org/10.1023/A:1026569231434

EISENSTEIN COHOMOLOGY 275

which by the obvious change of the summation variables i and j equals
(p°) g N e
A2 ) 2,0) PG i 1)
ij.y
Using Lemma 2.2 we see that this is identical with
o(p°)’p* N
A T Z mo1,() P(L, j, 05 p°).
JEZy /L)

Thus we obtain the equation

P(1/2) Lz ® yn, 1 — I)
(P’ p° B o
2 n,@) 7 p " wm () wG + p°Zy)
Jery

=A

and the proof of the proposition is finished.

The conductors of the characters y and 5, being relatively prime, a small
calculation proves that G(y7,) = x(q¢)no(p¢) G(¥)G(ij,). Thus, recalling the definition
of A and noting that 7 = X;1|z;; and 7y = g, }1|Z; we deduce that

B =C 1,(¢ ) n° Gl ) Ly, 1 — 20!

where { = 1, Mo yit3(p), C = C; € C* does not depend on y and the coset C; - Q" does
not depend on /. On the other hand since pqlf;,, (we assume e > 2) it is well known
that there is a Z-valued measure u(/) on Z; such that

Lo, 1 =20 = [ 7y dutl)
z;
(cf. [Wal], pp. 239/240; note that the factor —(1 — y(c)(c)?) is analytic and bounded).
In addition, the trivial equality Xp(qfl) = [, %p A0, holds, where 6,1 denotes the
Dirac distribution at ¢!. We define’ the convolution of distributions
whl = 1] s u(l) * 0,1 and immediately deduce from Proposition 2.4 the final form

of our p-adic integral:

COROLLARY 1. Let y and | be as in Proposition 2.4. If y,, = id we have
" 2 nd __ b—3/ Pe, —e Y 2
| it =€) R Gl - Lw 1 =
/[l
and if yo, # id the integral vanishes identically.

The distribution u(/) and 6,1 being Z-valued, we are reduced to investigate the
algebraicity and integrality of the distribution ;. This will be done in the last three
chapters.
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3. Cohomology and Rationality

3.1. THE ISOTYPICAL SUBSPACES IN COHOMOLOGY

Let K/ be a compact open subgroup of GL,(Ar). We introduce the differentiable
manifolds

Su(K"):= GL,(Q\GL,(A)/K K, 0 Z2(R)
and
Fy(K"):= GL(Q)\GL,(A)/K' K, 00 = R% ) x S,(K”).

Any finite-dimensional, rational representation p: GL, — GL(V) determines a
sheaf V on the spaces S,(K’) and we define H'(S,, V):= injlimgs H'(S.(K"), V).

The results of [Cl] and [Ha 1] in particular imply, that the finite parts of the
representations 7 and Il(y) appear as direct summands in the cohomology of Ss
resp. S». We want to describe these cohomological realizations and the special
cohomology classes corresponding to the automorphic forms ¢ and E, .. We begin
with m,. By assumption the infinity component of n is isomorphic to Ind(Dy,, id),
where [y € 27 and the type at infinity of 7= (cf. [Cl], p. 106) therefore reads
(lo/2 — 1, —lp/2 — 1, —1) € Z*/S5. We define (p, V) to be the finite dimensional rep-
resentation of GL; with highest weight (lp/2 — 1,0, —ly/2 + 1) with respect to the
standard torus in GL; and we let V be the locally constant sheaf attached to p. From
[C1], Lemme 3.14 we derive

C, for i=2,3,

H'(gly, K300 Z3(R), 1o ® p) = { 0, else.

We choose a basis wi, ..., s of the dual of the tangent space (gl3/SO3Lie(Z‘3)(R)))*
and a basis {v,} of V. Let

Voo = Z Z Woo,ija Va ® W) A @]
ij=T..5 a
be a generator of H*(gly, K3 00 Z2(R), W(Tso, Ts) ® V). For any Whittaker function
wr € W(ns,17) the product wy-we defines an element of H*(gly, K3 Z3(R),
W(n, 1) ® V). Since n embeds into L3(GL3(Q)\GL3(A)) this yields an injection

fn: W(ﬂ:f, Tf) - ngsp(g3’ V)

We let wy be the finite part of the Whittaker function defined in Section 1 and denote
by w := F(wy) the image of wy in cohomology. The cohomology class w then reads
0=23,Pijave®w; A where ¢;; , € V() denotes the cusp form attached to
the Whittaker function wy - weo ;. We remark that the cuspidal cohomology defines
a subspace in the cohomology with compact supports chusp(S‘g,, V) < H3(§3, V) (cf.
[C1], p. 123).
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Next we describe the embedding of Il/(y). To this end let (x, W) be the finite
dimensional representation of GL, with trivial central character and highest weight
2] — 2 if restricted to SL, and let W be the locally constant sheaf attached to «.
In the notation of [Ha 1], p. 45 we have W = M (2] — 2,1 — [). The representation
I1(y) is non-unitarily induced from the character

()=
H R

1) 15
whose type is contained in Coh(W) in degree 1 (cf. [Ha 1], p. 49) and which also is
even. We therefore deduce from Theorem 1 in [Ha 1] Ehat I1,(y) appears as a direct

summand in the cohomology of the boundary 9S; of the Borel-Serre com-
pactification S, with coefficients in W

l
n'(t)n(t2),

/() = H' (852, W)= lim H' (355(K"), W).
K

The cohomology class in H'(3S,, W) attached to an element e y(y) is
given as follows. We choose a basis w;, w, of the dual of the tangent space
(glp/so:Lie(Z9(R)))" and a generator w; of (Lie(Z)(R)))*. The embed-
ding j : GLy(R)/SOx(R) <>GL3(R)/SO3(R)Z(R), g SO»(R) > diag(g, 1)SO3 (R)
ZQ(R) induces a mapping of the duals of the tangent spaces

J* (g13/s03Lie(Z(3’(R)))*—> (glz/soz)>k
and for later purpose we assume that the basis o} and w; are chosen in such a way that
JH()) = w;fori=1,2,3 and j*(w;) = 0 for i =4, 5. Let {w;} be a basis of W. Using
[Ha 1], p. 69 we know that

H'(gly, SO:(R)ZJ(R), Moo(1) ® k) = C

and a generator e! of this cohomology group reads

el = Z Z Veoi Wb ® Wi,

=12 b

where ;) €y ® Hgo < I () (cf. Remark 3.3). For any y € Il;(y) we then
obtain an element in the cohomology of the boundary

U ®e e H'(3S5, W).
The embedding into the cohomology of the symmetric space of GL;

Eis*: TI;(z) - H'(S2, W)

https://doi.org/10.1023/A:1026569231434 Published online by Cambridge University Press


https://doi.org/10.1023/A:1026569231434

278 JOACHIM MAHNKOPF

is now given by

EBis"()= Y = y®(g.D)
yeB(Q\GL(Q)

for g € GLy(A), D € gl,/so,Lie(Z3(R)) (cf. [Ha 1], p. 80). Let Ype pi= 1y pe s be the
finite part of the vector Y, ,. defined in Section 2.1. We denote wj:= Eis*(l//pe’f)
the image of V., anq we identify wp with its image under the canonical map
p*: HY(S,, W) — H'(F>, p*W) induced by the projection p: F>(K') — Sy(K”).
The class w, then reads

Wpe = Z ZEP””?” wp Q wj,

i=1,2 b

with Eisenstein series Epe ;p = Eis( e ;Wog 15)-

We shall use the differential forms w and w,- to give a cohomological description
of the period integrals P(c; p©). We denote by V|g, the restriction of the represen-
tation ¥ to GL, via the embedding g+ (g 1) and we choose a non-trivial,
GL,-equivariant pairing

tr: V|GL2 ® W —> C

Such a pairing exists due to the following

LEMMA 3.1. The restriction of the representation p to GL, decomposes into a direct
sum of representations of GLa, plgL, = K @ p’, where K is the contragredient represen-
tation of k.

Proof. For any dominant weight 1€ Z" we denote by F;, the GL,(C)-
representation of highest weight A. The representation p is then isomorphic to
Fuy—2.1,/2-1,0) ® det! /2, Using the Schur functor (cf. [F-H], pp. 76, 231/232) we
may write

Fuy—2.1/2-1.0) = Sty—2./2-1.0) C*.
Since [y/2 = [ > 0 we have
lo—2>10/2+1—2>1/2—1>1/2—13>0

and [F-H], 6.12 then implies that the restriction of Fi_2,/2—1,0) to GL; is completely
reducible and contains the representation S, /21/_2.5,/2_1) C*. This representation has
highest weight (lo/2 4+ — 2, [y/2 — ) (cf. [F-H], 15.15) and hence p|g, contains as a
direct factor a representation of highest weight (/ — 1, 1 — /). Since k = ¥ and k has
highest weight (/ — 1, 1 — /) this proves the lemma.

We now set

no._ . n
‘un»/ T Z 8l‘l’k tr(va ® Wb) ﬂ/’wﬂoviv,f,zlsl//oc.k,/7’
ijk.ab
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where ¢;;x vanishes unless (i, j, k) is equal to (2, 3, 1) resp. (1, 3, 2) in which cases it
equals 1 resp. —1. Obviously, ,ui ; defines a distribution on Z; and it is immediate
by Proposition 2.4 that by integrating ,u'; ; against characters we find

| it =B P12 Lm @ 1~ G.)

P

where P; € C[T] denotes the polynomial P;:=)_, kb Sk Ta @ Wp) Pu oy
On the other hand, for every N € N let i(N) be the canonical map

i(N): F>(K(2, N)) — S3(K(3, N))
GLAD) K2 M GLUO) (¢ ) KB MK ZHR)
where K(n, N) < GL,(Ay) denotes the principal congruence subgroup of level N.

i(N) is a proper map and therefore induces a map on the limit of the cohomology
groups with compact support

i1 HX(S3,V) — H(Fy, i*V).

The pairing tr: V|g, x W — C induces a pairing of the associated sheafs
tr: "V p*W — C. Using [Cl], p. 122 we even know that the representations p
and x are defined over finite extensions £, and E, of ), i.e. p resp. x act on E,
resp. E, vector spaces Vg, and W, . In particular the above pairing of sheafs is
defined over E, . := E,E,

tr: i*VEM ®p*WEﬂ'h_ — Ep’k.
and together with the cup product we obtain the diagram

troU

HX(F, i*Vg,) x H'(F.pWg,) — HXPE,,) =E,,.

T T

H(S5,VE,,) H'(S, W, ).

p.K

In other words we have a pairing

(,): HXS3,Vp,)x H(S:,Wg,,) — E,,
(0,00) > trifoUp*e.

We want to determine the special values (w, wp.) of this pairing. We denote by
ri HX(S5, V) — HX(S3,V), ue GLy(Ay)

the right translation.

LEMMA 3.2. For u = u(1,,0; p°) € N3(Q,) we have

(rhew, wpe) = p~ D (0 Wl G+ L)
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Proof. Let K/ < GLy(Ay) be a compact subgroup under which i#*r:w and o, are
invariant. Using [Ha 2] ch. E.4 we find

(Fio, wpe) = vol(K”) tr i*Fm A ope.
Fy(K/)

It is immediate by the choice of the vectors w! and ; that the image
#ri(w) € HX(F,, i*V) is given by

*ri(w) = Z Z qﬁiqj’u[(g 1)u] Va ® @; A ;.
ij=123 a

Using this and the definition of w,c we obtain

(Fro, wpe)

= vol(K”) / Z Z tr(v, ® w;,)d),-’j’a|:<g 1>M}Epe,k’b(g) Wi N wj A Of.

2K ik “ab

Comparing with the definition of i = 1/, , in Section 2 and taking into account
that an invariant 3-form on GL,(IR)/O,(R) corresponds to a Haar measure dg
on GL,(R) we obtain the claim of the lemma.

Remark 3.3. Since O,(R) normalizes SO,(R) the quotient group 7Z/27 =
0,(R)/SO,(R) still acts on H(S,, V) and H'(gl,, K, Z2(R), 7o ® p) and we want
to verify that the classes w and w,- are eigenvectors for this action. The assumption
that /y is even implies that the central character of 7., equals the signum morphism
and considering the action of diag(—1, —1, —1) then shows that w,, and hence w
has eigenvalue —1 under the operation of the non-trivial element in Z/27. To cal-
culate the operation of Z/27Z on w), we note that

H'(gly, SO2R)Z3(R), D1 @ k) = (v, v7)c,
where the generators satisfy ("' | )v* = £v*. The inclusion Dy ITeo(x) induces a
canonical map in cohomology

H'(gly, SO2(R)Z3(R). D1 ® k) — H'(gly, SO2(R)Z3(R). M(7) ® )

and an explicit calculation proves that under this map v~ maps to zero whereas v+
does not. (To see this one has to take into account that / = b modulo 2.) We deduce

that
-1 11
( l>e =e

and hence, o, and w, =Y y,(6)o o too are eigenvectors for diag(—1, 1) with
eigenvalue 1 under the operation of this matrix. In addition we also see that the
coefficients ¥, ; , are contained in 1, ® I"Igo, the unique submodule in I1,,(y), which
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is isomorphic to Dy;_; (cf. Section 1). Finally, the action on cohomology also induces
an action of Z/27 on our integral representation: Lemma 3.2 immediately implies
that the integral appearing in the formula of Theorem 1 coincides with

A w0 ()t oy

ij.y
and using the above eigenvalues it is easily seen that this expression is invariant under

the change of integration variable g+ gdiag(—1, 1), which is orientation reversing.
In particular, our cohomological formula does not vanish for parity reasons.

3.2. THE Q-STRUCTURE

The non-vanishing of the cohomology implies that n; and Il;(y) are defined over
finite extensions E/() and we want to show that the differential forms w and
wpe too are defined over these extensions. We begin with w,e.

For any automorphism ¢ € Aut(C/Q) we define the o-linear isomorphism

o () — TIL(x")
vy Y
where Y?(g):= y(g)°. Using [W], ch. 1.2 and [C]], Proposition 3.1 (iii) we know that

Iy (y) is defined over Q(y, 1, n'): for any field H/Q let I1x s()) denote the H-subspace
of H-valued functions in Il;(y); we then have

() = Mg (0 © C.
Theorem 2 in [Ha 1] states that the embedding

Eis" : Tg (1) > H'(S5, Wp)

is defined over Q) and for every ¢ € Go = Gal(Q/Q) we have Eis*(°) = Eis* ().
From the definition of 1, it is obvious that np;’f =y,.., for all
o € Gal(QQ/Q(n, n")). This implies wf’p(,f =V, and using the Ggp-equivariance
of ENis*, that f. = wy for all o € Aut(C/E(n, 1)), i.e. wy is contained in
HI(SZs WEA(WI’))-

We consider the cuspidal form w. Using [Cl], Théoréme 3.13 we know that 7 is
defined over a finite extension E = E; of Q. In particular the ns-isotypical

component of the cuspidal cohomology is defined over E
Hy(S3. V() = Hyy(S3. V) () ® C

(cf. [C]], Théoréme 3.19, note that E, < E). Similarly, there is an E-subspace
We(ny, 17) of W(nys, 1r) such that

W(ns, 1) = We(ny, 1) ® C.

We want to find a field of definition for the complex valued differential form o
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attached to wy. Using the uniqueness of E-structures on irreducible, admissible
GL;3(Af)—-modules up to scalar multiples (cf. [Cl], Proposition 3.1) we deduce that
after multiplication by a complex number the isomorphism

Qn) - Fr: Wiy, 1) > HZ, (S5, V)

respects the E-subspaces as defined above. The following lemma therefore implies
the existence of a complex number Q(n) € C* such that

Q(n)_lw € ngsp(SN-% VE(Cq(q—l)))'

LEMMA 3.4. There is an Q € C* such that Qwy € WEQ (T Tf)-

Proof. We decompose the Whittaker function wy=w, ® w, ® w”?, where
WPl = @z, swe. Since w4 is an essential vector and the space of essential vectors
is 1-dimensional, we deduce that there is a complex number Q' € C* such that
QWM € We(Quzp.qTes ®ep.qTe)- Thus, we are left with examining w, and w,. We
recall from Section 1 that 7, is isomorphic to the non-unitarily induced represen-

tation 7, = Indn(éé{ j,u). The o-linear action

Indn(3y; 1) — Indn((d, 1)), ¥, >
commutes with the operation of the Hecke algebra and we see that
Indn(3}>p) = Indn(8y, 1) ® C,

where IndnE(él/ Z,u) = Indn(él/ 2,u)A“‘(C/ B) This immediately implies that the char-
acter ,uéé/z is E valued and since w has values in Q(él/z,u) we see that
1// € IndnE(53/ w). For later purpose we mention the consequence

1

y =08y, P cE. (3.2)
p2

Again, Proposition 3.2 in [Cl], tells us that after multiplication by a complex number
the isomorphism

Indng(8, 1) = Welny. 7). W, / lp (wong)T,(n) dn

respects the E-subspaces and some complex multiple of w, therefore is contained in
We(mp, Tp).

In order to examine w, (cf. Section 1 for the definition) we shall use the twisted
action of automorphisms ¢ € Aut(C/Q) on the Whittaker model

g Wingty) —  Wing tg)
w > wi(g):= w(diag(;2, 1, 1)g)°,

where ¢ — d|, Ope) P lo € Z is the g-component of the cyclotomic character. Since
n, is defined over E, we deduce that Wg (g, t4) = W(ng, )A“t(c/ EY for any finite
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extension FE'/E. It therefore suffices to verify that wg:wq for any

o € Aut(C/E(ly4-1))- In view of (3.2) Proposition in [J-S 2] it is enough to
show that  resgL,0,)(W)) = resgL,o, Wy (note that wy, wi € W(ng, ;) for
o € Aut(C/FE)). Using the equation

()6 =66 )

and taking into account that z, = 1 (mod ¢) for ¢ € Aut(C/E((,)) and f; =gq, itis
easily verified that

resGLz(Qq)wq(diag(t;z, t;l)g) = resGLz(@q)wq(g)

for all g € GLy(Q,) and ¢ € Aut(C/E((y,-1)))- Applying (the untwisted) ¢ to this
equation and recalling that wg is Q({,_)-valued we obtain the invariance of w, under
Aut(C/E(y4-1y))- This finishes the proof of the lemma.

Lemma 3.2 together with the algebraicity of the forms Q(n) '@ and W, NOW imme-
diately implies

THEOREM 2. For all pairs (n, [) consisting of a character n : Q"\A* — C* of finite
order and conductor f, = pq and an integer 0 <[ < ly/2 such that | =b (mod 2)
the distributions ,uZJ are QUn) - E E(n, 1, {y4—1))-valued, i.e. for any open subset
U < Z;, we have

,u?r,]( U)
Q(m)

€ EnEK(”v 77,, Cq(qfl))'

Of course, Equation (3.1) calculating the Mellin transform of ,ug ; becomes com-
pletely trivial if P;(1/2) vanishes and the distribution ,u:'ﬂ fails to interpolate the
automorphic L-function. Hence we have to make the

Assumption. P;(1/2) does not vanish.
Using Corollary 1 and Equation (3.2) we then obtain

COROLLARY 2. Under the above assumption, for all charactersn: Q*\A* — C* of
finite order and conductor f,, = pgand all integers 0 < [ < ly/2, which are congruent to
b (mod 2) we obtain

Lin®ym,1-1)
P (1/2)m Q)

€ EnEK(VI’ ’7/’ Cq(q—l)’ X)'

Remark 3.5. The case of trivial coefficients.We finally consider the case that = has
cohomology with trivial coefficients. This means [y =2, hence / =1, i.e. I1(y)
too has cohomology with trivial coefficients and the only critical integers
s =0,1 occur only if n,, = sgn. Moreover we know: The value P(1/2) does not
vanish.
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Proof. The generator e! is contained in the +1-eigenspace of the cohomology (cf.
Remark 3.3). Our polynomial P; therefore coincides up to a nonzero factor with
the one chosen in [Sch 2], Theorem 3.8 and the claim follows.

In particular, multiplying the infinity component w,, with some scalar we may
assume that P;(1/2) = 1.

In the case of trivial coefficients Corollary 2 has already been obtained in [Ma],
Corollary 3.3 using a different method.

4. The Denominators of Eisenstein Classes

The remaining part of this article is devoted to an investigation of the denominators
of /‘Z, /Qn) in ExE(n, 1, {y4—1y)- This is a more arithmetic question since it involves
the ring of integers of the field £, E,(17, ', {4,—1)) and to answer it we will make use of
cohomology with coefficients in rings of integers. As we will see in Section 5.1 the
essential step is to calculate (bounds for) the denominators of the Eisenstein classes
. This will be the object of this chapter. In special cases such denominators have
been computed in [Ha 2] and [Kai] and in a large part we are relying on their
expositions.

For simplicity, from now on we will restrict ourselves to the case of trivial
coefficients as described in Remark 3.5, ie. we assume that (l,/,1,) =
(2, 1, sgn). In particular, there is only one distribution yu, = ,uZ’l, which corresponds
to the (only) non-positive critical integer s = 0.

The idea is to construct a system of generating cycles for H{(S>(K), Z), where
K < GLy(Ay) is the (largest) subgroup under which w,. is invariant and to evaluate
wpe on these cycles. In particular, for any number field F with ring of integers
OF we set

H*(S,(K), Op)yy = Im(H*(S,(K), ) ® Op — H*(Sy(K), F)).

In the same way we define H*(S,(K), OF r)in» Where Op » denotes the completion of
Or at the prime ideal £. The following remark yields a slight simplification of the
calculation of the denominators.

Using exactly the same reasoning as in Section 3.1 we see that the induced rep-
resentation Ind(a«'/?, noye/?) =~ @ TI(y) too occurs in the boundary
cohomology of S,. We denote by np]?(,,f the finite part of lﬁ?,pv (cf. Section 2.1).
‘//(p)« s Isinvariant under K (p, ¢):= Ki(2, p®) x Ki(2, g) as well as under the operation
of Aut(C/Q(ny)) and therefore defines an element in H 1(85’2(16{ ®° 9), Qny)),
where K{(p°, 9) = [Tr2p .00 GL2(Ze) K1 (p°, q). We let

ey =Y Yo € H' (gl Kr 0 Z3(R), Ind(a}/?, 0 }/?)

o0 !
i=1,2
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be a generator of the cohomology at infinity and we set
w0(g. D)= Y. s e)(y2. D).
3

As in Section 3.1 we then deduce a)g(, eH l(SZ(K{(p",q)), Q(ny)) and also that
Wpe :17’®a)2(,. In particular ®, and wgp have the same denominators (in
Q(n, 1)) and we may (and will) replace wp by a)gp for the calculation of the
denominators.

4.1. SPECIAL CYCLES IN THE HOMOLOGY

We use the following notations: H = GLT(R)/SO,(R)ZI(R) is the upper half plane,
I" resp. T'1(m) the full group GLy(Z) resp. the congruence subgroup consisting of
matrices (f 3) satisfying ¢ =0 and d = 1 mod m and H is the Borel-Serre com-

pactification. On the level of sets, H is the disjoint union

H=HU |J Hw,
sePY(Q)

where Hj  is the boundary component at the cusp s. In this section we denote by O
the ring of integers of (). We also denote by O the one-dimensional O-module
with trivial I';(p°q)-operation; the Shapiro Isomorphism in homology then reads

Hy(T1(p°g)\H., 0) 2> Hy(T\H., ind[, 11, O).

where an element ¢ ® « of the right hand side is being sent to Zvel"l(p"q)(il)\l" a(y)yc.
The same isomorphism also holds for the relative homology. (For a definition of
homology with non-trivial coefficients and its properties cf. [Ha 2], ch. E). We
put M := ind?l(pf)(ﬂ)(?. We want to explicitely construct a set of cycles generating
H(T1(p¢g)\H, O) and we proceed as follows. We let B(c, s), s € P'(Q) be the set
of all points g € H, whose distance to s is equal to ¢. For any r e P'(R)\{s}
the intersection of B(c, s) with the geodesic Z, ; joining r and s consists of a single
point g, € H and the assignment r+>g, yields a natural identification
Hy 00 < PY(R)\{s}. We write {r}, to denote the point on the boundary component
belonging to the cusp s and corresponding to r € P!(R)\{s} and we let Z ) be
the geodesic in H running from {0},, to {oo}y, where by co we understand the cusp
belonging to the standard Borel subgroup (*:) The first relative homology then con-
sists of the cycles Zjo«) ® ¢, ¢ € M. We want to find out, which of the cycles
Z0,00) ® @ are images of absolute cycles. Using the long exact homology sequence

coe = H(T\H, M) S H(T\FL o0\ FL, M) > H, ,(a0\FI, M) — --.

we see that Zj.)® ¢ is contained in the image of rel, precisely if
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N Z0.00] ® @) = {0}oe ® (¢ — wep) = 0. Since I\ = No(Z)\H we find

Ho(dD\H, M)~ M/(1 — T)M
where T = (1 }) Thus, Zj.0] ® ¢ € im rel is equivalent to

(¢ —we) =(1-T)¢' 4.1)

for some ¢ € M. Since (1 —T)¢p' =9(0,1], ®¢’) this is equivalent to
(210,00 @ @) = 9([0, 1], ® ¢'). Thus, assuming (4.1) we see that Zj . ® @—
[0,1], ® @’ represents an absolute cycle, which maps to Z ) ® ¢ under rel.
Applying the Shapiro Isomorphism this cycle reads Z,:= Zio — Zﬁ,, where

2= 07200 and Z0:=>"¢'()y[0. 1],

and we conclude: modulo cycles which are supported on the boundary,
Hi(T1(p°g)\H, 0) is generated by the cycles Z, with ¢ € M satisfying (4.1).

We identify the coset spaces I'i(p°g)\I' = Ki(p*, 9)\GL2(Z,) x GL2(Z,). Any
(relative) cycle Zip is a O-linear combination of the chains gZ ) for
g € Ki(p®, 9)\GL(Z,) x GLy(Z,). Moreover, we have

820,00 = —8WZ0,00]

where w = (_1 1) and it is therefore sufficient to consider translates by elements
g € Ki(p®, 9)\GLa(Z,) x GL2(Z,)/{w) (w is embedded diagonally into GLy(Z,)x
GL(Z,)).

LEMMA 4.1. The union of the following elements forms a system of representatives
Sor the double coset space K(p®, 9)\GL2(Z,) x GLo(Zy)/{W):

€000

where d € (2)p*~*q7)*, t € (Z/p°qZ)* and k =0, ..., e,

() g

where d € (Z/p*~*qZ)*, t € (Z/p°Z)* and k =0, ..., e and

1 1 M\ 1

(o))
where d e (Z/p¢*q2)*, t € (Z)p*7)* and k=0,...,e. Here, we identify
(Z/p°qZ)" = (Z/p°L)" x (Z/qZL)".
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Proof. We start from the decomposition

e 1 e
GLZ(Zp) - Ui:O ..... eKO(zvp )<pz 1>K0(2’P )

For any i > 0 we have the inclusion

Ko(2,17€)<;,- 1>K0(2,P6)WCK0(2,PE)G 1>K0(2,Pe)-

Furthermore the decomposition

(90 ()

proves that any element g € K{(2, p©)\Ko(2, p")(} 1)Ko(2, p°) has a representative

=0 )

where d e (Z,/p°Zy)* and wueZ,/p°Z,. We write u in the form
u=pkt, te Z;,k =0,...,e and finally obtain that there is a representative of
the form

(00

where t € (Z/p¢7)* and even d € (Z/p°~*7)*. In a quite similar way we see that any
coset in K;(2, 9)\GL2(Z,) has a representative either of the form

(o0 )

with d, t € (Z/qZ)* or of one of the forms

(g ()

where d € (Z/q7)*. This implies that any double coset has a representative of the
desired form and since it is easily verified that these elements yield different cosets,
the proof of the Lemma is complete.

EXAMPLE 4.2. We label the matrices appearing in the above lemma by ga .1, &4,
and g, . Since I'1(N) = T'(N) - No(Z) we see that a set of representatives for the
cusps of I'i(p°9)\H is given by oo and the fractions r/s with (r,s) =1,
0<s<N, r<s and two cusps r/s and ¥ /s are equivalent if r/s — /s’ € Z or
(r,s) = (', s') (mod N). In particular we deduce that the chain g4 x ,Z[0,] Tuns from
the cusp 0 to 1/d*tpX. Hence, for any d,d’ € (Z/p*Pq2)*, t,t € (Z/p°q7)* such
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that d%r = d’*¢ (mod p*~*¢) the chain
Z = 8411 2[0,00] — &d' e, Z[0,00]

is a relativg cycle which is the image of an absolute cycle Z;4.,,% in
H\(T1(p°g\H, Z).

4.2. THE INTEGRAL ON THE BOUNDARY

We want to evaluate the Eisenstein class wge on the cycles Z,. We do this by
seperately evaluating wgﬁ on the inner and the boundary component of Z, and
we start with the evaluation on the boundary component. We denote by

Wlyz, € H'0S:(K] (p°, 9)), Q1o)
the restriction of wgy to the boundary of S’Z(K{ »°q)).

LEMMA 4.3. a)24,|3§z satisfies the properties
is contained in Hl(agz(K{(p", 9)s O)int-

0
¢ Dpe |332

° w2¢,|8§2 is only supported at boundary components belonging to the cusps (ld)oo,
d e (Lqy/qLy)".

Proof. The boundary 33’2(K{.(pg, q)) is homotopy equivalent to the space

By(QO\GLo(A)/K] (0, 9)K2,00Z3(R)

and under this equivalence w2<’|3§2 corresponds to the cocycle wgfyf eh. We will
explicitely describe the section lﬁgp s+ We set

M. =BQ) [] GLAZ)K2, p)Ko(2, )

L#p.q,00
and write any g € M, in the form g = (“ ﬁ* )kkpkq, where
_ (@ by e _ (2 by
@—Q Qe&@p% @—@ Qem@@

Note that using strong approximation for (A, +) we always can achieve that
b, =0 (mod p*) for any k € N. Using the decomposition

GLy(Ay) = By(Q) [ | GLa(Z0)

{#£00

and left By(Q)-invariance of y° as well as the explicit description of the local com-
ponents 1//?’17 and zpaq (cf. Section 1) we see that the finite part lﬁ?;f for vz#£1is
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supported on M, and for g € M,, as above we have

U0 (©) = 1o/ Bl Mo o (dg)vp(dy).

On the other hand, for e, > 1 we have

Me“ (p l) = Me\_km

(choose b, = 0 (mod p¥) with k sufficiently large) and we deduce that the finite part
w‘ﬁ,,,e; y is supported on M,. Moreover, for g € M, we obtain

U e (&) = Lot/ Bl o, o (dg)vp(dy)-
In the same way we see that 1//(1)#; + 1s supported on M, and for g € M, the section
a//?,pe;f is given by
Ve (8) = Lot/ BI o, 4(dy)-

The Fourier transform defining 1#2() ;= l//(l)’pe’f is now easily evaluated: l//&’f is
supported on

By(Q) [] GLAZKN2, p))Ko(2, q)
t#p.q,00

m

and for g € M, we have

0 _J1e/Bid no(d,),  ford, ==£1 (mod p©),
Ve (&) = { 0 Sl r

In particular we see that the restriction of npgp,f to GLg(Z) is O-valued, which by an
easy calculation (cf. [Kai], 2.3.3 Korollar) implies that the cohomology class
1//2@ s ey is contained in H 1(082(K] (p°, 9)), O)iyi. Moreover since lﬁ]?@’f is supported
only on the cusps (1 d)oo, where d € (Z4/q74)", the second claim of the lemma follows
and the proof therefore is finished.

Using the lemma we deduce that

1
0 / 0
Ope = Z q’( )/ Dpely3, - (4.2)
/Zﬁ ! de(Zy/qZ) d (‘)10 1] e

The width of the cusps (' )oois 1 and (*)[0, 1], therefore is closed, i.e. contained in
H 1(8S2(K{ (»°, q)), 7). Hence, the integral of cugy on Zg is contained in O. In other
words: No denominators are coming from the boundary.

4.3. THE INNER INTEGRAL

In this section we complete the determination of the denominators of wgy by
calculating the values of wge on the inner components Z;,. In the following we dis-
tinguish between cocycles in the relative Lie-algebra cohomology wg(, and their
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associated cocycles (Z)& in the de-Rham cohomology. We will evaluate @26 seperately
on the chains gy k.1 Z(0.00]> & 1., 210.00] and g7 1 . Z[0.00) and we begin with the first one.
In fact we will evaluate 5028 on a slightly more general chain: we denote by 7}
the torus in GL, consisting of elements of the form (* 1), ie. T 2 G,,. For
de(Z/p*q7), k=0,...,eand any map A: (Z/p°q7)* — O we define the rela-
tive cycles

Zajs = Z M) 8akt 20,000 C HL,
teTi(Z/p°q)

where

()0 )

and g4« t acts via its image in I'1(p°q)\SL2(Z). These chains translate into an adelic
setting as follows. The adelization of the symmetric space I'i(p°q)\H reads
GL(Q)\GLy(A)/ K{ (%, 9)K2,00Z3(R) and for any y € SLy(Z) we obtain the canoni-
cal map

RY, —  GLy(Q)\GLAA)/K| (¢, 9Kz 0 Z)(R)

teo (y(too 1),1,...,1).

Therefore, in the adelic symmetric space the chain yZjo,c) equals Zjp, ) X g~! where
g=1(g)) e GLQ(AZ) is any representative of the coset K{ @, ...,y €
Klf ®°, 9)\GLa(Z). We therefore have to calculate

90, = Mt @Y,
/Zd.kj. g teTl(;;peq) ® Z[o,oo]Xf’lg,}ylk g

where g, , = (g¢) € GLQ(Z,) with (g,, g,) = gax and all components outside p, g equal
to 1 and te T\(Z/p°q7Z) also stands for the ade¢lic matrix (#;) € T) (Z) with
t, =t (mod p°), t, =t (mod ¢q) and #, =1 for £ # p, q. We parametrize our cycle
Z[0,00] as follows

g: TI(R)O = Rio — Z[O,oo] cH

4
too = | &

1)
and obtain

d .\ dt

~0 0 1 -1 00
/ e = / e ((too,t g71) Dr_, o Dot a—)) =,
Zpo.c %71y T1(R) S teo'/ too

where Dy, denotes the derivative of the left translation by 7! and dt«, resp. 8/t~ is
a Haar measure resp. an invariant tangent vector field on (R, +). Taking into
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account that

ad 1 0
DL’O_QI ODO- <[00 @) = (0 0)

(cf. [Ha 2], ch. 6.2, p. 28, [Kai], ch. 3.1) we obtain

= ) 1 1 0\) dt
/ p= 2 D[ <(t°°” 81 <0 o)) i
Zdk (€T\(Z/peq) Ti(R) 0

We adélize /1 as follows. We set
T pegi={x € Ti(Z): x, = 1 (mod p°), x, = 1 (mod g)},

i.e. we have Tl(Z,)/TLPuq = (Z/p°qZ)*. Any te Tl(ﬁ) uniquely decomposes as
t = riok with r € T1(Q), 1o € TY(R) = R%,, k € T1(Z) and we define

L: TION\T(A) — O

by setting ;I(t) = Ak T, 1.peq)- Using adélic variables the above integral now reads

N . _ - (10
/ 0 =vol(1 +pZ, x 1+ qZy)™" / ) b, (r gk (0 0)) dt,
Zaka T (ONT1(A)

where dt = [], dt, with local measures

. s/ |oo if £=o0
!t =1 Haar measure on 7} with Jzp dte=1 if £ oo.

To proceed further we replace 0 =Y, 5 onGLy0) 7 Yy s €) by its defining sum

and split the summation over y according to the decomposition of GL,(Q) into dis-
joint T7(Q)-orbits

GLz(@)ZBz(Q)UBz(Q)<1 _1>UBz(Q)G 1>T1<@>.

The integrals corresponding to the first two T (QQ)-orbits vanish (cf. [Ha 2], ch. 6.2, p.
29, [Kai], ch. 3.1) and for the integral corresponding to the last orbit we obtain

/ ~0,
Z(/J(,) d
=vol(l + p°Z 1+ q7Z 1/ ;Lt Oe 1<<l ’t 1,<l ’)dt
( P Lp X q Q) A ( )lpp ,feO 1 1 gd,k 0 0

Since any 4: (Z/p°qZ)* — 7 can be written 1 = A" + 17, where 1*(x) = (A(x)+
A(—x))/2, we may assume that 1 is either even or odd. For any 7y € T1(4\s) we
set Ar(¢7):= A(tr, 1) and we also define Ao, = id if A is even and A, = sgn if 1 is odd.
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Zf defines a map on the quotient space

At Ti=o(QONTH(AY)/ T g = (Z/p*q L) — O,
which coincides with Ao ()~! on (Z/p°qZ)* and p) decomposes

W) = Ay (ty)ie(10)

for t = (7, t). Accordingly the adelic integral decomposes

~ 3 dts
/ 0, :f zoo(zw)e(l)((' 0>zoo,<' 0)) dioo
Zaki Ti(R) 11 0 0 ||

x vol(1 +pZ, x 1 + qu)_1 /

At W, ((‘ (>z g“)dr .
iy W\ )8 ) iy

We denote the first resp. the second factor by /o resp. ;. Concerning /o, we have (cf.
[Kai], ch. 3.2.3, or with minor changes in the case Ao, = sgn— [Ha 2], ch. 6.2, p. 31)

_ o if de=id,
* 2I(DHI(1)/T(2), if Joo = sgn.

In particular we are reduced to calculating /r and in doing so to odd A. Each odd Ais a
O-linear combination of the maps A.: (Z/p°qZ)* — 7, where ¢ € (Z/p°q7Z)* and A,
is given by
1, if ¢=¢ (mod pg),
A():=43 =1, if ¢=—e (mod pg),

0, else.

Therefore, from now on we may assume A = 4,. Using the unique decomposition
Af = Q%Ly x Z we obtain

3 1 0 _
p= X [ () )k a
reTy-o(Q) T1(Z)] Ty peq

Since Ef(rtf) = Aty) for re T1-0(Q), ty € Tl(z) we further obtain Iy =1 —1I_,
where

1 0\ (! _
ol e
reT1 ~o(Q)

We write r € Q7 in the form r = a/b with a, b € 7, (a, b) = 1. There are integers
X,y € 7 such that xb — ya = 1 and we obtain the global Iwasawa decomposition

()0 D=0 )
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The description of l//poy,f, which we obtained in the proof of Lemma 4.2, implies that

-1
Ie = Z |ab|_ wp" <<;C Z) (6 1) X g;,lk> (43)
a,be? -y, (a,b)=1

Recalling the definition of g,, we see that
(x y) ! o]
a b 1 Bak
_ y—elxpf —dle'x y—ex —dle'x
VT w—prela —lata) T \b—cla —d e la)T T

is contained in the support of 11125 s if and only if there is an xy € (Z/ g7)* such that
a=xp, b=¢"'xy (mod q), a=de, b=dp* (mod p°)

or
a=xp, b=¢'x) (mod q), a=—de, b= —dp* (mod p°). (4.4)

Thus we obtain (note that 7, is even)

1
Le=mygled) D o (X0) Y —
a,b

Xo€(Z/q2)*

where a,b € 7., (a,b) = 1 run over all pairs as in (4.4). For any x € (Z/p°q7)*,
y e (Z/p**q7)* we set

‘C_}k ’”Zab

where a,b €7 run over all pairs satisfying (a,b)=1 as well as a=
x (mod pq) b =y (mod p**g). In particular, since 502@ vanishes on even cycles
we see that |, 200, cbgp =/ £ (112 and recalling that Iy = I, — I_, we finally obtain

~0 -1
/ e = 1o 4(1d) Z 10,4(X0)(Sxg. ). (i1 xo.d) T S(xo,—di). (1 x0.~d))-
8a ki Z(0.00] x0&(Z/qZ)" /{E1}

Remark 4.4. The sum defining S, , « like the one defining w,?e does not converge
absolutely and to give sense to the definition of S, ), x as well as to justify our cal-
culations we apply the standard analytic continuation: using a (global) Iwasawa
decomposition g = bk we set l//p i5(8) =5 A(b)lpg [(g), where 1// = lpg fxp
and wpg,x(g, D) =3 B (ON\GLy(0) 2oi=1 2 l/Ip i.s(78) @i(D). The sum deﬁnmg ? e s CON-
verges absolutely for Re(s) > 0 and has a holomorphic continuation to the entire
complex plane satisfying w e = a)o Since the cycle Z,, is compact we deduce that
the mapping F: s+ [, @ z, , too is holomorphic and uniqueness of the analytic
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continuation then yields

~ 0 . ~ 0

e =1 . .= F(0).
Lw (Up sl—r>% 2, wp . ( )

To calculate F(0) we split the domain of integration into the boundary and the inner

component. Equatlon (4.2) implies the holomorphy of [, & 2, Opes in 5. Moreover,

.8
replacing ©’ by s in the above calculations we find that /. @°, . for

p( 8akiZ0.0c] PSS
Re(s) > 0 is given by the same formula as above with S, , 1 replaced by

x;ks: k Z(ab)H'Y

where a, b € Z are as in the definition of S, , x (compare Eq. (4.3)). We note that for
Re(s) > 0 this sum converges absolutely. Thus, assuming that S.,;, has a
holomorphic continuation to C we may define Sy, = Sy, 0 and with this defi-
nition 2aks Ziom cbge is then given by the above formula. It will follow from (4.5) below
that Sy, xs can be analytically continued to C.

The evaluation of a)ge on the chains g, ; . Zj0.o) and g;; ;. ,Z0.0 1s quite analogous,
one simply has to replace the source of 1 by (Z/p°Z)*. We state the results:

/ _noq(d)zn()q(a)
g

b.k.,zml

where a,be 7 run over all pairs satisfying (a,b) =1, a= ¢ 'd(mod p°),
b = dp* (mod p°), a € 7Z;; and g|b and

0 —1 Wo,q(b)
Wy =M d7) ) ——
/glf'mz[m] ! ! ;7: ab

where a, b € 7 run over all (a,b) =1 with a = ¢"'d (mod p°), b= dp* (mod p°),
be ZZ and ¢g|a. In particular these integrals are integral linear combinations of terms
of the form

1 1
4 fp—
x,y,k'_ﬁ ;%

where x € (Z/p°qZ)*, y € (Z/p**7Z)* and a,b € 7 run over all pairs, such that
(a,b) =1, a=x (mod p°q), b=y (mod p°¥). Again, this has to be understood
as the value at s = 0 of S’x s = p"” D ab 1/(ab)'*. We may summarize our results
so far: for any cycle [Z] € H, (Sz(K »°, q), 7)) we have

/[ ]wg‘, = O — linear combination of the terms Sy, x, S}, ; (mod O).
z

https://doi.org/10.1023/A:1026569231434 Published online by Cambridge University Press


https://doi.org/10.1023/A:1026569231434

EISENSTEIN COHOMOLOGY 295

4.4. THE COMPLETION AT p

We are left with determining the denominators of Sy , x and S, vk in the completions
of O. Since the case S, is analogous, we will only deal with Sy, r. We let
v :(Z/pcq7)* — C* be any even and y : (Z/p**q7)* — C* be any odd Dirichlet
character (not necessarily primitive) and we denote by L(y,s) and L(y,s) their
Dirichlet series (i.e. we omit the Euler factors at p and ¢). A small calculation proves

o 4 Ly DLW, D)
Z ™ CWO) Sk = TR

ye(Z/pe—kq2y*

where we regard Xx/fl as Dirichlet character modulo p°q. Since Sy py x = ab Sy x for
a, b € {£1}, this implies

1
()P~ q) p*

Loy, DL, 1)
L(1.2) ’

Siyk = (4.5)

ngb(x)w(y)

where y resp. i run over all even, resp. odd, characters as above. We note that by our
assumptions on the parity of y and y no poles occur in the above equation. The
definition of the L-function yields

1
Ly D=2 ), (e)Znﬂ/pq

ee(Z/peqZ)" [{*1 nez

and the partial fraction zcot(zmx) = ZneZ 1~ then yields

o F 8 p
Ly H=— 3 ‘”)22—2@ @ = -1).

P ez pprqry ity

Plugging in and taking into account the character relations for yy we obtain

1 n’
Sy =—— (X)) —————x
A XX:A( L)

_ 1
2 : C;"q + Cp"(q C;}p; + Cp il
X X(E) C( _ C—c * X~ 1 —eyx— -
r°q r°q

ce(Z/peq2)" [{£1} Pq T Speq

1

Let f, be the conductor of y. Using the functional equation

s 2e 242 1
= L(z,2) = =2G(p~qf, " Ly, —1),
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the divisibility G(y)|f, and the congruence

¢ —c o —€d
Z rat g Sat ey _1° i(f) (4.6)
e s €7 Q> '
5e(74/pe((/[7))* P°q P°q Cp"q - gp@q x P4
=

which holds for fixed ¢y € (Z/p°qZ)* (see Lemma 4.6. for a proof), we see that

1 Ole,yx—1
U oo et 4.7)
X,y Pre(g) zx:(mopr;q/ﬁ Ly~ ', -1

with integers o, -1, € Og(y. Since L(y, —1)” = L(”, —1) for all ¢ € Gal(Q/Q) the
above expressions imply that S,; € . We want to obtain a bound for
|L(x~, —1)|,. We denote by L, be the Kubota—Leopoldt p-adic L-function. L,
interpolates the values

Ly(*y, —1) = L(z, 1) € Q(x)

(note that we omit the local factor at p from the definition of L(y, s)).

LEMMA 4.5. For all even characters y of (7./p°qZ)*, the absolute values of the p-adic
L-function are bounded, i.e. there are constants My and My such that

M, < |Lp(Xa _1)|p < M.

This is independent of the imbedding i,.

Proof. Let u; € 1+ pZ, be a topological generator. We put yo = ylzpgzy - It is
known from Iwasawa theory that for any character x: (Z/pqZ)* — C; there are
power series f(x, T) € Z,[{,—11[[T]], such that

S xuud = 1), if o #id,
LG =1) =y £Gd, y(un)d — 1) i
—————, if gy =id.
2u)ui — 1

Using the Weierstrass Preparation Theorem we obtain a factorization

S, T) = aP(T)f(T),
where a, € Zp[{4-1], P(T) € Zy[{,1][T] is a distinguished polynomial and
fu(T) =315 g T" € Zp[L,MIITT". The algebraic integer x(u)u? — 1 is even con-
tained in the maximal ideal P of the completion of i,(Opw,)) (since
Q,(x(u1))/Q, is purely ramified this is independent of the embedding i,), which
implies that for any x not necessarily equal to ¥,

Selxu)ui = 1) = @y (mod P).

Hence, |f(x(un)u? — Dy
so that (|y(up)ui — 1],)°

= 1. We now assume that the conductor f; is large enough
&P > | , for all characters k. This only excludes finitely
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many characters y and since P(T) is distinguished we see that

Po(r(unsi — 1) = ()i — D™ (mod p),

ie. |Po(u(un)ud — D, = |G )2 — 1)deg(P"‘)|p (note that Z,[(,1]/Z, is unramified).
Thus, for all characters y having conductor so large that [p|, <
|7y )2 — 1|§eg(P “(< 1) holds for all characters k, we obtain

Pl, min lal, < 1Ly(z, =D, < Ipl," max|agl,.
This proves the lemma.
Since Sy, x € O the lemma together with Equation (4.7) immediately implies that
pzeMP Syyk €2y

for some constant M, € Z independent of the embedding i,.
We still have to prove (4.6). This will follow from

LEMMA 4.6. Let N € N and let N'|N be any divisor which is divisible by the same
prime numbers as N. Then for any 0, ¢y € (Z/NZ)* the following congruence is true:

C +é’ € 65+C—6(5 )
Z N N {5() E() =0 (mod N/N OQ@N,,)),

where ¢ € (Z/N7)* runs over all elements satisfying ¢ = ¢gmod N'.

Proof. Let py, ..., ps be the prime numbers dividing N. Let ®; € Z[T] denote the
dth cyclotomic polynomial. Since ®,. ., and T —1 have leading coefficient 1
and are coprime (®, is irreducible) there are polynomials &, P € Z[T] such that

(T -1DP(T)=1—hT)Dy,.. ., (T).
We set No = N/(p1 - ... ps). Substituting T+ T™ we obtain
(T = DPN(T) =1 = (T)D,,._, (T™),

where Py(T) = P(T™) - ¥, _y, T' € Z[T]. Since ®,...,(T™) = Ox(T) (cf. [L], p
280) we see that Py is the inverse of 7'— 1 modulo ®y. In particular, specializing
Ty, Cj’v we deduce that

CZC +1 £2(5 +l
CZ( CZeé

with a certain polynomial Qy = >, an ;T € Z|[T]. Since

Gal(Q(Uy)/QUn)) = {{y > Ly, €= 1mod N'}

= On(ly),
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we obtain

. e e —€o
ZCN-G—CN Oy + 0y :ZaN,iTr(Cﬁ\f)’

c <0 _ o
eEeOQ/N_CN élﬁv_CN( i

where Tr = Trg&j)) But for any, not necessarily primitive Nth root of unity { and

any divisor N'|N satisfying the assumptions we have Tr({) € N/N' Oqy,,), which
yields the claim of the lemma.

4.5. THE COMPLETION AT ¢ # p

Let ¢ be a prime number, which is different from p and let i;: Q — C, be any
embedding. We denote by |- |, the normalized absolute valuation on C, as well
as the valuation on Q induced by i,.
LEMMA 4.7. Let y run over all even characters of (7./p°qZ)*. There is a constant M,
which does not depend on the embedding iy, such that |L(y, —1)|, > M.

Proof. We will use the ¢-adic L-function

1
L N ]—I’l7 — 711 ,
e(ro™ ™", n) YT (. 1)
to show that £ fL(y, —1) for almost all y #1 (w denotes the ¢-adic Teichmiiller
character). Specializing n=—1 we see that ¢|L(y,—1) is equivalent to

£|Ly(yw?*, —1). Using [Wa], Corollary 5.13 we further see that this is equivalent
to £|Ly(yw?, 0). Since ym(f) is either equal to 0 or a (p — 1)p/s~!th root of unity (this
is only possible if £ = g) we see that 1 — yw(£) is not divisible by £ for f, large enough
(use [Wa], Lemma 1.4, Proposition 2.8). Hence ¢|L(y®, 0). But Theorem 4.1 in [Si]
states that L(y, 0) is a ¢-adic unit for all but finitely many characters y, which proves
the lemma.

Using the lemma, Equation (4.7) immediately implies that M, Sy, x € Z, for some
constant M, € 7. Recalling that w, and @). have the same denominators, we have
proved the following result on the denominators of our Eisenstein classes.

THEOREM 3. For any prime number € there is a constant My, € 7 such that for all
e = 2 and any prime ideal L C Ogy, ) lying above £ we have

* My wpe € H'(S2(K), O0gy).)ints

where x = p* if £ = p and * = 1 else.

5. Cohomology and Integrality
5.1. THE p-ADIC GROWTH OF THE DISTRIBUTION

In this last section we finally determine, in the case of trivial coefficients, the bounds
for the denominators of the distribution p,/Q(n) = ,u:’L 1/€(m), whose p-adic Mellin
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transform interpolates the critical values at s = 0. We start from the formula given
in Lemma 3.2, which we evaluate as follows. As in Lemma 3.2 we set
u=u(l,¢0;p°, ce Z;. The cohomology class w,. is invariant under the compact
open subgroup

Kl(@2,p9):= {(‘C’ Z) € GLy(Z,): a=1 (mod p), c=0, d =1 (mod pe)}

and the form i*rm A we therefore is invariant under the subgroup K(p¢) < K| (2, p°),
which consists of all elements k satisfying

u_1<k 1)” el.

LEMMA 5.1. The subgroup K(p¢) does not depend on € € Z; and has volume
ARV RS VI
Proof. A straightforward calculation proves that K(p°) consists of all elements

k=( ) satisfying c=0,d=1, b=(d—-1)/p 'modp’, a=1+c¢/
p¢"'mod p~!. In particular, using (GLa2(Z,) : K1(2, p%)) = p**(1 — p~2) we deduce

(GLx(Zy) : K(p) = p~*(p — D(* = Dp*,

which proves the lemma.

We denote by O the ring of integers of E.(17, 1, {44—1))- Combining Lemmas 3.2
and 5.1 we obtain

Hal€ +p°Zp) _ r*
Q(m) P —=Dp*-1

- 1 ok
‘p* —— T O A Ope. 5.1)
o [ e o

The right translation i*r} is defined over O and Theorem 3 then yields the final result
on the denominators of p,.

THEOREM 4. For any ¢ € Z; and any embedding iy, : Q> C, the following holds:

Ur(€+p°Zy)

SM vl e’
Q(n) p|/ |pp

P

where the constant M), does not depend on the embedding iy. If € is any prime number
different from p and i,: Q— C, is any embedding, then ‘,un(e + p° p)/Q(n)’Z< M
is bounded by some constant M = M, only depending on £.

Since J,1 and u(1) are Z-valued the same statement is true for the distribution
Og-1 % u(1) * u, /Q(m) (cf. Section 2.2). We note that the value of ||, depends on i,.
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5.2. h-ADMISSIBLE MEASURES

We want to give the application of Theorem 4 to the construction of p-adic analytic
L-functions. We will use the p-adic integration theory of [V]. Let " be the space
of functions f: Z; — G, which are locally given by polynomials of degree at most
h. An h-admissible measure is a C,-linear functional ji: C" — C,, which satisfies
the growth condition

sup IEL(Chd+p"Zp . (x — a)i) — O(|p6 |1i7—/1)
ae?, P

forall0 <i < hande — oo (cf. [V], p. 217) (chy denotes the characteristic function
of the set X). We let F//Q, be any local field. We denote by /\/l’,’r the vector space
of all F-valued, h-admissible measures. We also denote by Dﬂ’,- the space of all
F-valued distributions satisfying the growth condition

sup |u(a + p*Zp)l, = o(Ip°;").

7
ae’,

EXAMPLE 5.2. Let /* € N be large enough so that p"'y~! € O. Theorem 4 then
shows that u, /Q(n) € DZ*(E%M,@(H))). In particular, the same is true for
Ogt x p(1) * wy/ Um).

For i e /\/l},’r we define a distribution res(it) through the equation

VOlreS(fl)(a +p€Zl’) = ﬁ(Ch(H_peZﬂ)‘

This induces an F-linear map
res : M% — D

LEMMA 5.3. The map res: MI} — D’} is surjective, i.e. any distribution u € Df’p can
be lifted to an h-admissible measure p.

Proof. Let ue D! Multiplying u by some scalar we may assume that
wa+p°7,) € p~© V" Op. We want to construct an element in M”, which maps
to u. Since C" is generated over F by the functions chyypez, -x!, where
ac Z;, eec Nand i =0,...,A it is sufficient in order to define an A-admissible
measure to define its values on these functions. We choose a natural number

' < hand we first define an F-linear functional i : C" — F satisfying the properties

(D ﬁ(Cha-&-p"Zp) = VOI#(LZ +peZp):

(2) ileharpz, -3 = TE (=1 ($)dk filehgs ez, - ) (mod p~DH-DOp),

We will construct it using induction on k£ and in view of 1. we may start with
0 < k < hand assume that the values ji(chy ez, - x), i < khave already been defined.
We first define a map i on the F-span of the functions chy 7, - XK ae Z;, e € N, by
the equation in 2. This means that fi(chyy, - x*) is defined modulo p=¢=D# =P Oy,
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We want to verify that p is well defined, i.e. that it fulfills the distribution relation

3 ety ez, - X = lehyipez, - X (mod p= RO, (52)
uel/pZ

Using the binomial formula and the identity

())=G)C)

we find after a little calculation

k K sk Ak — .
e S ED SN W 1200 Bl STl Gl Ta
J=0

1
~ ; —ell—k
X M(Cha+up"+17"“Zp -x') (mod p « )OF)’

where Y " means, that we omit the index (i, ) = (k, 0) from the summation. The
induction hypothesis on the values fi(ch,,,. +pH17, -x"), i <k implies that for
Jj # 0 the inner sum is congruent 0 modulo p—¢*~*+)_ Therefore we obtain

k=1
_ ik ili- ; e —
flehgpepeniz, - x) EZ 0(—1)k (l')ak (e ey periz7, - x') (mod p WR0op).
=

Summing this equation over u € 7Z/pZ and taking into account that by our
induction hypothesis

Y Aehypypeppenz, - X) = fehgyyz, - X)
ueZ/pZ
fori < k we see that (5.2) is true. It is easy to verify that there is an F-linear functional
fi from the span of chyyz, - X, ¢ € Zy, e € N to F, which modulo p =,
coincides with p. This finishes the proof of the existence of an F-linear functional
it satisfying 1. and 2. We show that ji is even s-admissible: again, using the binomial
formula we find

k

K\ L .
k —i~
i(ehgypz, - (x—a)) = ( i)a] ‘Ti(ehypez, - X')

i=0

and 2 then immediately implies that
w(chgipez, - (x — a)) € p VRO,

Thus fi is an ~-admissible measure and since we trivially have res(fi) = p the lemma
is proved.

We note that res is not injective and the s-admissible distributions restricting to
some given distribution u under res may be seen as p-adic deformations of u.
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We are now able to apply the p-adic integration theory from [V] to construct p-adic
analytic functions, which interpolate the automorphic L-function. We note in
advance that these p-adic L-functions satisfy some logarithmic growth condition.

We let i, be a lift of the distribution 5,1 * u(1) * 11, /Q(n) € D{;*(;(ZM,LM)). We set

X,:= Homeon(Z}, C,)

and we define the function L,: X, — C, by

Lytry)i= [ a0 dii
z,
the integral being defined as in Section 1 of [V]. Theorem 2.3 in [V] then shows that L,
is analytic and its growth is at most o(log" *2(-)) for any A* as in Example 5.2. We
summarize our results (cf. Corollary 1).

COROLLARY 3. There is a p-adic analytic function L,: X, — C, such that for all
characters y: Q"\A* — C* of conductor a p-power and infinity component
Yoo = 1d we have

L(n ® yn, 0)

L) = &7 Glyiy) == P

where 6 is a fixed root of unity. For all characters y with conductor a p-power and
infinity component y., = sgn the function L, vanishes identically. Moreover L,
has no poles and equals 0(10g11*+2(.))_

Of course, L,(-) is given by some power series f* € Quot(i,(O))[[T]], but is not
uniquely determined.

Remark 5.4. The p-ordinary case. Let © be a cuspidal representation of GL3(A)
with unramified p-component 7, = Ind(uy, w,, u3). We call n p-ordinary with respect
to iy, if [;(p)], = p'~2. In this case the complex number y defined in Equation (2.4) isa
p-adic unit and we immediately obtain

:un(6 +peZp)

< M,p°.
Q(r) 2P

p

In different words, the growth of the distribution p,/Q(r) equals at most the growth
of the Haar distribution iy, on Z,. Using the Lefschetz—Poincaré isomorphism

P H (Fy(K(p°)), IF2(K(p°)), Z) — H\(F2(K(p°)), Z)
we may rewrite (5.1) as

:an(e +p€Z[J)

om - local unit - p° / Wpe,

Q) ' Pi*rim)
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where u = u(1, ¢, 0; p¢). Thus, boundedness of u,/Q(n) is equivalent to

1 —
Wy € — 1 (O)
\/Q(n)lp(i*r’;w) i pe ’

for all c € Z, and e > 2.

On the other hand using the expressions of Section 4 for the integral /. Zare Ope WE
calculated for small e (and p) the integral of w, over the absolute cycles
Za.a vk (cf. Example 4.2). The results seem to indicate that for each level e there
is a cycle such that

1
/ wpe = local unit - —— (mod O).
deﬂu/,k p
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