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Abstract. Let p be a cuspidal automorphic representation of GL3�AQ�, unrami¢ed at p and of
cohomological type at in¢nity.We construct p-adic L-functions, which interpolate the critical
values of L�p; s� and which satisfy a logarithmic growth condition.We obtain these functions
as p-adicMellin transforms of certain distributions mp onZ

�
p having values in some ¢xed number

¢eld and which are of moderate growth. In the p-ordinary case we obtain the bound
jmp�U�jp W jmHaar�U�jp for open subsets U WZ�p, where mHaar denotes the invariant distribution
on Z�p.
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Introduction

LetA denote the ring of ade© les of the ¢eld of rational numbers and let p be a cuspidal
automorphic representation of GL3�A�. We want to study the p-adic analytic
properties of the critical values of the automorphic L-function L�p; s� attached
to p. This depends on a p-adic variation of L�p; s� as follows. Let l 2N be any critical
integer for p. The corresponding critical integer on the left-hand side of the func-
tional equation is 1ÿ l and we shall concentrate on the critical integers on this side.
We ¢x a prime number p > 2 as well as a character Z : Q�nA� ! C� of ¢nite order
and we de¢ne Xp to be the group of all continuous, Cp-valued characters on Z�p.
Xp has the structure of a p-adic Lie group and it contains all characters
w : Q�nA� ! C� of conductor fw � pe a p-power, which are of ¢nite order. We then
want to study the relations among the twisted values L�p
 Zw; 1ÿ l� as w varies
over all characters with conductor a p-power and in¢nity component w1 � id.
In particular we may ask whether the function w 7!L�p
 Zw; 1ÿ l�, after dividing
by some period O�p� 2 C�, can be continued to a p-adic analytic function
Lp : Xp! Cp and which are the properties of this analytic extension.

The existence of (bounded) p-adic L-functions has been proved for automorphic
representations of GL1 and GL2 (cf., for example, [M-SwD]). In the higher rank
case examples of p-adic L-functions have been obtained only under very special
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assumptions on the representation p: they are known to exist in the case of the sym-
metric square L-function on GL2, which using the Jacquet^Gelbart lift provides
examples of p-adic L-functions for GL3 (cf. [Sch 1]) and for automorphic
representations on GL2n having an H-model (cf. [A-G]).

Our aim is to examine the group GL3, the only assumptions that we will make on
the representation p being that p appears in the cohomology of the symmetric space
of GL3 with trivial coef¢cients and that the p-component of p is unrami¢ed. In par-
ticular, unlike in the case of the symmetric square L-function on GL2, it is not poss-
ible to apply the q-expansion principle. Under these assumptions we prove
the existence of p-adic analytic functions, which interpolate the values
L�p
 Zw; 1ÿ l� and which satisfy a logarithmic growth condition.

The construction of these p-adic L-functions is based on a representation of the
twisted values as an integral of w against a certain distribution. For the moment
we shall assume that p has nonvanishing cohomology with coef¢cients in some ¢nite
dimensional representation of GL3�C� and we let l 2N run through the critical
integers of p
 Z (cf. Remark 1.6). Only using the fact that pp is spherical we con-
struct a family of distributions mp;l � mZp;l onZ�p such that for all ide© le class characters
w with conductor a p-power and in¢nity component w1 � idZ

Z�p

wpZ
2
p dm

Z
p;l � some explicit factors� L�p
 Zw; 1ÿ l�;

whereas this integral vanishes if w1 � sgn (cf. Corollary 1 in Section 2.2 for a precise
statement). We then prove that the occurrence of p in cohomology implies:

. There is an O�p� 2 C� such that mp;l�U�=O�p� has values in a ¢nite extension
E=Q for all critical integers l and all open subsets U � Z�p.

Let us now assume that p embeds into cohomology with trivial coef¢cients. In this
case the only critical integers are s � 1; 0 and we further obtain for mp � mp;1 (cf. the
Notations for the de¢nition of j � jp):

. There is a number h 2N such that jmp�U�=O�p�jp W jmHaar�U�jhp for all open
subsets U WZ�p, where mHaar denotes the invariant distribution on Z�p.

. For all prime numbers ` 6� p the absolute values jmp�U�=O�p�jl are bounded for
any l extending the `-adic valuation on E.

(cf. Theorems 2 and 4 in Sections 3.2 and 5.1). If, in addition, we assume p to be
p-ordinary with respect to ip we obtain the bound

. jmp�U�=O�p�jp W jmHaar�U�jp for all open subsets U WZ�p.

(cf. Remark 5.4). In particular, we can not deduce boundedness of mp.
Using the integration theory developed in [V], we then obtain the p-adic

L-functions as the Mellin transform of mp (cf. Corollary 3 in Section 5.2).
Our construction is based on a formula which gives us control over the behaviour

of the values L�p
 Zw; 1ÿ l� as w varies. This formula is proved in Section 1
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and it expresses the twisted values as certain linear combinations of period integrals,
which involve a ¢xed cusp form belonging to p but also an Eisenstein series belonging
to an induced representation Ind�1; w�. In Section 2 we construct the distribution mp;l
and using the formula from Section 1 calculate its integral against characters. In
Section 3 we use the integrality structure on the cohomology to deduce the
algebraicity of the values of mp;l=O�p�. In Section 5 we ¢nally prove in the case
of constant coef¢cients the bounds on the growth of mp and explain how to apply
the integration theory of [V] to construct p-adic L-functions. The main dif¢culty
here is to control the behaviour of the Eisenstein cohomology classes constructed
from the representations Ind�1; w�. In particular Section 4 will be entirely devoted
to a calculation of the denominators of these classes in the non-torsion part of
the (integral) cohomology using the theory developed in [Ha 2]. The restriction
to constant coef¢cients is mainly made to simplify the calculations in Section 4 (but
cf. also Remark 3.5).

We want to remark that the cohomological interpretation of the values of the
L-function obtained in this work seems to indicate that the boundedness of the dis-
tribution mp is equivalent to a certain relation between the restriction of cuspidal
cohomology classes from GL3 to GL2 and Eisenstein cohomology classes on
GL2 (cf. Remark 5.4).

We ¢nally want to mention that the (purely analytic) construction of the
distributions mp;l described in this work generalizes to the groups GLn over any
number ¢eld.

NOTATIONS

We denote by Kn;1 the compact subgroup SOn�R� < GLn�R� and by Z0
n�R� the con-

nected component of 1 of the center Zn�R� of GLn�R�. gln resp. son is the Lie algebra
of GLn�R� resp. SOn�R�. We denote by id the trivial character of R�, sgn is the
signum homomorphism sgn�x� :� x=jxj; x 2 R� and we set a�x� :� jxj for x 2 A�.
We shall use the following level groups: K�n; pe�WGLn�Zp� is the subgroup of
matrices which are congruent to 1 mod pe and K0�n; pe� resp. K1�n; pe� denotes
the subgroup of matrices �kij� 2 GLn�Zp� satisfying knj � 0 �pe�; j � 1; . . . nÿ 1 resp.
knj � 0 �pe�; j � 1; . . . nÿ 1 and knn � 1 �pe�.

We also ¢x an additive character t � 
`t` : QnA! C� of conductor Z, i.e.Z` is
the largest ideal contained in the kernel of t` for ` 6� 1.

We denote by dn;p resp. dn;A the modulus of Bn�Qp� resp. Bn�A�, where Bn is the
group of upper triangular matrices. Unless stated otherwise, any induction will
be unitary.

Finally C` is the completion of an algebraic closure ofQ` and j � j` is the absolute
value on C` normalized by j`j` � `ÿ1.

We let ip : �Q,!Cp be an embedding and we also denote by j � jp the absolute value
on �Q induced by ip.
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1. A Calculation of the Twisted Values of L-Functions

Let p be a unitary cuspidal automorphic representation of GL3�A�. We ¢x a rational
prime p > 2 and assume that the p-component pp is unrami¢ed and that there is an
l0 2 2N such that the component at in¢nity p1 is isomorphic to the induced rep-
resentation Ind�Dl0 ; id�. Here, byDl0 we understand the discrete series representation
of GL2�R� of lowest weight l0 � 1 and the representation is induced from the
parabolic subgroup PWGL3�R� of type �2; 1�. Because pp is unrami¢ed we have
pp � Ind�m1; m2; m3� with unrami¢ed characters mi : Q�p ! C�; i � 1; 2; 3.

We let w : Q�nA� ! C� be an ide© le class character with conductor f � pe a power
of p and in¢nity component w1 � id. We choose a (auxiliary) prime q different from
p such that pq is unrami¢ed and we make a choice of a pair of ide© le class characters
Z; Z0 : Q�nA� ! C�, which are of ¢nite order and satisfy the conditions

� fZ0 � p; fZ � pq �i.e. ZqjZ�q 6� 1�;
� Z1 � Z01;
� ZpjZ�p � Z0pjZ�p :

This is equivalent to a choice of primitive Dirichlet characters ~Z0 : �Z=pZ�� ! C�

and ~Z : �Z=pqZ�� ! C� such that ~Z�ÿ1� � ~Z0�ÿ1� and ~Zj�Z=pZ�� � ~Z0j�Z=pZ�� . We
set [ � 0 if Z1 � id and [ � 1 if Z1 � sgn and we put Z0 :� ZZ0ÿ1. We let l 2N
be any integer satisfying 0 < lW l0=2 and l � [modulo 2 and for any such l we de¢ne
the induced representation

P�w� :� IndB2�A�"GL2�A��Z0alÿ1=2; Zwaÿ�lÿ1=2��:
For l > 2 the intertwining operator

Eis : P�w� ! A�GL2�Q�nGL2�A��
c 7!

X
g2B2�Q�nGL2�Q� c�gg�

is then de¢ned by an absolutely convergent series. In the case l � 2 we note that the
representation P�w� always rami¢es at q and Eis is de¢ned using an appropriate
analytic continuation. We denote by Aw the image of P�w� under Eis. Similarly
we de¢ne V �p� to be the subspace of L2

0�GL3�Q�nGL3�A��, on which the represen-
tation p can be realized.

We want to choose a pair of automorphic forms �f;Ew� on GL3 �GL2 belonging
to the representation p�P�w� and such that its Mellin transform computes the
values L�p
 wZ; 1ÿ l�. A Mellin transform for forms on GL3 �GL2 is given by
the zeta integral of the Rankin^Selberg^Convolution, which for any two forms
f 2 V �p�; E 2 Aw reads

I�f;E; s� �
Z

GL2�Q�nGL2�A�
f

g
1

� �� �
E�g� j det gjsÿ1=2 dg
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(cf. [J-S 1], ch. 3). The integral converges because f is rapidly decreasing and E is
slowly increasing (cf. [Pi-Sh], Theorem 3).

We ¢rst deal with Ew and choose a section

c0
w � 
`c0

w;` 2 Ind�alÿ1=2; Z0waÿ�lÿ1=2�� � Z0ÿ1 
P�w�

as follows.
For any ¢nite place ` 6� p; q the representation Ind�alÿ1=2` ; Z0;`w`a

ÿ�lÿ1=2�
` � is

unrami¢ed and we let c0
w;` be the spherical function normalized by c0

w;`�1� � 1.
At the place q we let c0

w;q be the essential vector in Ind�alÿ1=2q ; Z0;qwqa
ÿ�lÿ1=2�
q �. Since

the restrictions of Zq and Z0q to Z�q are different this representation has conductor q
and using [Ca], p. 306 we ¢nd that c0

w;q is supported on B2�Qq�K0�2; q�. We therefore
may normalize c0

w;q by setting c0
w;q�1� � 1.

At the place p we distinguish: If w 6� 1 we let c0
w;p be the essential vector in

Ind�alÿ1=2p ; Z0;pwpa
ÿ�lÿ1=2�
p �. This representation has conductor pe; eX 1 and using

[Ca], p. 306 we ¢nd that c0
w;p is supported on B2�Qp�K0�2; pe�. Hence, we may

normalize c0
w;p�1� � 1 and obtain

c0
w;p�bk� � wpZ0;p�b2�jb1=b2jlpwp�d�

for

b � b1 u
b2

� �
2 B2�Qp�; k � a b

c d

� �
2 K0�2; pe�:

If w � 1 we let c0
w;p be the unique section in Ind�alÿ1=2p ; Z0;pa

ÿ�lÿ1=2�
p �, which is

supported on B2�Qp�K0�2; p� and which is given by c0
w;p�g� � Z0;p�b2�jb1=b2jlp for

elements g � bk in the support.
At in¢nity we know that there is a proper, irreducible submoduleP0

1 < Ind�alÿ1=21 ;

aÿ�lÿ1=2�1 �, which is isomorphic to D2lÿ1. We let c0
w;1 � c0

1 be an arbitrary but ¢xed
section in P0

1 i.e. c0
w;1 does not depend on w.

We set cw :� Z0 
 c0
w and Ew :� Eis�cw�.

Next, to de¢ne f, we choose a Whittaker function w � 
`w` 2W �p; t� as follows.
For any ¢nite place ` 6� p; q we choose w` to be the essential vector in W �p`; t`�.
For ` � qwe let wq 2W �pq; tq� be aWhittaker function such that the restriction of

wq to GL2�Qq� via the embedding g 7! g
1

ÿ �
is supported on N2�Qq� 1

1 1

ÿ �
K0�2; q� and

for k � a b
c d

ÿ � 2 K0�2; q� we have

wq
1
1 1

� �
k

� �
� Zq�d�ÿ1:

It is an immediate consequence of Theorem F in [Gel-Kaj] that such a Whittaker
function exists.

For ` � p we proceed as follows. We denote by IWGL3�Zp� the Iwahori
subgroup consisting of elements k 2 GL3�Zp�, which modulo p are congruent to
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upper triangular matrices. We let c1
p 2 Ind�m1; m2; m3� be the I -invariant vector

de¢ned by

c1
p�g� :� m�b�d1=23;p �b�; for g � bw0b; b 2 B3�Qp�; b 2 I

0; else.

�

Here, by w0 we understand the Weyl group element

w0 �
1

1
1

0@ 1A

and m is given by

m�b� :�
Y
i

mi�bi� for b �
b1 �

b2
b3

0@ 1A 2 B3�Qp�:

We then de¢ne wp 2W �pp; tp� as the image of c1
p under the isomorphism

Ind�m1; m2; m3� ! W �pp; tp�
c 7! w�g� :� RN3�Qp� c�w0ng��tp�n� dn

(cf. [J-S 2], (3.2) Proposition).
At in¢nity, again, let w1 be an arbitrary but ¢xed Whittaker function in

W �p1; t1�.
We set w � 
`w` and let f 2 V �p� be the cusp form belonging to the global

Whittaker function w.
We will use the following convention: we identify GL3�Qp� with its image in

GL3�A� under the map given by embedding into the p-component. Thus by
u 2 GL3�Qp� we also understand the adelic matrix 1; . . . ; 1; u; 1; . . . ; 1� �, where
all entries away from p are equal to 1. Also, we write for short XA :�
GL2�Q�nGL2�A�, G�wp� :�

P
i2�Z=fZ�� wp�i�tp�i=f � denotes the local Gauss sum, ~w

the primitive Dirichlet character attached to the ide© le class character w and we write
LS�p; s� to indicate that we omit the local factors at all places ` 2 S from the Euler
product.

THEOREM 1. Let w : Q�nA� ! C� be a character with conductor f � pe where
eX 2 and in¢nity component w1 � id. Then, for all l 2N such that 0 < lW l0=2
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and l � [ �mod 2� we have

P�1=2� � L�p
 wZ; 1ÿ l�

� A �
X

i2�Zp=peÿ1Zp �� ; j2�Zp=peZp��
y2Zp=peZp

wpZ
2
p�j�Zp�i�

Z
XA

f
g

1

� � 1 ip=f y=f

1 j=f

1

0BBB@
1CCCA

26664
37775Ew�g� dg:

In the above formula P�T � � Pw1;c1�T � 2 C�T � is a polynomial, which only depends
on the choice of the in¢nity components c1 and w1 and

A � A0lp3lÿ[zÿef l�1 G�wp�ÿ1G�wpZ2p�ÿ1G�~wÿ1 ~Z0
ÿ1�L�~w ~Z0; 1ÿ 2l�Lfqg�p
 Z0; l�ÿ1;

where z � m3Z
0
pZ
ÿ1
0;p�p� and the algebraic number A0l 2 �Q� is independent of w.

Moreover, the coset A0l �Q� is even independent of l.
The Proof of Theorem 1 will occupy the rest of this section. First we de¢ne the

Whittaker function

vw�g� :� L�~wÿ1 ~Z0
ÿ1; 2l�

Z
N2�A�

Ew�ng�t�n� dn:

Here, L�~w ~Z0; s� denotes the Dirichlet L-Function. Of course, L�~wÿ1 ~Z0
ÿ1; 2l�ÿ1 vw is

the Whittaker function of Ew. vw decomposes into an in¢nite product

vw � 
 6̀�1vw;` 
 v1;

and using [Ge-Sha], p. 80/81 we know that vw;`�1� � 1 for ` 6� p; q. For any two
Whittaker functions w` 2W �p`; t`� and v` 2W �P`�w�; �t`� we denote by

I�w`; v`; s� :�
Z
N2�Q`�nGL2�Q`�

w`
g

1

� �� �
v`�g�jdet gjsÿ1=2` dg

the local zeta integral of the Rankin^Selberg convolution. The starting point of the
proof of Theorem 1 is the decomposition of the global zeta integral into a product
of local integrals

I�f;E; s� �
Y
`

I�w`; v`; s�;

where w � 
`w` resp. v � 
`v` is the Whittaker function of f resp. E. The proof of
this equality is the same as the one of (3.3) Proposition in [J-S 1], even if E is
not cuspidal. We write for short

u � u�i; j; y; f � :�
1 ip=f y=f

1 j=f
1

0@ 1A 2 N3�Qp�

and denote by h � f�g� :� f�gh� the right translate of f by h 2 GL3�Af �. Then in our
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case this decomposition takes the formX
i;j;y

Zp�i�wpZ2p�j� I�u � f;Ew; s�

� L�~wÿ1 ~Z0
ÿ1; 2l�ÿ1

Y
` 6�p

I�w`; vw;`; s� �
X
i;j;y

Zp�i�wpZ2p�j� I�u � wp; vw;p; s�:

To prove the Theorem we therefore have to examine the local integrals appearing
on the right-hand side.

At all ¢nite places ` 6� p; q theWhittaker function w` is the essential vector und vw;`
is the unique GL2�Z`�-invariant vector satisfying vw;`�1� � 1. As an immediate conse-
quence of (4.1) Thëore© me in [J-P-S 2] we get

I�w`; vw;`; s� � L�p` 
 Z0`; s� l ÿ 1=2�L�p` 
 w`Z`; sÿ �l ÿ 1=2��:

Next we look to in¢nity. Using the notation of [Kn], ch. 3, the representations of
the Weil group WR of R attached to p1 and p1 
 sgn read

pw1 � �l0; 0� � ��; 0�; �sgn
 p1�w � �l0; 0� � �ÿ; 0�:

In particular, we deduce from [Kn], (3.6)

L�p1; s� � 2�2p�ÿ�s�l0=2�pÿs=2G�s� l0=2�G�s=2�
and

L�p1 
 sgn; s� � 2�2p�ÿ�s�l0=2�pÿ�s�1�=2G�s� l0=2�G��s� 1�=2�:

This implies that L�p1 
 Z1; s� does not have a pole at s � l and at s � 1ÿ l for all
l satisfying 0 < lW l0=2 and which are congruent to [ modulo 2. Using [J-P-S 3] we
deduce that there is a polynomial P�T � � Pw1;c1�T � 2 C�T � such that

I�w1; v1; s� � P�s�L�p1 � Z1 
P0
1; s�:

We want to determine the central value of the quotient of local factors

L1�s� � L�p1 � Z1 
P0
1; s�

L�p1 
 Z1; s� l ÿ 1=2�L�p1 
 Z1; sÿ �l ÿ 1=2�� :

LEMMA 1.1. We have

L1�1=2� � 21ÿ2lpÿl G�l�2 G�l=2�ÿ2; if Z1 � id;
�ÿ1��lÿ1�=222ÿ2lp1ÿl G�l�2 G��l � 1�=2�ÿ2; if Z1 � sgn:

�
Proof. Using the formula for the decomposition of the tensor product of two

representations of the Weil group

�l; t� 
 �m; r� � �l �m; t� r� � �l ÿm; t� r� �l > m�
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and [Kn], ch. 3.6, we see that

L�Dl0 
D2lÿ1; s� � L�Dl0 ; s� l ÿ 1=2�L�Dl0 ; sÿ �l ÿ 1=2��:

Since the local factors are muliplicative in direct sums and p1 
 Z1 � Ind�Dl0 ; Z1�
as well as P0

1 
 Z1 � D2lÿ1 we deduce that

L1�s� � L�D2lÿ1; s�
L�Z1; s� l ÿ 1=2�L�Z1; sÿ �l ÿ 1=2�� :

We ¢rst assume Z1 � id, i.e. l � 0 �mod 2�. Specializing s 7! 1=2 and using the for-
mulas in [Kn], ch. 3.6, we obtain

L1�1=2� � 21ÿlp1=2ÿlG�l�G�l=2�ÿ1G�1=2ÿ l=2�ÿ1:

Applying the duplication formula of the G-function to G�ÿl=2� 1=2� this becomes

L1�1=2� � 2ÿ2lpÿl
G�l�G�ÿl=2�
G�l=2�G�ÿl� :

Using the rule

G�ÿz� � ÿG�z�ÿ1 p

z sin�pz�

as well as sin�pl�= sin�pl=2� � 1, we see that L1�1=2� equals the expression in the
Lemma. The case Z1 � sgn being analogous this proves the Lemma.

Using the lemma we ¢nally obtain at the Archimedean place

I�w1; v1; s� � AP�s�p[ÿl L�p1 
 Z1; s� l ÿ 1=2�L�p1 
 Z1; sÿ �l ÿ 1=2��;

where A 2 Q� does not depend on w.
At the place q we know since pq is unrami¢ed and Zqwq is rami¢ed that the local

factor does not depend on w

L�pq 
 Zqwq; s� � 1:

On the other hand the behaviour of the restriction of wq to GL2�Qq� implies that
resGL2�Qq�wq�g�vw;q�g� does not depend on g and Lemma 1.4 b.) (see below) then
proves

I�wq; vw;q; s� � vol�K0�2; q��qÿ1:

At the place ` � p again we know since Z0p and wpZp are rami¢ed that

L�pp 
 Z0p; s� � L�pp 
 Zpwp; s� � 1:
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Collecting our results so far we arrive at the equation

X
i;j;y

Zp�i�wpZ2p�j� I�u � f;Ew; s�

� Lfqg�p
 Z0; s� l ÿ 1=2�L�p
 wZ; sÿ �l ÿ 1=2���
� L�~wÿ1 ~Z0

ÿ1; 2l�ÿ1qÿ1vol�K0�2; q��Ap[ÿlP�s��
�
X
i;j;y

Zp�i�wpZ2p�j� I�u � wp; vw;p; s�

and it remains to calculate the local integral at p. We denote by wwp jGL2
the restriction

of wwp to GL2�Qp� via the embedding g 7! g
1

ÿ �
.

PROPOSITION 1.2. Let w 2W �pp; tp� be invariant on the right under the Iwahori
subgroup IWGL3�Zp�. For every character wp of Q

�
p of conductor f � pe we de¢ne

the Whittaker function

wwp�g� :�
X

i2�Zp=peÿ1Zp��; j2�Zp=peZp ��
y2Zp=peZp

Zp�i�wpZ2p�j�w g
1 ip=f y=f

1 j=f
1

0@ 1A24 35:

For eX 2 the restricted function wwp jGL2
satis¢es the properties:

. The support of wwp jGL2
is contained in N2�Qp� peÿ2

1

� �
K0�2; f �.

. For k � a b
c d

ÿ � 2 K0�2; f � we have

wwp jGL2

peÿ2

1

 !
k

" #

� fpeÿ2G�wpZ2p�G�Zp�w
peÿ2

1
1

0B@
1CA

264
375Zÿ1p �ad�wÿ1p �d�:

In particular wwp jGL2
is completely determined by these properties.

Proof.For any k � a b
c d

� �
2 K0�2; f � we have the Iwasawa decomposition

a b
c d

1

0@ 1A 1 ip=f y=f
1 j=f

1

0@ 1A � 1
api

cpi � fd
ay
f
�1ÿ cpi

cpi � fd
� � bj

f

1 dj=f

1

0BBB@
1CCCA � ~k;
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where

~k �
ad

cpi=f � d
b 0

c cip=f � d cy=f
0 0 1

0B@
1CA 2 I :

Together with the right I -invariance of wwp this yields

wwp g

a b

c d

1

0B@
1CA

264
375

�
X
i;j;y

Zp�i�wpZ2p�j�w g
1

pi
f

adÿ1

1� cpidÿ1=f
ay
f

1ÿ cpi
fd � cpi

� �
� bj

f
1 dj=f

1

0BBB@
1CCCA

26664
37775:

Changing the summation variables according to the bijections

i 7! i adÿ1ÿÿ
i�cp=fd��ÿ1, y 7! y a�1ÿ �cpi=fd � cpi��� �ÿ1 and j 7! dÿ1j

we obtain

wwp g

a b

c d

1

0B@
1CA

264
375

�
X
i;j;y

Zp i
�
adÿ1 ÿ i

cp
fd

�ÿ1� �
wpZ

2
p�dÿ1j�w g

1 ip=f y=f � bj=f

1 j=f

1

0B@
1CA

264
375

� Zp�aÿ1d�wpZ2p�dÿ1�
X
i;j;y

Zp�i�wp�j�w g

1 ip=f y=f

1 j=f

1

0B@
1CA

264
375:

The last equality holds because adÿ1 ÿ i�cp=fd� � adÿ1 �p� and fZp � p. Thus, com-
paring with the de¢nition of wwp we obtain

wwp g
a b
c d

1

0@ 1A24 35 � Zp�aÿ1dÿ1�wp�dÿ1�wwp�g�

for any k � a b
c d

ÿ � 2 K0�2; f �, which is already a partial prove of the second claim.
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To prove the Proposition we now start to calculate the values wwp jGL2
�g� for

g � a b
c d

ÿ � 2 GL2�Qp� as follows. A simple matrix calculation yields

wwp jGL2
�g�

�
X
i;j;y

Zp�i�wpZ2p�j�w
1 ay=f � bj=f

1 cy=f � dj=f

1

0B@
1CA a b

c d

1

0B@
1CA 1 ip=f

1
1

0B@
1CA

264
375:

Using the behaviour of the Whittaker functions on the left under N3�Qp� we obtain

wwp jGL2
�g� �

X
j2�Zp=peZp��

wpZ
2
p�j�tp�dj=f �

X
y2Zp=peZp

tp�cy=f ��

�
X

i2�Zp=peÿ1Zp��
Zp�i�w

a b

c d

1

0B@
1CA 1 ip=f

1
1

0B@
1CA

264
375:

The ¢rst sum evaluates toX
j2�Zp=peZp��

wpZ
2
p�j�tp�dj=f � � wÿ1p Zÿ2p �d�G�wpZ2p�; for d 2 Z�p

0; else.

�
Together with the character relationsX

y2Zp=peZp

tp�cy=f � � f for c 2 fZp

0 else

�
we see that wwp jGL2

�g� 6� 0 implies d 2 Z�p and c 2 fZp. The decomposition

a b
c d

� �
� 1 b=d

1

� �
det g

1

� �
dÿ1

c d

� �
then proves that the non-vanishing of wwp jGL2

�g� implies

g 2 N2�Qp� Q
�
p

1

� �
K0�2; f �:

Taking into account the behaviour of wwp on the right under K0�2; f � we only have to
calculate the values of wwp jGL2

at diag�a; 1�, a 2 Q�p to completely determine wwp jGL2
.

From the above expression for wwp jGL2
�g� we deduce

wwp jGL2

a

1

� �� �
� fG�wpZ2p�

X
i2�Zp=peÿ1Zp��

Zp�i�w
a

1
1

0B@
1CA 1 ip=f

1
1

0B@
1CA

264
375

� fG�wpZ2p�
X

i2�Zp=peÿ1Zp��
Zp�i�tp�ai=peÿ1�w

a

1
1

0B@
1CA

264
375:
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Again, using thatX
i2�Zp=peÿ1Zp��

Zp�i�tp�ai=peÿ1� � 0

for vp�a� 6� eÿ 2 we ¢nd

supp �wwp jGL2
� � N2�Qp� p

eÿ2

1

� �
K0�2; f �;

which proves the ¢rst claim of the proposition. To prove the second claim only the
value of wwp jGL2

at diag�peÿ2; 1� has to be determined, but this is easily done: sinceP
i2�Zp=peÿ1Zp�� Zp�i�tp�peÿ2i=peÿ1� � peÿ2G�Zp� the above expression immediately

yields

wwp jGL2

peÿ2

1

� �� �
� fG�wpZ2p�G�Zp�peÿ2 w

peÿ2

1
1

0@ 1A24 35:
Thus the Proposition is proven.

Applying Proposition 1.2 and taking into account the behaviour of vw;p under
elements of K0�2; pe� we ¢nd for our local integral at the place pX

i;j;y

Zp�i�wpZ2p�j� I�u � wp; vw;p; s�

� fpeÿ2G�wpZ2p�G�Zp�wp

peÿ2

1
1

0B@
1CA

264
375vw;p peÿ2

1

 !" #
jpeÿ2jsÿ1=2p

Z
K0�2;f �

dk:

To prove Theorem 1 we therefore have to determine the values of the Whittaker
functions.

LEMMA 1.3. For a 2 Zp we have

wp

a
1

1

0@ 1A24 35 � jajpm3�a�:
Proof.The support of c1

p is contained in B3�Qp�w0I and in view of the de¢nition of
wp we have to determine the set of elements n 2 N3�Qp�, which satisfy

w0n
a

1
1

0@ 1A 2 B3�Qp�w0I :
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By a quite elementary calculation this set is found to consist of all elements

n �
1 u v

1 w
1

0@ 1A 2 N3�Qp�

satisfying the conditions u 2 pkZp; v 2 pkZp; c 2 Zp, where k :� vp�a� and in this
case we have

w0n
a

1
1

0@ 1A � 1
1

a

0@ 1Aw0

1 u=a v=a
1 w

1

0@ 1A:
Thus, using the de¢nition of c1

p, we get

wp

a
1

1

0@ 1A24 35 � Z
u2pkZp ; v2pkZp

c2Zp

jaÿ1jpm3�a� �tp�u� w� du dv dw:

Since tp is trivial on Zp the last expression is equal to pÿkm3�a� and the Lemma is
proven.

LEMMA 1.4. (a) The restriction of vw;p to Q�p is given by

vw;p
a

1

� �� �
� Z0p�a�jajlpf ÿ2lZÿ10;p�f �G�wp� for vp�a�X 0

0 else:

�
(b) For k � a b

c d

� �
2 K0�2; q� we have

vw;q
1
1 1

� �
k

� �
� qÿ1Zq�d�:

Proof. (a) Using [Ge-Sha], p. 80/81 and taking into account that cw;p � Z0p 
 c0
w;p

we obtain from the de¢nition of vw;p

vw;p
a

1

� �� �
� Z0;p�ÿ1�Zp�a�wp�ÿa�jajÿlp

X
n2Z

Z
vp�u��n

c0
w;p

1
1 u=a

� �� �
tp�u� du:

To evaluate the integral we have to determine the values c0
w;p

1
1 u=a

� �h i
. We know

that the essential vector c0
w;p is supported on the subset B2�Qp�K0�2; f � � GL2�Qp�.

On the other hand GL2�Qp� is the disjoint union

GL2�Qp� � _[
i�0;...;eB2�Qp� 1

pi 1

� �
K0�2; f �:
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and we have

1
1 u=a

� �
� ÿ1 1

1

� �
1
1 1

� �
1 u=aÿ 1

1

� �
2 B2�Qp� 1

p0 1

� �
K0�2; f �;

if vp�u=a�X 0 and

1
1 u=a

� �
� ÿa=u

a
u p

vp�u=a�

pvp�u=a�

 !
1

pÿvp�u=a� 1

� � 1
u
a p
ÿvp�u=a�

� �
2 B2�Qp�

1
pÿvp�u=a� 1

� �
K0�2; f �:

if vp�u=a� < 0. This implies that c0
w;p

1
1 u=a

� �h i
6� 0 only if vp�u�W ÿ e� vp�a� and

using the above decomposition together with the de¢nition of c0
w;p we obtain

vw;p
a

1

� �� �
� Z0p�a�jajlp

X
nWÿe�vp�a�

Z0;p�pn�p2ln
Z

vp�u��n
wp�u�tp�u� du:

The integral occurring in the above line is given byZ
vp�u��n

wp�u�tp�u� du � G�wp� if n � ÿe;
0 else,

�
which immediately implies vw;p � 0 for vp�a� < 0. On the other hand, for vp�a�X 0 we
obtain

vw;p
a

1

� �� �
� Z0p�a�jajlpZ0;p�pÿe�f ÿ2lG�wp�

and part (a) of the Lemma is proven.
(b) Taking into account the behaviour of vw;q underK0�2; q�we see that it is enough

to calculate the value

vw;q
1
1 1

� �� �
� Z0q det

1
1 1

� �� � Z
Qq

c0
w;q

1 1
1� u u

� �� �
tq�u� du:

We know that c0
w;q is supported on B2�Qq�K0�2; q� and comparing entries we see that

1 1
1� u u

� �
2 suppc0

w;q

is equivalent to u 2 ÿ1� qZq. Moreover, for u 2 ÿ1� qZq we have

1 1
1� u u

� �
� ÿu

ÿ1 1
u

� �
1 0

1� uÿ1 1

� �
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and since c0
w;q is the essential vector we deduce that

cw;q
1 1

1� u u

� �� �
� jujÿ2lwqZ0;q�u� � 1

for u 2 ÿ1� qZq. We thus obtain

vw;q
1
1 1

� �� �
�
Z
ÿ1�qZq

du;

which proves the Lemma.

Using Lemma 1.3 and 1.4 and vol�K0�2; pe�� � �1� pÿ1�ÿ1pÿ2e, the local integralP
i;j;y Zp�i�wpZ2p�j� I�u � wp; vw;p; s� is now easily calculated, which completes the com-

putation of the global integral. Together with the functional equation

L�~wÿ1 ~Z0
ÿ1; 2l� � �ÿ1�

l

2G�2l�
2p
fq

� �2l

G�~wÿ1 ~Z0
ÿ1�L�~w ~Z0; 1ÿ 2l�

we obtain the claim of Theorem 1. This ¢nishes the proof.

Remark 1.5. The special values Lfqg�p
 Z0; l�; lX 1 appearing in the de¢nition of
A do not vanish. This follows from the non-vanishing of L�p
 Z0; l�, which is
due to the convergence of the Euler product in the case l > 1 and due to [J-S 3]
in the case l � 1 and the regularity of the local factor L�pq 
 Z0q; s� for Re�s�X 1
(cf. [J-S 1], Proposition 1.5. (iii)).

Remark 1.6. In the proof of Theorem 1 we have seen, that the critical integers for
Z
 p are all integers

l 2 fÿl0=2� 1;ÿl0 � 2; . . . ; l0=2g

such that

l � [ �mod 2� if l > 0
1� [ �mod 2� if lW 0:

�
Hence, the integers 1ÿ l, where 0 < lW l0=2 and l � [ �mod 2� are precisely the criti-
cal integers on the left-hand side of the functional equation.

Remark 1.7. The crucial part in the proof of Theorem 1 was the construction of a
Whittaker function wwp such that the local zeta integral at the place p does not vanish.
This was due to the properties of wwp as described in Proposition 1.2 and the existence
of such a Whittaker function follows from Theorem F in [Gel-Kaj]. We were using
their idea to construct wwp .
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2. Construction of the Distribution

In this section we shall construct a family of distributions ml on Z�p, whose p-adic
Mellin transform interpolates the critical values L�p
 Zw; 1ÿ l�. The construction
is based on the properties of certain period integrals, which we are going to de¢ne
¢rst.

2.1. PERIOD INTEGRALS ATTACHED TO p

We let n : Q�nA� ! C� be an ide© le class character with conductor fn � pen a p-power
and in¢nity component n1 � id, i.e. n corresponds to an even Dirichlet character
~n : �Z=fnZ�� ! C�. In particular n satis¢es the same properties as w and in Section
1 we have de¢ned the vectors cn 2 P�n� (with n replaced by w). For any character
n 6� 1 and eX en we de¢ne the section cn;pe by

cn;pe �g� :� pÿ�eÿen�l cn g pÿ1

1

� �eÿen� �
:

Here and in the following we keep the convention from Section 1 and identify
pÿ1

1

� �
2 GL2�Qp� with the adelic matrix whose components outside p are equal

to 1. In particular we have cn;pen � cn for n 6� 1. We also de¢ne sections c1;pe for
eX 1 by

c1;pe �g� :� pÿ�eÿ1�l c1 g pÿ1

1

� �eÿ1" #
:

In particular we have c1;p � c1.
For any E 2 Z�p and eX 1 we now de¢ne the vectors cE;pe as the Fourier transform

cE;pe �g� :�
2

f�pe�
X
n

nÿ1p �E�cn;pe �g�;

where the sum runs over all characters n : Q�nA� ! C� with conductor fnjpe and
in¢nity component n1 � id. We also de¢ne sections c0

n;pe and c0
E;pe by replacing

cn in the above de¢nitions by c0
n , in other words, since Z0p�p� � 1 we have

cE;pe � Z0 
 c0
E;pe . The sections cE;pe still factorize

cE;pe � cE;pe;f 
 c1;

where the ¢nite part cE;pe;f is de¢ned by replacing cn in the above de¢nitions by cn;f

and c1 is the in¢nity component of cn as de¢ned in Section 1. We also note
the following properties:

. cE;pe � cE0;pe for E � �E0 �mod pe�, (2.1)

. cE;pe g pk

pk

� �� �
� Zp�pk�cE;pe �g� for k 2 Z, (2.2)
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. cE;pe �gk� � Zp�ad�cEdÿ1;pe �g� for k � a b
c d

� �
2 K0�2; pe�. (2.3)

The ¢rst two properties are immediate (note that np�p� � 1) the third one follows
from an easy calculation, taking into account the behaviour of cn;pe under
K0�2; pe� and ZpjZ�p � Z0pjZ�p .

The family of sections fcE;pegE;pe as well as the cusp form f satisfy a distribution
relation. We set

g :� m2�p�m3�p2�p2: �2:4�

LEMMA 2.1. (a) For every E 2 Z�p and eX 2 the following holds:

cE;pe g pÿ1

1

� �� �
� pl

X
E02�Zp=pe�1Zp ��

E0�E �pe�

cE0;pe�1 �g�:

(b) We have

g f�g� �
X

u;w�0;...;pÿ1
v�0;...;p2ÿ1

f g
p2

p
1

0@ 1A 1 u=p v=p2

1 w=p
1

0@ 1A24 35:
Proof. (a) The claim follows from a straightforward calculation using

cn;pe�1�g� � pÿl cn;pe g pÿ1

1

� �� �
and the character relations

X
E02�Zp=pe�1Zp��

E0�1 �pe�

nÿ1p �E0� � 0 for fn � pe�1

p for fnjpe:
�

(b) By an easy calculation one veri¢es that the vector c1
p satis¢es the relation

md1=23

1
p

p2

0@ 1A24 35c1
p�g� �

X
u;w�0;...;pÿ1
v�0;...;p2ÿ1

c1
p g

p2 pu v
p w

1

0@ 1A24 35:
which immediately implies the claim, because the above relation is preserved under
intertwining operators.

We de¢ne the Eisenstein series EE;pe as the images of the vectors cE;pe under Eis. It is
immediate that the Eisenstein series EE;pe satisfy the same properties (2.1)^(2.3) as
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well as the distribution relation

EE;pe g pÿ1

1

� �� �
� pl

X
E02�Zp=pe�1Zp��

E0�E �pe�

EE0;pe�1 �g�

for E 2 Z�p and eX 2.
We may now introduce the period integrals on which our analysis of the values of

the automorphic L-function will be based: for any elements i; j 2 Z�p and y 2 Zp

we de¢ne

P�i; j; y; pe� :�
Z

GL2�Q�nGL2�A�
f

g
1

� � 1 ip=f y=f
1 j=f

1

0@ 1A24 35E1;pe �g� dg:

We note that P�i; j; y; pe� still depends on the choice of the components at in¢nity w1
and c1 as well as on the integer l and the character Z. We write PZ

l if we want to
indicate the dependence on l and Z.

LEMMA 2.2. Let eX 2. For any j0 2 Z�p satisfying j0 � 1 mod pe we have

P�i; jj0; y; pe� � Zÿ1p �i�P�1; j; 0; pe�:

Proof. Since j0 � 1 mod pe and fZ � p we obtain using (2.1) and (2.3)

E1;pe g
1

j0ÿ1

� �� �
� E1;pe �g�:

Therefore, changing the integration variable like g 7! g 1
j0ÿ1

� �
and using right

invariance of f under I we ¢nd

P�i; jj0; y; pe� �
Z
XA

f
g

1

� � 1 ij0=peÿ1 y=f
1 j=f

1

0@ 1A24 35E1;pe �g� dg:

Changing the integration variable like g 7! g 1 ÿjÿ1y
1

� �
we obtain

P�i; jj0; y; pe� �
Z
XA

f
g

1

� � 1
ij0 ÿ peÿ1jÿ1y

peÿ1
0

1 j=f
1

0BB@
1CCA

2664
3775E1;pe �g� dg:

Finally, changing the integration variable like g 7! g �ij
0ÿpeÿ1jÿ1y�ÿ1

1

� �
and taking
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into account that f is invariant on the right under I , we obtain

P�i; jj0; y; pe�

�
Z
XA

f
g

1

� � 1
1

peÿ1
0

1 j=f

1

0BB@
1CCA

2664
3775E1;pe g

�ij0 ÿ peÿ1jÿ1y�ÿ1
1

 !" #
dg:

Since ij0 ÿ peÿ1jÿ1y � i �mod p�, property (2.3) implies

E1;pe g �ij
0 ÿ peÿ1jÿ1y�ÿ1

1

� �� �
� Zÿ1p �i�E1;pe �g�;

which proves the lemma.

From now on we shall assume that eX 2. It is then obvious by Lemma 2.2 that the
periods P�i; j; y; pe� only depend on j �mod pe� and i �mod p�. For any j 2 �Zp=peZp��
we therefore may de¢ne P�j; pe� :� P�1; j; 0; pe�.

PROPOSITION 2.3. For all eX 2, the period integrals P�j; pe� satisfy the distribution
relation

P�j; pe� � Zp�pÿ1�gÿ1 p4�l
X

w2Zp=pZp

P�j � wf ; pe�1�:

Proof. Replacing f g
1

ÿ �
u

� �
by the expression in Lemma 2.1 we obtain

gP�j; pe� �
X
u;v;w

Z
XA

f
g

1

� � p2

p

1

0B@
1CA

1
1� peÿ1u

f
w� peÿ1v

pf

1
j � fw
pf

1

0BBBBBBB@

1CCCCCCCA

266666664

377777775
E1;pe �g� dg

� Zp�pÿ1�
X
u;v;w

Z
f

g

1

� � 1
1� peÿ1u

f
w� peÿ1v

pf

1
j � fw
pf

1

0BBBBBBB@

1CCCCCCCA

266666664

377777775E1;pe g
pÿ1

1

 !" #
dg:

The last equality follows by the change of integration variable g 7! g pÿ2
pÿ1

� �
and

using Equation (2.2). Replacing E1;pe g pÿ1
1

� �h i
by the expression in Lemma 2.1

and using (2.3), we further obtain for the right hand side of the above equation (note
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that Zp�E� � 1 since eX 2)

Zp�pÿ1� pl
X
u;v;w

E�1 �pe�

Z
f

g
1

� � 1
1� peÿ1u

f
w� peÿ1v

pf

1
j � fw
pf

1

0BBBBB@

1CCCCCA

2666664

3777775E1;pe�1 g
1

Eÿ1

� �� �
dg:

Changing variables g 7! g 1
E

ÿ �
this equals

Zp�pÿ1� pl
X
u;v;w

E�1 �pe�

Z
XA

f
g

1

� � 1
Eÿ1 � Eÿ1peÿ1u

f
w� peÿ1v

pf

1
Ej � Efw

pf

1

0BBBBB@

1CCCCCA

2666664

3777775E1;pe�1 �g� dg:

Using the periods this may be written

gP�j; pe� � Zp�pÿ1� pl
X
u;v;w

E�1 �pe �

P�Eÿ1 � Eÿ1peÿ1u; Ej � Efw;w� peÿ1v; fp�:

Since Eÿ1 � Eÿ1peÿ1u � 1 mod p, Lemma 2.2 then shows

gP�j; pe� � Zp�pÿ1� p3�l
X

w
E�1 �pe�

P�1; Ej � Efw; 0; fp�:

We write E � 1� fo, where o 2 Zp=pZp. Because E � 1 �mod pe�; eX 2 we ¢nd

Ej � Efw � j � f �oj � w� �mod pf �:
Thus, by the change of summation variable w 7! ÿ oj � w we ¢nally obtain

gP�j; pe� � Zp�pÿ1� p4�l
X

w2Zp=pZp

P�1; j � wf ; 0; pe�1�:

This proves the Proposition.

For any integer eX 2 and any pair �Z; l� such that 0 < lW l0=2 and l � [ �mod 2�
we de¢ne

mZl �j � peZp� � mZl;w1;c1�j � peZp� :� �Zp�p�g�ÿep�4�l�e PZ
l �j; pe�:

To simplify the notation we mostly write ml instead of mZl . It is immediate by Prop-
osition 2.3 that ml de¢nes a distribution on Z�p and using the distribution relation
we may extend ml to all cosets j � peZp with e 2N.
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2.2. THE p-ADIC MELLIN TRANSFORM

We want to integrate ml against characters w and the result is given in the following
proposition:

PROPOSITION 2.4. For any ide© le class character w of conductor f � pe, eX 2 and
in¢nity component w1 � id and any integer 0 < lW l0=2 such that l � [ �mod 2�
we haveZ

Z�p

wpZ
2
p dm

Z
l � BP�1=2� � L�p
 wZ; 1ÿ l�;

where the factor in front of the integral is given by

B � Aÿ1
2p3

�pÿ 1�2 �Zp�p�g�
ÿep�1�l�e

and A has been de¢ned in Theorem 1. For any character w with conductor a p-power
and in¢nity component w1 � sgn the above integral vanishes identically.

Proof. Using the identity

EE;pe g
ÿ1

ÿ1
� �� �

� ZpZ
0
p�ÿ1�EE;pe �g�

(note that np�ÿ1� � 1), we immediately ¢nd

ml�ÿj � fZp� � ml�j � fZp�;
which proves the vanishing of the integral in the case w1 � sgn. We now assume
w1 � id. In this case we want to derive the Proposition from Theorem 1 and proceed
as follows. Using the inverse Fourier transform we immediately obtain for w 6� 1

Ew�g� �
X

E2�Zp=peZp��=f�1g
wp�E�EE;pe :

Plugging this into the integral occurring in Theorem 1 we obtain

P�1=2�L�p
 wZ; 1ÿ l�

� A
X
i;j;y

E2�Zp=peZp��=f�1g

Zp�ij2� wp�Ej�
Z
XA

f
g

1

� � 1 ip=f y=f

1 j=f

1

0B@
1CA

264
375EE;pe �g� dg:

Changing variables like g 7! g 1
E

ÿ �
and using (2.3) we obtain for the right-hand side

A
X
i;j;y

E2�Zp=peZp ��=f�1g

Zp�Eij2� wp�Ej�
Z
XA

f
g

1

� � 1 ipEÿ1=f y=f
1 jE=f

1

0@ 1A24 35E1;pe �g� dg;
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which by the obvious change of the summation variables i and j equals

A
j�pe�
2

X
i;j;y

Zp�ij2� wp�j�P�i; j; y; pe�:

Using Lemma 2.2 we see that this is identical with

A
j�pe�2pe

2p

X
j2�Zp=peZp��

Z2pwp�j�P�1; j; 0; pe�:

Thus we obtain the equation

P�1=2�L�p
 wZ; 1ÿ l�

� A
j�pe�2pe

2p
Zp�p�egepÿ�4�l�e

X
j2�Z=peZ��

wpZ
2
p�j� ml�j � peZp�

and the proof of the proposition is ¢nished.

The conductors of the characters w and Z0 being relatively prime, a small
calculation proves that G�~w~Z0� � ~w�q�~Z0�pe�G�~w�G�~Z0�. Thus, recalling the de¢nition
of A and noting that ~w � wÿ1p jZ�p and ~Z0 � Zÿ10;qjZ�q we deduce that

B � Cl wp�qÿ1�ẑe p[ÿ3lgÿeG�wpZ2p�L�~w ~Z0; 1ÿ 2l�ÿ1

where ẑ � Zÿ2p Zÿ10;qm3�p�, C � Cl 2 C� does not depend on w and the coset Cl �Q� does
not depend on l. On the other hand since pqjfwZ0 (we assume eX 2) it is well known
that there is a Z-valued measure m�l� on Z�p such that

L�~w ~Z0; 1ÿ 2l� �
Z
Z�p

wp dm�l�

(cf. [Wa], pp. 239/240; note that the factor ÿ�1ÿ w�c�hci2l� is analytic and bounded).
In addition, the trivial equality wp�qÿ1� �

R
Z�p

wp ddqÿ1 holds, where dqÿ1 denotes the
Dirac distribution at qÿ1. We de¢ne the convolution of distributions
mZ;l :� mZl � m�l� � dqÿ1 and immediately deduce from Proposition 2.4 the ¢nal form
of our p-adic integral:

COROLLARY 1. Let w and l be as in Proposition 2.4. If w1 � id we haveZ
Z�p

wpZ
2
p dm

Z;l � CP�1=2� p[ÿ3l ẑegÿe G�wpZ2p� � L�p
 wZ; 1ÿ l�

and if w1 6� id the integral vanishes identically.

The distribution m�l� and dqÿ1 being Z-valued, we are reduced to investigate the
algebraicity and integrality of the distribution ml . This will be done in the last three
chapters.
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3. Cohomology and Rationality

3.1. THE ISOTYPICAL SUBSPACES IN COHOMOLOGY

Let Kf be a compact open subgroup of GLn�Af �. We introduce the differentiable
manifolds

Sn�Kf � :� GLn�Q�nGLn�A�=Kf Kn;1Z0
n�R�

and

Fn�Kf � :� GLn�Q�nGLn�A�=Kf Kn;1 � R�>0 � Sn�Kf �:

Any ¢nite-dimensional, rational representation r : GLn! GL�V � determines a
sheaf V on the spaces Sn�Kf � and we de¢ne Hi� ~Sn;V� :� inj limKf Hi�Sn�Kf �;V�.

The results of [Cl] and [Ha 1] in particular imply, that the ¢nite parts of the
representations p and P�w� appear as direct summands in the cohomology of ~S3

resp. ~S2. We want to describe these cohomological realizations and the special
cohomology classes corresponding to the automorphic forms f and EE;pe . We begin
with pf . By assumption the in¢nity component of p is isomorphic to Ind�Dl0 ; id�,
where l0 2 2Z and the type at in¢nity of p (cf. [Cl], p. 106) therefore reads
�l0=2ÿ 1;ÿl0=2ÿ 1;ÿ1� 2 Z3=S3. We de¢ne �r;V � to be the ¢nite dimensional rep-
resentation of GL3 with highest weight �l0=2ÿ 1; 0;ÿl0=2� 1� with respect to the
standard torus in GL3 and we let V be the locally constant sheaf attached to r. From
[Cl], Lemme 3.14 we derive

Hi�gl3;K3;1Z0
3�R�; p1 
 r� � C; for i � 2; 3;

0; else.

�
We choose a basis o01; . . . ;o05 of the dual of the tangent space gl3=so3Lie�Z0

3�R��
ÿ ��

and a basis fvag of V . Let

o1 �
X

i;j�1;...;5

X
a

w1;i;j;a va 
 o0i ^ o0j

be a generator of H2�gl3;K3;1Z0
3�R�;W �p1; t1� 
 V �. For any Whittaker function

wf 2W �pf ; tf � the product wf � o1 de¢nes an element of H2�gl3;K3;1Z0
3�R�;

W �p; t� 
 V �. Since p embeds into L2
0�GL3�Q�nGL3�A�� this yields an injection

F p : W �pf ; tf � ! H2
cusp� ~S3;V�:

We let wf be the ¢nite part of the Whittaker function de¢ned in Section 1 and denote
by o :� F p�wf � the image of wf in cohomology. The cohomology class o then reads
o �Pi;j;a fi;j;a va 
 o0i ^ o0j where fi;j;a 2 V �p� denotes the cusp form attached to
the Whittaker function wf � w1;i;j;a. We remark that the cuspidal cohomology de¢nes
a subspace in the cohomology with compact supports H2

cusp� ~S3;V�WH2
c � ~S3;V� (cf.

[Cl], p. 123).
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Next we describe the embedding of Pf �w�. To this end let �k;W � be the ¢nite
dimensional representation of GL2 with trivial central character and highest weight
2l ÿ 2 if restricted to SL2 and let W be the locally constant sheaf attached to k.
In the notation of [Ha 1], p. 45 we have W �M�2l ÿ 2; 1ÿ l�. The representation
P�w� is non-unitarily induced from the character

t1
t2

� �
7! t1

t2

���� ����lZ0�t1�wZ�t2�;
whose type is contained in Coh�W � in degree 1 (cf. [Ha 1], p. 49) and which also is
even. We therefore deduce from Theorem 1 in [Ha 1] that Pf �w� appears as a direct
summand in the cohomology of the boundary @ �S2 of the Borel^Serre com-
pacti¢cation �S2 with coef¢cients in W

Pf �w� ,!H1�@ ~�S2;W� :� lim
Kf

H1�@ �S2�Kf �;W�:

The cohomology class in H1�@ ~�S2;W� attached to an element c 2 Pf �w� is
given as follows. We choose a basis o1;o2 of the dual of the tangent space
gl2=so2Lie�Z0

2�R��
ÿ �� and a generator o3 of �Lie�Z0

2�R����. The embed-
ding j : GL2�R�=SO2�R� ,!GL3�R�=SO3�R�Z0

3�R�; g SO2�R� 7!diag�g; 1�SO3 �R�
Z0

3�R� induces a mapping of the duals of the tangent spaces

j� : gl3=so3Lie�Z0
3�R��

ÿ ��! gl2=so2
ÿ ��

and for later purpose we assume that the basiso0i andoi are chosen in such a way that
j��o0i� � oi for i � 1; 2; 3 and j��o0i� � 0 for i � 4; 5. Let fwbg be a basis of W . Using
[Ha 1], p. 69 we know that

H1�gl2; SO2�R�Z0
2�R�;P1�w� 
 k� � C

and a generator e1 of this cohomology group reads

e1 �
X
i�1;2

X
b

c1;i;b wb 
 oi;

where c1;i;b 2 Z1 
P0
1 < P1 �w� (cf. Remark 3.3). For any c 2 Pf �w� we then

obtain an element in the cohomology of the boundary

c
 e1 2 H1�@ ~�S2;W�:

The embedding into the cohomology of the symmetric space of GL2

Eis� : Pf �w� ! H1� ~S2;W�
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is now given by

Eis��c� :�
X

g2B2�Q�nGL2�Q�
c
 e1�gg;D�

for g 2 GL2�A�;D 2 gl2=so2Lie�Z0
2�R�� (cf. [Ha 1], p. 80). Let cpe;f :� c1;pe;f be the

¢nite part of the vector c1;pe de¢ned in Section 2.1. We denote ope :� Eis��cpe;f �
the image of cpe;f and we identify ope with its image under the canonical map
p� : H1� ~S2;W� ! H1� ~F2; p�W� induced by the projection p : F2�Kf � ! S2�Kf �.
The class ope then reads

ope �
X
i�1;2

X
b

Epe;i;b wb 
 oi;

with Eisenstein series Epe;i;b :� Eis�cpe;fc1;i;b�.
We shall use the differential forms o and ope to give a cohomological description

of the period integrals P�E; pe�. We denote by V jGL2
the restriction of the represen-

tation V to GL2 via the embedding g 7! g
1

ÿ �
and we choose a non-trivial,

GL2-equivariant pairing

tr : V jGL2

W ! C:

Such a pairing exists due to the following

LEMMA 3.1. The restriction of the representation r to GL2 decomposes into a direct
sum of representations ofGL2, rjGL2

� �k� r0;where �k is the contragredient represen-
tation of k.

Proof. For any dominant weight l 2 Zn we denote by Fl the GLn�C�^
representation of highest weight l. The representation r is then isomorphic to
F�l0ÿ2;l0=2ÿ1;0� 
 det1ÿl0=2. Using the Schur functor (cf. [F-H], pp. 76, 231/232) we
may write

F�l0ÿ2;l0=2ÿ1;0� � S�l0ÿ2;l0=2ÿ1;0�C
3:

Since l0=2X l > 0 we have

l0 ÿ 2X l0=2� l ÿ 2X l0=2ÿ 1X l0=2ÿ lX 0

and [F-H], 6.12 then implies that the restriction of F�l0ÿ2;l0=2ÿ1;0� to GL2 is completely
reducible and contains the representation S�l0=2�lÿ2;l0=2ÿl�C

2. This representation has
highest weight �l0=2� l ÿ 2; l0=2ÿ l� (cf. [F-H], 15.15) and hence rjGL2

contains as a
direct factor a representation of highest weight �l ÿ 1; 1ÿ l�. Since k � �k and k has
highest weight �l ÿ 1; 1ÿ l� this proves the lemma.

We now set

mZp;l :�
X

i;j;k;a;b

ei;j;k tr�va 
 wb� mZl;w1;i;j;a;c1;k;b ;
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where ei;j;k vanishes unless �i; j; k� is equal to �2; 3; 1� resp. �1; 3; 2� in which cases it
equals 1 resp. ÿ1. Obviously, mZp;l de¢nes a distribution on Z�p and it is immediate
by Proposition 2.4 that by integrating mZp;l against characters we ¢ndZ

Z�p

wpZ
2
p dm

Z
p;l � BPl�1=2�L�p
 wZ; 1ÿ l�; �3:1�

where Pl 2 C�T � denotes the polynomial Pl :�Pi;j;k;a;b ei;j;k tr�va 
 wb�Pw1;i;j;a;c1;k;b .
On the other hand, for every N 2N let i�N� be the canonical map

i�N� : F2�K�2;N�� ! S3�K�3;N��
GL2�Q� gK�2;N�K2;1 7!GL3�Q� g

1

� �
K�3;N�K3;1Z0

3�R�;

where K�n;N�WGLn�Af � denotes the principal congruence subgroup of level N.
i�N� is a proper map and therefore induces a map on the limit of the cohomology
groups with compact support

i� : H2
c � ~S3;V� ! H2

c � ~F2; i�V�:
The pairing tr : V jGL2

�W ! C induces a pairing of the associated sheafs
tr : i�V 
 p�W ! C. Using [Cl], p. 122 we even know that the representations r
and k are de¢ned over ¢nite extensions Er and Ek of Q, i.e. r resp. k act on Er

resp. Ek vector spaces VEr and WEk . In particular the above pairing of sheafs is
de¢ned over Er;k :� ErEk

tr : i�VEr;k 
 p�WEr;k ! Er;k

and together with the cup product we obtain the diagram

H2
c � ~F2; i�VEr;k� � H1� ~F2; p�WEr;k� ÿ!

tr�[
H3

c � ~F2;Er;k� � Er;kx?i� x?p�
H2

c � ~S3;VEr;k� H1� ~S2;WEr;k�:
In other words we have a pairing

h ; i : H2
c � ~S3;VEr;k� �H1� ~S2;WEr;k� ! Er;k

�o;o0� 7! tr i�o [ p�o0:
We want to determine the special values ho;opei of this pairing. We denote by

r�u : H2
c � ~S3;V� ! H2

c � ~S3;V�; u 2 GL3�Af �
the right translation.

LEMMA 3.2. For u � u�1; j; 0; pe� 2 N3�Qp� we have

hr�uo;opei � pÿe�4�l�Zp�pe�ge mZp;l�j � peZp�:
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Proof. Let Kf WGL2�Af � be a compact subgroup under which i�r�uo and ope are
invariant. Using [Ha 2] ch. E.4 we ¢nd

hr�uo;opei � vol�Kf �
Z
F2�Kf �

tr i�r�uo ^ ope :

It is immediate by the choice of the vectors o0i and oi that the image
i�r�u�o� 2 H2

c � ~F2; i�V� is given by

i�r�u�o� �
X

i;j�1;2;3

X
a

fi;j;a
g

1

� �
u

� �
va 
 oi ^ oj :

Using this and the de¢nition of ope we obtain

hr�uo;opei

� vol�Kf �
Z
F2�Kf �

X
i;j;k

X
a;b

tr�va 
 wb�fi;j;a
g

1

� �
u

� �
Epe;k;b�g�oi ^ oj ^ ok:

Comparing with the de¢nition of mZl � mZl;w1;c1 in Section 2 and taking into account
that an invariant 3-form on GL2�R�=O2�R� corresponds to a Haar measure dg1
on GL2�R� we obtain the claim of the lemma.

Remark 3.3. Since On�R� normalizes SOn�R� the quotient group Z=2Z �
On�R�=SOn�R� still acts on Hi� ~Sn;V� and Hi�gln;Kn;1Z0

n�R�; p1 
 r� and we want
to verify that the classes o and ope are eigenvectors for this action. The assumption
that l0 is even implies that the central character of p1 equals the signum morphism
and considering the action of diag�ÿ1;ÿ1;ÿ1� then shows that o1 and hence o
has eigenvalue ÿ1 under the operation of the non-trivial element in Z=2Z. To cal-
culate the operation of Z=2Z on ope we note that

H1�gl2; SO2�R�Z0
2�R�;D2lÿ1 
 k� � hv�; vÿiC;

where the generators satisfy ÿ1
1

ÿ �
v� � � v�. The inclusionD2lÿ1,!P1�w� induces a

canonical map in cohomology

H1�gl2; SO2�R�Z0
2�R�;D2lÿ1 
 k� ! H1�gl2; SO2�R�Z0

2�R�;P1�w� 
 k�
and an explicit calculation proves that under this map vÿ maps to zero whereas v�

does not. (To see this one has to take into account that l � [ modulo 2.) We deduce
that

ÿ1
1

� �
e1 � e1

and hence, oE;pe and ow �
P

E wp�E�oE;pe too are eigenvectors for diag�ÿ1; 1� with
eigenvalue 1 under the operation of this matrix. In addition we also see that the
coef¢cients c1;i;b are contained in Z1 
P0

1, the unique submodule inP1�w�, which
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is isomorphic toD2lÿ1 (cf. Section 1). Finally, the action on cohomology also induces
an action of Z=2Z on our integral representation: Lemma 3.2 immediately implies
that the integral appearing in the formula of Theorem 1 coincides with

A
X
i;j;y

wpZ
2
p�j�Zp�i�

Z
F2�Kf �

o
g

1

� �
u�i; j; y; pe�

� �
^ ow�g�

and using the above eigenvalues it is easily seen that this expression is invariant under
the change of integration variable g 7! g diag�ÿ1; 1�1, which is orientation reversing.
In particular, our cohomological formula does not vanish for parity reasons.

3.2. THE �Q-STRUCTURE

The non-vanishing of the cohomology implies that pf and Pf �w� are de¢ned over
¢nite extensions E=Q and we want to show that the differential forms o and
ope too are de¢ned over these extensions. We begin with ope .

For any automorphism s 2 Aut�C=Q� we de¢ne the s-linear isomorphism

s : Pf �w� ! Pf �ws�
c 7! cs;

where cs�g� :� c�g�s. Using [W], ch. I.2 and [Cl], Proposition 3.1 (iii) we know that
Pf �w� is de¢ned overQ�w; Z; Z0�: for any ¢eldH=Q letPH;f �w� denote theH-subspace
of H-valued functions in Pf �w�; we then have

Pf �w� � PQ�w;Z;Z0�;f �w� 
C:

Theorem 2 in [Ha 1] states that the embedding

Eis� : P �Q;f �w� ! H1� ~S2;W �Q�
is de¢ned over �Q and for every s 2 GQ :� Gal� �Q=Q� we have Eis��cs� � Eis��c�s.
From the de¢nition of cw it is obvious that cs

w;f � cws;f for all
s 2 Gal� �Q=Q�Z; Z0��. This implies cs

E;pe;f � cE;pe;f and using the GQ-equivariance
of Eis�, that os

pe � ope for all s 2 Aut�C=Ek�Z; Z0��, i.e. ope is contained in
H1� ~S2;WEk�Z;Z0��.

We consider the cuspidal form o. Using [Cl], Thëore© me 3.13 we know that pf is
de¢ned over a ¢nite extension E � Ep of Q. In particular the pf -isotypical
component of the cuspidal cohomology is de¢ned over E

H2
cusp� ~S3;V��pf � � H2

cusp� ~S3;VE��pf � 
C

(cf. [Cl], Thëore© me 3.19, note that Er WE). Similarly, there is an E-subspace
WE�pf ; tf � of W �pf ; tf � such that

W �pf ; tf � �WE�pf ; tf � 
C:

We want to ¢nd a ¢eld of de¢nition for the complex valued differential form o
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attached to wf . Using the uniqueness of E-structures on irreducible, admissible
GL3�Af �ÿ-modules up to scalar multiples (cf. [Cl], Proposition 3.1) we deduce that
after multiplication by a complex number the isomorphism

~O�p� � F p : WE�pf ; tf � ! H2
cusp� ~S3;VE��pf �

respects the E-subspaces as de¢ned above. The following lemma therefore implies
the existence of a complex number O�p� 2 C� such that

O�p�ÿ1o 2 H2
cusp� ~S3;VE�zq�qÿ1���:

LEMMA 3.4. There is an O 2 C� such that Owf 2WE�zq�qÿ1���pf ; tf �.
Proof. We decompose the Whittaker function wf � wp 
 wq 
 wp;q, where

wp;q � 
 6̀�p;qw`. Since wp;q is an essential vector and the space of essential vectors
is 1-dimensional, we deduce that there is a complex number O0 2 C� such that
O0 wp;q 2WE�
` 6�p;qp`;
` 6�p;qt`�. Thus, we are left with examining wp and wq. We
recall from Section 1 that pp is isomorphic to the non-unitarily induced represen-
tation pp � Indn�d1=23;pm�. The s-linear action

Indn�d1=23;pm� ! Indn��d1=23;pm�s�; cp 7!cs
p

commutes with the operation of the Hecke algebra and we see that

Indn�d1=23;pm� � IndnE�d1=23;pm� 
C;

where IndnE�d1=23;pm� :� Indn�d1=23;pm�Aut�C=E�. This immediately implies that the char-
acter md1=23;p is E-valued and since c1

p has values in Q�d1=23;pm� we see that
c1
p 2 IndnE�d1=23;pm�. For later purpose we mention the consequence

g � d1=23;pm
1

p
p2

0@ 1A 2 E: �3:2�

Again, Proposition 3.2 in [Cl], tells us that after multiplication by a complex number
the isomorphism

IndnE�d1=23;pm� !WE�pp; tp�; cp 7!
Z
N3�Qp�

cp�w0ng��tp�n� dn

respects the E-subspaces and some complex multiple of wp therefore is contained in
WE�pp; tp�.

In order to examine wq (cf. Section 1 for the de¢nition) we shall use the twisted
action of automorphisms s 2 Aut�C=Q� on the Whittaker model

~s : W �pq; tq� ! W �psq; tq�
w 7! w ~s�g� :� w�diag�tÿ2s ; t

ÿ1
s ; 1�g�s;

where s 7!sjQ�zq1� 7! ts 2 Z�q is the q-component of the cyclotomic character. Since
pq is de¢ned over E, we deduce that WE 0 �pq; tq� �W �pq; tq�Aut�C=E 0� for any ¢nite
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extension E 0=E. It therefore suf¢ces to verify that w ~s
q � wq for any

s 2 Aut�C=E�zq�qÿ1���. In view of (3.2) Proposition in [J-S 2] it is enough to
show that resGL2�Qq��w ~s

q� � resGL2�Qq�wq (note that wq;w ~s
q 2W �pq; tq� for

s 2 Aut�C=E�). Using the equation

t2

t

� �
1
1 1

� �
k � 1

1 1

� �
t 0

1ÿ t 1

� �
k

t
t

� �
:

and taking into account that ts � 1 �mod q� for s 2 Aut�C=E�zq�� and fZq � q, it is
easily veri¢ed that

resGL2�Qq�wq�diag�tÿ2s ; t
ÿ1
s �g� � resGL2�Qq�wq�g�

for all g 2 GL2�Qq� and s 2 Aut�C=E�zq�qÿ1���. Applying (the untwisted) s to this
equation and recalling that wq isQ�zqÿ1�-valued we obtain the invariance of wq under
Aut�C=E�zq�qÿ1���. This ¢nishes the proof of the lemma.

Lemma 3.2 together with the algebraicity of the forms O�p�ÿ1o andope now imme-
diately implies

THEOREM 2. For all pairs �Z; l� consisting of a character Z : Q�nA� ! C� of ¢nite
order and conductor fZ � pq and an integer 0 < lW l0=2 such that l � [ �mod 2�
the distributions mZp;l are O�p� � EpEk�Z; Z0; zq�qÿ1��-valued, i.e. for any open subset
U WZ�p we have

mZp;l�U�
O�p� 2 EpEk�Z; Z0; zq�qÿ1��:

Of course, Equation (3.1) calculating the Mellin transform of mZp;l becomes com-
pletely trivial if Pl�1=2� vanishes and the distribution mZp;l fails to interpolate the
automorphic L-function. Hence we have to make the

Assumption. Pl�1=2� does not vanish.

Using Corollary 1 and Equation (3.2) we then obtain

COROLLARY 2.Under the above assumption, for all characters Z : Q�nA� ! C� of
¢nite order and conductor fZ � pq and all integers 0 < lW l0=2, which are congruent to
[ �mod 2� we obtain

L�p
 wZ; 1ÿ l�
Pÿ1l �1=2�p3lÿ[O�p� 2 EpEk�Z; Z0; zq�qÿ1�; w�:

Remark 3.5. The case of trivial coef¢cients.We ¢nally consider the case that p has
cohomology with trivial coef¢cients. This means l0 � 2, hence l � 1, i.e. P�w�
too has cohomology with trivial coef¢cients and the only critical integers
s � 0; 1 occur only if Z1 � sgn. Moreover we know: The value P1�1=2� does not
vanish.

EISENSTEIN COHOMOLOGY 283

https://doi.org/10.1023/A:1026569231434 Published online by Cambridge University Press

https://doi.org/10.1023/A:1026569231434


Proof. The generator e1 is contained in the �1-eigenspace of the cohomology (cf.
Remark 3.3). Our polynomial P1 therefore coincides up to a nonzero factor with
the one chosen in [Sch 2], Theorem 3.8 and the claim follows.

In particular, multiplying the in¢nity component o1 with some scalar we may
assume that P1�1=2� � 1.

In the case of trivial coef¢cients Corollary 2 has already been obtained in [Ma],
Corollary 3.3 using a different method.

4. The Denominators of Eisenstein Classes

The remaining part of this article is devoted to an investigation of the denominators
of mZp;l=O�p� in EpEk�Z; Z0; zq�qÿ1��. This is a more arithmetic question since it involves
the ring of integers of the ¢eld EpEk�Z; Z0; zq�qÿ1�� and to answer it we will make use of
cohomology with coef¢cients in rings of integers. As we will see in Section 5.1 the
essential step is to calculate (bounds for) the denominators of the Eisenstein classes
ope . This will be the object of this chapter. In special cases such denominators have
been computed in [Ha 2] and [Kai] and in a large part we are relying on their
expositions.

For simplicity, from now on we will restrict ourselves to the case of trivial
coef¢cients as described in Remark 3.5, i.e. we assume that �l0; l; Z1� �
�2; 1; sgn�. In particular, there is only one distribution mp � mZp;1, which corresponds
to the (only) non-positive critical integer s � 0.

The idea is to construct a system of generating cycles for H1�S2�K�;Z�, where
KWGL2�Af � is the (largest) subgroup under which ope is invariant and to evaluate
ope on these cycles. In particular, for any number ¢eld F with ring of integers
OF we set

H��Sn�K�;OF �int � Im
�
H��Sn�K�;Z� 
 OF ! H��Sn�K�;F �

�
:

In the same way we de¢ne H��Sn�K�;OF ;L�int, where OF ;L denotes the completion of
OF at the prime ideal L. The following remark yields a slight simpli¢cation of the
calculation of the denominators.

Using exactly the same reasoning as in Section 3.1 we see that the induced rep-
resentation Ind�a1=2; Z0waÿ1=2� � Z0ÿ1 
P�w� too occurs in the boundary
cohomology of �S2. We denote by c0

pe;f the ¢nite part of c0
1;pe (cf. Section 2.1).

c0
pe;f is invariant under K1�pe; q� :� K1�2; pe� � K1�2; q� as well as under the operation

of Aut�C=Q�Z0�� and therefore de¢nes an element in H1�@ �S2�Kf
1 �pe; q��;Q�Z0��,

where Kf
1 �pe; q� �

Q
` 6�p;q;1GL2�Z`�K1�pe; q�. We let

e10 �
X
i�1;2

c0
1;ioi 2 H1�gl2;K2;1Z0

2�R�; Ind�a1=21 ; aÿ1=21 ��
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be a generator of the cohomology at in¢nity and we set

o0
pe �g;D� :�

X
g

c0
pe;f e

1
0�gg;D�:

As in Section 3.1 we then deduce o0
pe 2 H1�S2�Kf

1 �pe; q��;Q�Z0�� and also that
ope � Z0 
 o0

pe . In particular ope and o0
pe have the same denominators (in

Q�Z; Z0�) and we may (and will) replace ope by o0
pe for the calculation of the

denominators.

4.1. SPECIAL CYCLES IN THE HOMOLOGY

We use the following notations:H � GL�2 �R�=SO2�R�Z0
2�R� is the upper half plane,

G resp. G1�m� the full group GL2�Z� resp. the congruence subgroup consisting of
matrices a b

c d

ÿ �
satisfying c � 0 and d � 1 mod m and �H is the Borel^Serre com-

pacti¢cation. On the level of sets, �H is the disjoint union

�H �H [
[

s2P1�Q�
Hs;1;

where Hs;1 is the boundary component at the cusp s. In this section we denote by O
the ring of integers of Q�Z0�. We also denote by O the one-dimensional O-module
with trivial G1�peq�-operation; the Shapiro Isomorphism in homology then reads

Hi�G1�peq�nH;O�ÿ!� Hi�GnH; indG
G1�peq�h�1iO�;

where an element c
 a of the right hand side is being sent to
P

g2G1�peq�h�1inG a�g�gc.
The same isomorphism also holds for the relative homology. (For a de¢nition of
homology with non-trivial coef¢cients and its properties cf. [Ha 2], ch. E). We
put M :� indG

G1�pe�h�1iO. We want to explicitely construct a set of cycles generating
H1�G1�peq�nH;O� and we proceed as follows. We let B�c; s�, s 2 P1�Q� be the set
of all points g 2H, whose distance to s is equal to c. For any r 2 P1�R�nfsg
the intersection of B�c; s� with the geodesic Zr;s joining r and s consists of a single
point gr 2H and the assignment r 7! gr yields a natural identi¢cation
Hs;1 $ P1�R�nfsg: We write frgs to denote the point on the boundary component
belonging to the cusp s and corresponding to r 2 P1�R�nfsg and we let Z�0;1� be
the geodesic in H running from f0g1 to f1g0, where by1 we understand the cusp
belonging to the standard Borel subgroup ��

�
ÿ �

. The ¢rst relative homology then con-
sists of the cycles Z�0;1� 
 j, j 2M. We want to ¢nd out, which of the cycles
Z�0;1� 
 j are images of absolute cycles. Using the long exact homology sequence

� � � ! Hi�GnH;M� !rel
Hi�Gn �H; @Gn �H;M� !@ Hiÿ1�@Gn �H;M� ! � � �

we see that Z�0;1� 
 j is contained in the image of rel, precisely if
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@�Z�0;1� 
 j� � f0g1 
 �jÿ wj� � 0. Since @Gn �H � N2�Z�nH we ¢nd

H0�@Gn �H;M� �M=�1ÿ T �M

where T � 1 1
1

ÿ �
. Thus, Z�0;1� 
 j 2 im rel is equivalent to

�jÿ wj� � �1ÿ T �j0 �4:1�

for some j0 2M. Since �1ÿ T �j0 � @��0; 1�1 
 j0� this is equivalent to
@�Z�0;1� 
 j� � @��0; 1�1 
 j0�. Thus, assuming �4:1� we see that Z�0;1� 
 jÿ
�0; 1�1 
 j0 represents an absolute cycle, which maps to Z�0;1� 
 j under rel.
Applying the Shapiro Isomorphism this cycle reads Zj :� Zi

j ÿ Zb
j, where

Zi
j :�

X
g

j�g� gZ�0;1� and Zb
j :�

X
g

j0�g� g�0; 1�1

and we conclude: modulo cycles which are supported on the boundary,
H1�G1�peq�n �H;O� is generated by the cycles Zj with j 2M satisfying �4:1�.

We identify the coset spaces G1�peq�nG � K1�pe; q�nGL2�Zp� �GL2�Zq�. Any
(relative) cycle Z i

j is a O-linear combination of the chains gZ�0;1� for
g 2 K1�pe; q�nGL2�Zp� �GL2�Zq�. Moreover, we have

gZ�0;1� � ÿgwZ�0;1�
where w � ÿ1

1ÿ �
and it is therefore suf¢cient to consider translates by elements

g 2 K1�pe; q�nGL2�Zp� �GL2�Zq�=hwi (w is embedded diagonally into GL2�Zp��
GL2�Zq�).

LEMMA 4.1. The union of the following elements forms a system of representatives
for the double coset space K1�pe; q�nGL2�Zp� �GL2�Zq�=hwi:

1
d

� �
w 1 pk

1

� �
t

1

� �
� 1

d

� �
w

1 1
1

� �
t

1

� �
;

where d 2 �Z=peÿkqZ��; t 2 �Z=peqZ�� and k � 0; . . . ; e,

1
d

� �
w 1 pk

1

� �
t

1

� �
� 1

d

� �
w;

where d 2 �Z=peÿkqZ��; t 2 �Z=peZ�� and k � 0; . . . ; e and

1
d

� �
w 1 pk

1

� �
t

1

� �
� 1

d

� �
;

where d 2 �Z=peÿkqZ��; t 2 �Z=peZ�� and k � 0; . . . ; e. Here, we identify
�Z=peqZ�� � �Z=peZ�� � �Z=qZ��.
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Proof. We start from the decomposition

GL2�Zp� � _[i�0;...;eK0�2; pe� 1
pi 1

� �
K0�2; pe�:

For any i > 0 we have the inclusion

K0�2; pe� 1
pi 1

� �
K0�2; pe�w � K0�2; pe� 11 1

� �
K0�2; pe�:

Furthermore the decomposition

a b
c d

� �
� bÿ ad=c ÿa

ÿc
� �

w
1 d=c

1

� �
proves that any element g 2 K1�2; pe�nK0�2; pe� 1

1 1

ÿ �
K0�2; pe� has a representative

g � 1
d

� �
w

1 u
1

� �
;

where d 2 �Zp=peZp�� and u 2 Zp=peZp. We write u in the form
u � pkt; t 2 Z�p; k � 0; . . . ; e and ¢nally obtain that there is a representative of
the form

g � 1
d

� �
w 1 pk

1

� �
t

1

� �
where t 2 �Z=peZ�� and even d 2 �Z=peÿkZ��. In a quite similar way we see that any
coset in K1�2; q�nGL2�Zq� has a representative either of the form

1
d

� �
w

1 1
1

� �
t

1

� �
with d; t 2 �Z=qZ�� or of one of the forms

1
d

� �
w;

1
d

� �
where d 2 �Z=qZ��. This implies that any double coset has a representative of the
desired form and since it is easily veri¢ed that these elements yield different cosets,
the proof of the Lemma is complete.

EXAMPLE 4.2. We label the matrices appearing in the above lemma by gd;k;t, g0d;k;t
and g00d;k;t. Since G1�N� � G�N� �N2�Z� we see that a set of representatives for the
cusps of G1�peq�nH is given by 1 and the fractions r=s with �r; s� � 1,
0W s < N, r < s and two cusps r=s and r0=s0 are equivalent if r=sÿ r0=s0 2 Z or
�r; s� � �r0; s0� �mod N�. In particular we deduce that the chain gd;k;tZ�0;1� runs from
the cusp 0 to 1=d2tpk. Hence, for any d; d 0 2 �Z=p�eÿk�qZ��; t; t0 2 �Z=peqZ�� such
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that d2t � d 02t0 �mod peÿkq� the chain

Z � gd;k;tZ�0;1� ÿ gd 0;k;t0Z�0;1�

is a relative cycle which is the image of an absolute cycle Zd;d 0;t;t0;k in
H1�G1�peq�n �H;Z�.

4.2. THE INTEGRAL ON THE BOUNDARY

We want to evaluate the Eisenstein class o0
pe on the cycles Zj. We do this by

seperately evaluating o0
pe on the inner and the boundary component of Zj and

we start with the evaluation on the boundary component. We denote by

o0
pe j@ �S2

2 H1�@ �S2�Kf
1 �pe; q��;Q�Z0��

the restriction of o0
pe to the boundary of �S2�Kf

1 �peq��.

LEMMA 4.3. o0
pe j@ �S2

satis¢es the properties

. o0
pe j@ �S2

is contained in H1�@ �S2�Kf
1 �pe; q��;O�int.

. o0
pe j@ �S2

is only supported at boundary components belonging to the cusps 1
d

ÿ �1,
d 2 �Zq=qZq��.

Proof. The boundary @ �S2�Kf
1 �pe; q�� is homotopy equivalent to the space

B2�Q�nGL2�A�=Kf
1 �pe; q�K2;1Z0

2�R�
and under this equivalence o0

pe j@ �S2
corresponds to the cocycle c0

pe;f e
1
0. We will

explicitely describe the section c0
pe;f . We set

Me � B2�Q�
Y
6̀�p;q;1

GL2�Z`�K0�2; pe�K0�2; q�

and write any g 2 Me in the form g � a �
b

� �
kkpkq, where

kp � ap bp
cp dp

� �
2 K0�2; pen �; kq � aq bq

cq dq

� �
2 K0�2; q�:

Note that using strong approximation for �A;�� we always can achieve that
bp � 0 �mod pk� for any k 2N. Using the decomposition

GL2�Af � � B2�Q�
Y
6̀�1

GL2�Z`�

and left B2�Q�-invariance of c0
n as well as the explicit description of the local com-

ponents c0
n;p and c0

n;q (cf. Section 1) we see that the ¢nite part c0
n;f for n 6� 1 is
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supported on Men and for g 2 Men as above we have

c0
n;f �g� � ja=bjÿ11 Z0;q�dq�np�dp�:

On the other hand, for en X 1 we have

Men
pm

1

� �
�Men�m

(choose bp � 0 �mod pk� with k suf¢ciently large) and we deduce that the ¢nite part
c0
n;pe;f is supported on Me. Moreover, for g 2 Me we obtain

c0
n;pe;f �g� � ja=bjÿ11 Z0;q�dq�np�dp�:

In the same way we see that c0
1;pe;f is supported onMe and for g 2 Me the section

c0
1;pe;f is given by

c0
1;pe;f �g� � ja=bjÿ11 Z0;q�dq�:

The Fourier transform de¢ning c0
pe;f � c0

1;pe;f is now easily evaluated: c0
pe;f is

supported on

B2�Q�
Y

` 6�p;q;1
GL2�Z`�K0�2; pe�K0�2; q�

and for g 2 Me we have

c0
pe;f �g� � ja=bjÿ11 Z0;q�dq�; for dp � �1 �mod pe�;

0; else.

�
In particular we see that the restriction of c0

pe;f to GL2�Ẑ� is O-valued, which by an
easy calculation (cf. [Kai], 2.3.3 Korollar) implies that the cohomology class
c0
pe;f e

1
0 is contained in H1�@ �S2�Kf

1 �pe; q��;O�int. Moreover since c0
pe;f is supported

only on the cusps 1
d

ÿ �1, where d 2 �Zq=qZq��, the second claim of the lemma follows
and the proof therefore is ¢nished.

Using the lemma we deduce thatZ
Zb

j

o0
pe �

X
d2�Zq=qZq��

j0 1
d

� �Z
1
d� ��0;1�1

o0
pe j@ �S2

: �4:2�

The width of the cusps 1
d

ÿ �1 is 1 and 1
d

ÿ ��0; 1�1 therefore is closed, i.e. contained in
H1�@ �S2�Kf

1 �pe; q��;Z�. Hence, the integral of o0
pe on Zb

j is contained in O. In other
words: No denominators are coming from the boundary.

4.3. THE INNER INTEGRAL

In this section we complete the determination of the denominators of o0
pe by

calculating the values of o0
pe on the inner components Zi

j. In the following we dis-
tinguish between cocycles in the relative Lie-algebra cohomology o0

pe and their
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associated cocycles ~o0
pe in the de-Rham cohomology. We will evaluate ~o0

pe seperately
on the chains gd;k;tZ�0;1�, g0d;k;tZ�0;1� and g00d;k;tZ�0;1� and we begin with the ¢rst one.
In fact we will evaluate ~o0

pe on a slightly more general chain: we denote by T1

the torus in GL2 consisting of elements of the form �
1

ÿ �
, i.e. T1 � Gm. For

d 2 �Z=peÿkqZ��; k � 0; . . . ; e and any map l : �Z=peqZ�� ! O we de¢ne the rela-
tive cycles

Zd;k;l :�
X

t2T1�Z=peq�
l�t� gd;k tZ�0;1� �H;

where

gd;k � 1
d

� �
�w;w� 1 pk

1

� �
;
1 1

1

� �� �
and gd;k t acts via its image in G1�peq�nSL2�Z�. These chains translate into an adelic
setting as follows. The adelization of the symmetric space G1�peq�nH reads
GL2�Q�nGL2�A�=Kf

1 �pe; q�K2;1Z0
2�R� and for any g 2 SL2�Z�we obtain the canoni-

cal map

R�>0 ! GL2�Q�nGL2�A�=Kf
1 �pe; q�K2;1Z0

2�R�
t1 7! g

t1
1

� �
; 1; . . . ; 1

� �
:

Therefore, in the adelic symmetric space the chain gZ�0;1� equals Z�0;1� � gÿ1 where
g � �g`� 2 GL2�Ẑ� is any representative of the coset Kf

1 �pe; q��g; . . . ; g� 2
Kf

1 �pe; q�nGL2�Ẑ�. We therefore have to calculateZ
Zd;k;l

~o0
pe �

X
t2T1�Z=peq�

l�t�
Z
Z�0;1��tÿ1gÿ1d;k

~o0
pe ;

where gd;k � �g`� 2 GL2�Ẑ�with �gp; gq� � gd;k and all components outside p; q equal
to 1 and t 2 T1�Z=peqZ� also stands for the ade© lic matrix �t`� 2 T1�Ẑ� with
tp � t �mod pe�, tq � t �mod q� and t` � 1 for ` 6� p; q. We parametrize our cycle
Z�0;1� as follows

s : T1�R�0 � R�>0 ! Z�0;1� �H

t1 7! t1
1

� �
i

and obtainZ
Z�0;1��tÿ1gÿ1d;k

~o0
pe �

Z
T1�R�0

o0
pe

�
�t1; tÿ1gÿ1d;k�;DLtÿ11

�Ds�t1 @

@t1
�
� dt1

t1
;

whereDLtÿ11
denotes the derivative of the left translation by tÿ11 and dt1 resp. @=@t1 is

a Haar measure resp. an invariant tangent vector ¢eld on �R;��. Taking into
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account that

DLtÿ11
�Ds t1

@

@t1

� �
� 1 0

0 0

� �
(cf. [Ha 2], ch. 6.2, p. 28, [Kai], ch. 3.1) we obtainZ

Zd;k;l

~o0
pe �

X
t2T1�Z=peq�

l�t�
Z
T1�R�0

o0
pe �t1; tÿ1gÿ1d;k�;

1 0
0 0

� �� �
dt1
t1

:

We ade© lize l as follows. We set

T1;peq :� fx 2 T1�Ẑ� : xp � 1 �mod pe�; xq � 1 �mod q�g;

i.e. we have T1�Ẑ�=T1;peq � �Z=peqZ��. Any t 2 T1�A� uniquely decomposes as
t � rt1k with r 2 T1�Q�; t1 2 T 0

1 �R� � R�>0; k 2 T1�Ẑ� and we de¢ne

~l : T1�Q�nT1�A� ! O

by setting ~l�t� :� l�kÿ1 � T1;peq�. Using ade© lic variables the above integral now readsZ
Zd;k;l

~o0
pe � vol�1� peZp � 1� qZq�ÿ1

Z
T1�Q�nT1�A�

~l�t�o0
pe t � gÿ1d;k;

1 0
0 0

� �� �
dt;

where dt � Q` dt` with local measures

dt` �
dt1=jt1j if ` � 1

Haar measure on Z�` with
R
Z�`

dt` � 1 if ` 6� 1:
�

To proceed further we replace o0
pe �

P
g2B2�Q�nGL2�Q� g � c0

pe;f e
1
0 by its de¢ning sum

and split the summation over g according to the decomposition of GL2�Q� into dis-
joint T1�Q�-orbits

GL2�Q� � B2�Q� _[B2�Q� ÿ1
1

� �
_[B2�Q� 11 1

� �
T1�Q�:

The integrals corresponding to the ¢rst twoT1�Q�-orbits vanish (cf. [Ha 2], ch. 6.2, p.
29, [Kai], ch. 3.1) and for the integral corresponding to the last orbit we obtainZ

Zd;k;l

~o0
pe

� vol�1� peZp � 1� qZq�ÿ1
Z
T1�A�

~l�t�c0
pe;f e

1
0

1 0
1 1

� �
t � gÿ1d;k;

1 0
0 0

� �� �
dt:

Since any l : �Z=peqZ�� ! Z can be written l � l� � lÿ, where l��x� � �l�x��
l�ÿx��=2, we may assume that l is either even or odd. For any tf 2 T1�Af � we
set ~lf �tf � :� ~l�tf ; 1� and we also de¢ne ~l1 � id if l is even and ~l1 � sgn if l is odd.
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~lf de¢nes a map on the quotient space

~lf : T1;>0�Q�nT1�Af �=T1;peq � �Z=peqZ�� ! O;

which coincides with l � � �ÿ1 on �Z=peqZ�� and ~l decomposes

~l�t� � ~lf �tf �~l1�t1�

for t � �tf ; t1�. Accordingly the adelic integral decomposesZ
Zd;k;l

~o0
pe �

Z
T1�R�

~l1�t1�e10
1 0
1 1

� �
t1;

1 0
0 0

� �� �
dt1
jt1j�

� vol�1� peZp � 1� qZq�ÿ1
Z
T1�Af �

~lf �tf �c0
pe;f

1 0
1 1

� �
tf gÿ1d;k

� �
dtf :

We denote the ¢rst resp. the second factor by I1 resp. If . Concerning I1 we have (cf.
[Kai], ch. 3.2.3, or with minor changes in the case ~l1 � sgn^ [Ha 2], ch. 6.2, p. 31)

I1 � 0; if ~l1 � id;
2G�1�G�1�=G�2�; if ~l1 � sgn:

�
In particular we are reduced to calculating If and in doing so to odd l. Each odd l is a
O-linear combination of the maps lE : �Z=peqZ�� ! Z, where E 2 �Z=peqZ�� and lE
is given by

lE�t� :�
1; if t � E �mod peq�;
ÿ1; if t � ÿE �mod peq�;
0; else.

8<:
Therefore, from now on we may assume l � lE. Using the unique decomposition
A�f � Q�>0 � Ẑ we obtain

If �
X

r2T1;>0�Q�

Z
T1�Ẑ�=T1;peq

~lE;f �rtf �c0
pe;f

1 0
1 1

� �
rtf gÿ1d;k

� �
dtf :

Since ~lf �rtf � � l�tf � for r 2 T1;>0�Q�; tf 2 T1�Ẑ� we further obtain If � IE ÿ IÿE,
where

IE �
X

r2T1;>0�Q�
c0
pe;f

1 0
1 1

� �
r Eÿ1

1

� �
gÿ1d;k

� �
:

We write r 2 Q�>0 in the form r � a=b with a; b 2 Z>0; �a; b� � 1. There are integers
x; y 2 Z such that xbÿ ya � 1 and we obtain the global Iwasawa decomposition

1
1 1

� �
r

1

� �
� a

bÿ1

� �
1 ÿy=b

1

� �
x y
a b

� �
:
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The description of c0
pe;f , which we obtained in the proof of Lemma 4.2, implies that

IE �
X

a;b2Z>0; �a;b��1
jabjÿ11 c0

pe;f
x y
a b

� �
Eÿ1

1

� �
� gÿ1d;k

� �
: �4:3�

Recalling the de¢nition of gd;k we see that

x y

a b

� �
Eÿ1

1

 !
� gÿ1d;k

� . . . ;
yÿ Eÿ1xpk ÿdÿ1Eÿ1x
bÿ pkEÿ1a ÿEÿ1dÿ1a

 !
; . . . ;

yÿ Eÿ1x ÿdÿ1Eÿ1x
bÿ Eÿ1a ÿdÿ1Eÿ1a

 !
; . . .

 !

is contained in the support of c0
pe;f if and only if there is an x0 2 �Z=qZ�� such that

a � x0; b � Eÿ1x0 �mod q�; a � dE; b � dpk �mod pe�

or

a � x0; b � Eÿ1x0 �mod q�; a � ÿdE; b � ÿdpk �mod pe�: �4:4�

Thus we obtain (note that Z0;q is even)

IE � Zÿ10;q�Ed�
X

x02�Z=qZ��
Z0;q�x0�

X
a;b

1
ab
;

where a; b 2 Z>0, �a; b� � 1 run over all pairs as in (4.4). For any x 2 �Z=peqZ��;
y 2 �Z=peÿkqZ�� we set

Sx;y;k :� 1
pk
X
a;b

1
ab
;

where a; b 2 Z run over all pairs satisfying �a; b� � 1 as well as a �
x �mod peq� b � y �mod peÿkq�. In particular, since ~o0

pe vanishes on even cycles
we see that

R
Zd;k;t

~o0
pe �

R
Zd;k;lt

~o0
pe and recalling that If � IE ÿ IÿE we ¢nally obtainZ

gd;k;tZ�0;1�
~o0
pe � Zÿ10;q�td�

X
x02�Z=qZ��=f�1g

Z0;q�x0��S�x0;dt�;�tÿ1x0;d� � S�x0;ÿdt�;�tÿ1x0;ÿd��:

Remark 4.4. The sum de¢ning Sx;y;k like the one de¢ning o0
pe does not converge

absolutely and to give sense to the de¢nition of Sx;y;k as well as to justify our cal-
culations we apply the standard analytic continuation: using a (global) Iwasawa
decomposition g � bk we set c0

pe;i;s�g� � ds2;A�b�c0
pe;i�g�, where c0

pe;i � c0
pe;fc

0
1;i

and o0
pe;s�g;D� �Pg2B2�Q�nGL2�Q�

P
i�1;2 c

0
pe;i;s�gg�oi�D�. The sum de¢ning o0

pe;s con-
verges absolutely for Re�s� > 0 and has a holomorphic continuation to the entire
complex plane satisfying o0

pe;0 � o0
pe . Since the cycle Zj is compact we deduce that

the mapping F : s 7! R
Zj

~o0
pe;s too is holomorphic and uniqueness of the analytic
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continuation then yieldsZ
Zj

~o0
pe � lim

s!0

Z
Zj

~o0
pe;s � F �0�:

To calculate F �0� we split the domain of integration into the boundary and the inner
component. Equation (4.2) implies the holomorphy of

R
Zb

j
~o0
pe;s in s. Moreover,

replacing o0
pe by o0

pe;s in the above calculations we ¢nd that
R
gd;k;tZ�0;1� ~o0

pe;s for
Re�s� > 0 is given by the same formula as above with Sx;y;k replaced by

Sx;y;k;s � 1
pk
X
a;b

1
�ab�1�s ;

where a; b 2 Z are as in the de¢nition of Sx;y;k (compare Eq. (4.3)). We note that for
Re�s� > 0 this sum converges absolutely. Thus, assuming that Sx;y;k;s has a
holomorphic continuation to C we may de¢ne Sx;y;k � Sx;y;k;0 and with this de¢-
nition

R
gd;k;tZ�0;1� ~o0

pe is then given by the above formula. It will follow from (4.5) below
that Sx;y;k;s can be analytically continued to C.

The evaluation of o0
pe on the chains g0d;k;tZ�0;1� and g00d;k;tZ�0;1� is quite analogous,

one simply has to replace the source of l by �Z=peZ��. We state the results:Z
g0d;k;tZ�0;1�

o0
pe � Zÿ10;q�d�

X
a;b

Z0;q�a�
ab

where a; b 2 Z run over all pairs satisfying �a; b� � 1, a � Eÿ1d�mod pe�;
b � dpk �mod pe�, a 2 Z�q and qjb andZ

g00d;k;tZ�0;1�
o0

pe � Z0;q�dÿ1�
X
a;b

Z0;q�b�
ab

where a; b 2 Z run over all �a; b� � 1 with a � Eÿ1d �mod pe�; b � dpk �mod pe�,
b 2 Z�q and qja. In particular these integrals are integral linear combinations of terms
of the form

S0x;y;k :� 1
pk
X
a;b

1
ab

where x 2 �Z=peqZ��; y 2 �Z=peÿkZ�� and a; b 2 Z run over all pairs, such that
�a; b� � 1, a � x �mod peq�; b � y �mod peÿk�. Again, this has to be understood
as the value at s � 0 of S0x;y;k;s � pÿk

P
a;b 1=�ab�1�s. We may summarize our results

so far: for any cycle �Z� 2 H1� �S2�Kf
1 �pe; q��;Z� we haveZ

�Z�
o0

pe � Oÿ linear combination of the terms Sx;y;k; S0x;y;k �mod O�:
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4.4. THE COMPLETION AT p

We are left with determining the denominators of Sx;y;k and S0x;y;k in the completions
of O. Since the case S0x;y;k is analogous, we will only deal with Sx;y;k. We let
w : �Z=peqZ�� ! C� be any even and c : �Z=peÿkqZ�� ! C� be any odd Dirichlet
character (not necessarily primitive) and we denote by L�w; s� and L�c; s� their
Dirichlet series (i.e. we omit the Euler factors at p and q). A small calculation proves

X
x2�Z=peqZ��

y2�Z=peÿkqZ��

wcÿ1�x�c�y�Sx;y;k � 4
pk

L�wcÿ1; 1�L�c; 1�
L�w; 2� ;

where we regard wcÿ1 as Dirichlet character modulo peq. Since Sax;by;k � ab Sx;y;k for
a; b 2 f�1g, this implies

Sx;y;k � 1
f�peq�f�peÿkq�

1
pk
X
w;c

�wc�x� �c�y� L�wc
ÿ1; 1�L�c; 1�
L�w; 2� ; �4:5�

where w resp. c run over all even, resp. odd, characters as above. We note that by our
assumptions on the parity of w and c no poles occur in the above equation. The
de¢nition of the L-function yields

L�c; 1� � 1
peq

X
E2�Z=peqZ��=f�1g

c�E�
X
n2Z

1
n� E=peq

and the partial fraction p cot�px� �Pn2Z
1

n�x then yields

L�c; 1� � p

peq

X
E2�Z=peqZ��=f�1g

c�E� z
E
peq � zÿEpeq

zEpeq ÿ zÿEpeq
�zpeqpeq � ÿ1�:

Plugging in and taking into account the character relations for c we obtain

Sx;y;k � 1
f�peq�

X
w

�w�x� p2

p2eq2L�w; 2� �

�
X

E2�Z=peqZ��=f�1g
w�E� z

E
peq � zÿEpeq

zEpeq ÿ zÿEpeq
:
zEyx

ÿ1
peq � zÿEyx

ÿ1
peq

zEyx
ÿ1

peq ÿ zÿEyx
ÿ1

peq

:

Let fw be the conductor of w. Using the functional equation

p2eq2

p2
L�w; 2� � ÿ2G�w�p2eq2f ÿ2w L�wÿ1;ÿ1�;
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the divisibility G�w�jfw and the congruence

X
E2�Z=peqZ��
E�E0 �fw �

zEpeq � zÿEpeq

zEpeq ÿ zÿEpeq
:
zEdpeq � zÿEdpeq

zEdpeq ÿ zÿEdpeq

2 pe

fw

1
pq
OQ�w�; �4:6�

which holds for ¢xed E0 2 �Z=peqZ�� (see Lemma 4.6. for a proof), we see that

Sx;y;k � 1
q3pe�1f�peq�

X
w

X
Emod peq=fw

w�xÿ1E� aE;yxÿ1;w
L�wÿ1;ÿ1� �4:7�

with integers aE;yxÿ1;w 2 OQ�w�. Since L�w;ÿ1�s � L�ws;ÿ1� for all s 2 Gal� �Q=Q� the
above expressions imply that Sx;y;k 2 Q. We want to obtain a bound for
jL�wÿ1;ÿ1�jp. We denote by Lp be the Kubota^Leopoldt p-adic L-function. Lp

interpolates the values

Lp�o2w;ÿ1� � L�w;ÿ1� 2 Q�w�

(note that we omit the local factor at p from the de¢nition of L�w; s�).

LEMMA 4.5. For all even characters w of �Z=peqZ��, the absolute values of the p-adic
L-function are bounded, i.e. there are constants M1 and M2 such that

M1 < jLp�w;ÿ1�jp <M2:

This is independent of the imbedding ip.
Proof. Let u1 2 1� pZp be a topological generator. We put w0 � wj�Z=pqZ�� . It is

known from Iwasawa theory that for any character k : �Z=pqZ�� ! C�p there are
power series f �k;T � 2 Zp�zqÿ1���T ��, such that

Lp�w;ÿ1� �
f �w0; w�u1�u21 ÿ 1�; if w0 6� id;

f �id; w�u1�u21 ÿ 1�
w�u1�u21 ÿ 1

; if w0 � id:

8><>:
Using the Weierstrass Preparation Theorem we obtain a factorization

f �k;T � � akPk�T �fk�T �;
where ak 2 Zp�zqÿ1�, Pk�T � 2 Zp�zqÿ1��T � is a distinguished polynomial and
fk�T � �

P
iX 0 ak;iT

i 2 Zp�zqÿ1���T ���. The algebraic integer w�u1�u21 ÿ 1 is even con-
tained in the maximal ideal P of the completion of ip�OQ�w�u1��� (since
Qp�w�u1��=Qp is purely rami¢ed this is independent of the embedding ip), which
implies that for any k not necessarily equal to w0

fk�w�u1�u21 ÿ 1� � ak;0 �mod P�:
Hence, jfk�w�u1�u21 ÿ 1�jp � 1. We now assume that the conductor fw is large enough
so that �jw�u1�u21 ÿ 1jp�deg�Pk� > jpjp for all characters k. This only excludes ¢nitely
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many characters w and since Pk�T � is distinguished we see that

Pk�w�u1�u21 ÿ 1� � �w�u1�u21 ÿ 1�deg�Pk� �mod p�;
i.e. jPk�w�u1�u21 ÿ 1�jp � j�w�u1�u21 ÿ 1�deg�Pk�jp (note that Zp�zqÿ1�=Zp is unrami¢ed).
Thus, for all characters w having conductor so large that jpjp <
jw�u1�u21 ÿ 1jdeg�Pk�

p �< 1� holds for all characters k, we obtain

jpjp min
k
jakjp < jLp�w;ÿ1�jp < jpjÿ1p max

k
jakjp:

This proves the lemma.

Since Sx;y;k 2 Q the lemma together with Equation (4.7) immediately implies that

p2eMp Sx;y;k 2 Zp

for some constant Mp 2 Z independent of the embedding ip.
We still have to prove �4:6�. This will follow from

LEMMA 4.6. Let N 2N and let N 0jN be any divisor which is divisible by the same
prime numbers as N. Then for any d; E0 2 �Z=NZ�� the following congruence is true:

X
E

zEN � zÿEN

zEN ÿ zÿEN
:
zEdN � zÿEdN

zEdN ÿ zÿEdN

� 0 �mod N=N 0 OQ�zN0 ��;

where E 2 �Z=NZ�� runs over all elements satisfying E � E0 modN 0.
Proof. Let p1; . . . ; ps be the prime numbers dividing N. Let Fd 2 Z�T � denote the

dth cyclotomic polynomial. Since Fp1�...�ps and T ÿ 1 have leading coef¢cient 1
and are coprime (Fd is irreducible) there are polynomials h;P 2 Z�T � such that

�T ÿ 1�P�T � � 1ÿ h�T �Fp1�...�ps�T �:

We set N0 � N=�p1 � . . . � ps�. Substituting T 7!TN0 we obtain

�T ÿ 1�PN �T � � 1ÿ h�TN0 �Fp1�...�ps �TN0 �;

where PN �T � � P�TN0 � �Pi<N0
Ti 2 Z�T �. Since Fp1�...�ps�TN0� � FN�T � (cf. [L], p.

280) we see that PN is the inverse of T ÿ 1 modulo FN . In particular, specializing
T 7! zN ; z

d
N we deduce that

z2EN � 1
z2EN ÿ 1

:
z2EdN � 1
z2EdN ÿ 1

� QN �zEN �;

with a certain polynomial QN �
P

i aN;iT
i 2 Z�T �. Since

Gal�Q�zN �=Q�zN 0 �� � fzN 7! zEN ; E � 1mod N 0g
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we obtain

X
E�E0

zEN � zÿEN

zEN ÿ zÿEN
:
zEdN � zÿEdN

zEdN ÿ zÿEdN

�
X
i

aN;iTr�ziN �;

where Tr � Tr
Q�zN �
Q�zN0 �. But for any, not necessarily primitive Nth root of unity z and

any divisor N 0jN satisfying the assumptions we have Tr�z� 2 N=N 0 OQ�zN0 �, which
yields the claim of the lemma.

4.5. THE COMPLETION AT ` 6� p

Let ` be a prime number, which is different from p and let i` : �Q! C` be any
embedding. We denote by j � j` the normalized absolute valuation on C` as well
as the valuation on �Q induced by i`.
LEMMA 4.7. Let w run over all even characters of �Z=peqZ��. There is a constant M,
which does not depend on the embedding i`, such that jL�w;ÿ1�j` >M.

Proof. We will use the `-adic L-function

L`�wo1ÿn; n� � 1
1ÿ w�`�`ÿn L�w; n�

to show that 6̀ jL�w;ÿ1� for almost all w 6� 1 (o denotes the `-adic Teichmu« ller
character). Specializing n � ÿ1 we see that `jL�w;ÿ1� is equivalent to
`jL`�wo2;ÿ1�. Using [Wa], Corollary 5.13 we further see that this is equivalent
to `jL`�wo2; 0�. Since wo�`� is either equal to 0 or a �pÿ 1�pfwÿ1th root of unity (this
is only possible if ` � q) we see that 1ÿ wo�`� is not divisible by ` for fw large enough
(use [Wa], Lemma 1.4, Proposition 2.8). Hence `jL�wo; 0�. But Theorem 4.1 in [Si]
states that L�w; 0� is a `-adic unit for all but ¢nitely many characters w, which proves
the lemma.

Using the lemma, Equation (4.7) immediately implies thatM` Sx;y;k 2 Z` for some
constant M` 2 Z. Recalling that ope and o0

pe have the same denominators, we have
proved the following result on the denominators of our Eisenstein classes.

THEOREM 3. For any prime number ` there is a constant M` 2 Z such that for all
eX 2 and any prime ideal L � OQ�Z;Z0� lying above ` we have

�M` ope 2 H1�S2�K�;OQ�Z;Z0�;L�int;

where � � p2e if ` � p and � � 1 else.

5. Cohomology and Integrality

5.1. THE p-ADIC GROWTH OF THE DISTRIBUTION

In this last section we ¢nally determine, in the case of trivial coef¢cients, the bounds
for the denominators of the distribution mp=O�p� � mZp;1=O�p�, whose p-adic Mellin
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transform interpolates the critical values at s � 0. We start from the formula given
in Lemma 3.2, which we evaluate as follows. As in Lemma 3.2 we set
u � u�1; E; 0; pe�, E 2 Z�p. The cohomology class ope is invariant under the compact
open subgroup

K1
1 �2; pe� :�

a b
c d

� �
2 GL2�Zp� : a � 1 �mod p�; c � 0; d � 1 �mod pe�

� �
and the form i�r�uo ^ ope therefore is invariant under the subgroupK�pe�WK1

1 �2; pe�,
which consists of all elements k satisfying

uÿ1 k
1

� �
u 2 I :

LEMMA 5.1. The subgroup K�pe� does not depend on E 2 Z�p and has volume
p4�pÿ 1�ÿ1�p2 ÿ 1�ÿ1 pÿ4e.

Proof. A straightforward calculation proves that K�pe� consists of all elements

k � a
c

b
d

ÿ �
satisfying c � 0; d � 1; b � �d ÿ 1�=peÿ1 mod pe; a � 1� c=

peÿ1 mod peÿ1. In particular, using �GL2�Zp� : K1�2; pe�� � p2e�1ÿ pÿ2� we deduce

�GL2�Zp� : K�pe�� � pÿ4�pÿ 1��p2 ÿ 1� p4e;

which proves the lemma.

We denote by O the ring of integers of Ep�Z; Z0; zq�qÿ1��. Combining Lemmas 3.2
and 5.1 we obtain

mp�E� peZp�
O�p� � p4

�pÿ 1��p2 ÿ 1� �Zp�p�g�
ÿepe

Z
F2�K�pe��

1
O�p� i

�r�uo ^ ope : �5:1�

The right translation i�r�u is de¢ned over O and Theorem 3 then yields the ¢nal result
on the denominators of mp.

THEOREM 4. For any E 2 Z�p and any embedding ip : �Q,!Cp the following holds:

mp�E� peZp�
O�p�

���� ����
p
WMp jgÿ1jep pe;

where the constant Mp does not depend on the embedding ip. If ` is any prime number
different from p and i` : �Q,!C` is any embedding, then mp�E� peZp�=O�p�

�� ��
`
<M

is bounded by some constant M �M` only depending on `.

Since dqÿ1 and m�1� are Z-valued the same statement is true for the distribution
dqÿ1 � m�1� � mp=O�p� (cf. Section 2.2). We note that the value of jgjp depends on ip.
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5.2. h-ADMISSIBLE MEASURES

We want to give the application of Theorem 4 to the construction of p-adic analytic
L-functions. We will use the p-adic integration theory of [V]. Let Ch be the space
of functions f : Z�p ! Cp which are locally given by polynomials of degree at most
h. An h-admissible measure is a Cp-linear functional ~m : Ch! Cp, which satis¢es
the growth condition

sup
a2Z�p

��� ~m�cha�peZp � �xÿ a�i�
���
p
� o�jpejiÿhp �

for all 0W i < h and e!1 (cf. [V], p. 217) (chX denotes the characteristic function
of the set X ). We let F=Qp be any local ¢eld. We denote byMh

F the vector space
of all F -valued, h-admissible measures. We also denote by Dh

F the space of all
F -valued distributions satisfying the growth condition

sup
a2Z�p
jm�a� peZp�jp � o�jpejÿhp �:

EXAMPLE 5.2. Let h� 2N be large enough so that ph
�
gÿ1 2 O. Theorem 4 then

shows that mp=O�p� 2 Dh��2
ip�E�Z;Z0;zq�qÿ1���. In particular, the same is true for

dqÿ1 � m�1� � mp= O�p�.
For ~m 2 Mh

F we de¢ne a distribution res� ~m� through the equation

volres� ~m��a� peZp� � ~m�cha�peZp �:

This induces an F -linear map

res : Mh
F !Dh

F :

LEMMA 5.3. The map res : Mh
F !Dh

F is surjective, i.e. any distribution m 2 Dh
F can

be lifted to an h-admissible measure ~m.
Proof. Let m 2 Dh

F . Multiplying m by some scalar we may assume that
m�a� peZp� 2 pÿ�eÿ1�hOF . We want to construct an element in Mh

F , which maps
to m. Since Ch is generated over F by the functions cha�peZp � xi, where
a 2 Z�p; e 2N and i � 0; . . . ; h it is suf¢cient in order to de¢ne an h-admissible
measure to de¢ne its values on these functions. We choose a natural number
h0 < h and we ¢rst de¢ne an F -linear functional ~m : Ch! F satisfying the properties

(1) ~m�cha�peZp � � volm�a� peZp�,
(2) ~m�cha�peZp � xk� �

Pkÿ1
i�0 �ÿ1�kÿi k

i

ÿ �
akÿi ~m�cha�peZp � xi� �mod pÿ�eÿ1��h

0ÿk�OF �.
We will construct ~m using induction on k and in view of 1. we may start with

0 < kW h and assume that the values ~m�cha�peZp � xi�, i < k have already been de¢ned.
We ¢rst de¢ne a map �m on the F -span of the functions cha�peZp � xk, a 2 Z�p, e 2N, by
the equation in 2. This means that �m�cha�peZp � xk� is de¢ned modulo pÿ�eÿ1��h

0ÿk�OF .
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We want to verify that �m is well de¢ned, i.e. that it ful¢lls the distribution relationX
u2Z=pZ

�m�cha�upe�pe�1Zp
� xk� � �m�cha�peZp � xk� �mod pÿe�h

0ÿk�OF �: �5:2�

Using the binomial formula and the identity

k
i

� �
kÿ i
j

� �
� k

j

� �
kÿ j
i

� �
we ¢nd after a little calculation

�m�cha�upe�pe�1Zp
� xk� �

Xk
j�0
�ÿ1�j k

j

� �
�peu�j

X� kÿj
i�0 �ÿ1�

kÿiÿj kÿ j
i

� �
akÿiÿj �

� ~m�cha�upe�pe�1Zp
� xi� �mod pÿe�h

0ÿk�OF �;

where
P� means, that we omit the index �i; j� � �k; 0� from the summation. The

induction hypothesis on the values ~m�cha�upe�pe�1Zp
� xi�, i < k implies that for

j 6� 0 the inner sum is congruent 0 modulo pÿe�h
0ÿk�j�. Therefore we obtain

�m�cha�upe�pe�1Zp
� xk� �

Xkÿ1
i�0
�ÿ1�kÿi k

i

� �
akÿi ~m�cha�upe�pe�1Zp

� xi� �mod pÿe�h
0ÿk�OF �:

Summing this equation over u 2 Z=pZ and taking into account that by our
induction hypothesisX

u2Z=pZ
~m�cha�upe�pe�1Zp

� xi� � ~m�cha�peZp � xi�

for i < kwe see that �5:2� is true. It is easy to verify that there is an F -linear functional
~m from the span of cha�peZp � xk, E 2 Z�p, e 2N to F , which modulo pÿ�eÿ1��h

0ÿk�OF

coincides with �m. This ¢nishes the proof of the existence of an F -linear functional
~m satisfying 1. and 2. We show that ~m is even h-admissible: again, using the binomial
formula we ¢nd

m�cha�peZp � �xÿ a�k� �
Xk
i�0

k
i

� �
akÿi ~m�cha�peZp � xi�

and 2 then immediately implies that

m�cha�peZp � �xÿ a�k� 2 pÿ�eÿ1��h
0ÿk�OF :

Thus ~m is an h-admissible measure and since we trivially have res� ~m� � m the lemma
is proved.

We note that res is not injective and the h-admissible distributions restricting to
some given distribution m under res may be seen as p-adic deformations of m.
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We are now able to apply the p-adic integration theory from [V] to construct p-adic
analytic functions, which interpolate the automorphic L-function. We note in
advance that these p-adic L-functions satisfy some logarithmic growth condition.
We let ~mp be a lift of the distribution dqÿ1 � m�1� � mp=O�p� 2 Dh��2

ip�E�Z;Z0;zq�qÿ1���. We set

Xp :� Homcont�Z�p;Cp�
and we de¢ne the function Lp : Xp! Cp by

Lp�wp� :�
Z
Z�p

wpZ
2
p d ~mp;

the integral being de¢ned as in Section 1 of [V]. Theorem 2.3 in [V] then shows that Lp

is analytic and its growth is at most o�logh
��2���� for any h� as in Example 5.2. We

summarize our results (cf. Corollary 1).

COROLLARY 3. There is a p-adic analytic function Lp : Xp ! Cp such that for all
characters w : Q�nA� ! C� of conductor a p-power and in¢nity component
w1 � id we have

Lp�wp� � ẑ
e
gÿe G�wpZ2p�

L�p
 wZ; 0�
O�p� ;

where ẑ is a ¢xed root of unity. For all characters w with conductor a p-power and
in¢nity component w1 � sgn the function Lp vanishes identically. Moreover Lp

has no poles and equals o�logh
��2����.

Of course, Lp��� is given by some power series f 2 Quot�ip�O����T ��, but is not
uniquely determined.

Remark 5.4. The p-ordinary case. Let p be a cuspidal representation of GL3�A�
with unrami¢ed p-component pp � Ind�m1; m2; m3�. We call p p-ordinary with respect
to ip, if jmi�p�jp � piÿ2. In this case the complex number g de¢ned in Equation (2.4) is a
p-adic unit and we immediately obtain

mp�E� peZp�
O�p�

���� ����
p
WMp pe:

In different words, the growth of the distribution mp=O�p� equals at most the growth
of the Haar distribution mHaar on Z�p. Using the Lefschetz^Poincarë isomorphism

P : H2� �F2�K�pe��; @ �F2�K�pe��;Z� ! H1� �F2�K�pe��;Z�
we may rewrite �5:1� as

mp�E� peZp�
O�p� � local unit � pe

Z
O�p�ÿ1P�i�r�uo�

ope ;
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where u � u�1; E; 0; pe�. Thus, boundedness of mp=O�p� is equivalent toZ
O�p�ÿ1P�i�r�uo�

ope 2 1
pe

ip�O�

for all E 2 Z�p and eX 2.
On the other hand using the expressions of Section 4 for the integral

R
Zd;t;k

ope we
calculated for small e (and p) the integral of ope over the absolute cycles
Zd;d 0;t;t0;k (cf. Example 4.2). The results seem to indicate that for each level e there
is a cycle such thatZ

Zd;d0 ;t;t0;k
ope � local unit � 1

p2e
�mod O�:
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