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1. Introduction. Generalizations of the Radon–Nikodym property and the
analytic Radon–Nikodym property of Banach spaces have been extensively studied
over the past twenty years. Edgar [7] and later Dowling [6], introduced and studied
Radon–Nikodym properties associated with subsets of countable discrete abelian
groups (types I, II and III-�-RNP). Robdera and Saab [11] introduced and studied the
concept of the analytic complete continuity property and later introduced complete
continuity properties associated with subsets of countable discrete abelian groups
(types I, II and III-�-CCP) [12]. Of particular interest is that L1[0, 1] has type I, II or
III-�-RNP (or CCP) if and only if � is a Riesz set.

In a recent paper, Bu and Chill [2] introduced the notions of the Riemann–Lebesgue
property and the analytic Riemann–Lebesgue property, which are weakenings of
the complete continuity property and the analytic complete continuity property,
respectively. In this note, we shall define and study Riemann–Lebesgue properties
of Banach spaces associated with subsets of countable discrete abelian groups. In
particular, we shall give conditions under which L1[0, 1] has a Riemann–Lebesgue
property.

2. Preliminaries and definitions. Throughout this paper, G will denote a compact
metrizable abelian group, B(G) is the σ -algebra of Borel subsets of G, and λ is
normalized Haar measure on G. The dual group of G will be denoted by �. We
note that � is a countable discrete abelian group [13].

Let X be a complex Banach space and let 1 ≤ p ≤ ∞. For an X-valued measure,
µ on B(G) we define

�(µ|π ) =
∑
E∈π

µ(E)
λ(E)

χE,
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where π is a finite measurable partition of G, along with the convention 0
0 = 0. The

space Vp(G; X ) consists of all X-valued measures µ on B(G) with ‖µ‖p< ∞, where

‖µ‖p = sup
π

‖�(µ|π )‖Lp(G;X)

and the supremum is taken over all finite measurable partitions of G.
If µ ∈ VP(G; X) and γ ∈ �, then the Fourier coefficient µ̂(γ ) is defined by

µ̂(γ ) =
∫

G
γ̄ (x) dµ(x).

If f ∈ Lp(G; X) and γ ∈ �, then f̂ (γ ) is defined by

f̂ (γ ) =
∫

G
f (x)γ̄ (x) dλ(x).

If � ⊆ �, we define

Lp
�(G; X) = {f ∈ Lp(G; X) : f̂ (γ ) = 0 for all γ /∈ �}

and

Vp
�(G; X) = {µ∈ Vp(G; X) : µ̂(γ ) = 0 for all γ /∈ �}.

We also need the following notation:

V1
�,ac(G; X) = {µ∈ V1(G; X) : µ is λ − continuous and µ̂(γ ) = 0 for all γ /∈ �}.

For more information on vector measures, we refer the reader to the monograph
of Diestel and Uhl [3]. We are now ready to define Riemann–Lebesgue properties
associated to a subset � of �. To motivate these definitions recall that a Banach
space X has type-I-�-Radon–Nikodym property (I-�-RNP), (resp. type II-�-Radon–
Nikodym property (II-�-RNP)) if every µ ∈ V∞

� (G; X) (resp. every µ ∈ V1
�,ac(G; X))

is differentiable [5], and X has the type-I-�-complete continuity property (I-�-CCP),
(resp. type-II-�-complete continuity property (II-�-CCP)) if every µ ∈ V∞

� (G; X)
(resp. every µ ∈ V1

�,ac(G; X)) has relatively compact range [12].

DEFINITION 1. Let G be a compact abelian metrizable group and let � be a subset
of �. A Banach space X is said to have the type-I-�-Riemann–Lebesgue property
(I-�-RLP) if every µ∈ V∞

� (G; X) satisfies limγ→∞
γ∈�

‖µ̂(γ )‖= 0.

REMARK. It is easily seen that I-�-RNP implies I-�-CCP and I-�-CCP implies
I-�-RLP.

DEFINITION 2. Let G be a compact abelian metrizable group and let � be a subset
of �. A Banach space X is said to have the type-II-�-Riemann–Lebesgue property
(II-�-RLP) if every µ∈ V1

�,ac(G; X) satisfies limγ→∞
γ∈�

‖µ̂(γ )‖= 0.

REMARK. It is obvious that II-�-RLP implies I-�-RLP, since every element of
V∞

� (G; X) is an element of V1
�,ac(G; X). Also II-�-RNP implies II-�-CCP and II-�-

CCP implies II-�-RLP. Furthermore, by the method of proof of [12, Theorem 4.3] we
can see that I-�-RLP is equivalent to II-�-RLP.
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REMARK. If G = �, the circle group, then � = �. In [2], Bu and Chill defined the
notion of a Banach space having the Riemann–Lebesgue property. It can be easily seen
that their concept of Riemann–Lebesgue property is equivalent to both I-�-RLP and
II-�-RLP. The concept of the analytic Riemann–Lebesgue property introduced by Bu
and Chill is equivalent to both I-(� ∪ {0})-RLP and II-(� ∪ {0})-RLP.

REMARK. It is clear that if a Banach space has I-�-RLP (resp. II-�-RLP), then
so does every subspace of X . Moreover, since G is compact and metrizable, B(G)
is countably generated and hence every element of V1

�,ac(G, X) has separable range.
Consequently, X has I-�-RLP (resp. II-�-RLP) if every separable subspace of X has
I-�-RLP (resp. II-�-RLP).

To motivate the third type of Riemann–Lebesgue property we recall that a Banach
space X has type-III-�-Radon–Nikodym property (III-�-RNP), (resp. type III-�-
complete continuity property (III-�-CCP)) if every absolutely summing operator T :
C(G) → X with T ≡ 0 on C�′(G) is nuclear (resp. compact).

DEFINITION 3. Let G be a compact abelian metrizable group and let � be a subset
of �. A Banach space X is said to have type-III-�-Riemann–Lebesgue property (III-�-
RLP) if every absolutely summing operator T : C(G) → X with T ≡ 0 on C�′(G) has
the property that {T(γ̄ ) : γ ∈ �} is relatively compact in X .

REMARK. It is clear that III-�-RNP implies III-�-CCP and III-�-CCP implies
III-�-RLP. It is not so obvious that III-�-RLP implies II-�-RLP. This is the result we
shall now prove.

PROPOSITION 4. Let G be a compact abelian metrizable group and let � ⊆ �. If a
Banach space X has III-�-RLP, then X has II-�-RLP.

Proof. Suppose that X has III-�-RLP and let µ∈ V1
�,ac(G; X). Define an operator

T : C(G) → X by

T(f ) =
∫

G
f dµ for all f ∈ C(G).

Since µ is the representing measure for T and µ is of bounded variation, T is an
absolutely summing operator. Also, if γ ∈ �′, then γ̄ /∈ � and so T(γ ) = ∫

G γ dµ =
µ̂(γ̄ ) = 0. Hence T ≡ 0. on C�′(G). Therefore, since X has III-�-RLP, {T(γ̄ ) : γ ∈ �}
is relatively norm compact in X . This means that {µ̂(γ ) : γ ∈ �} is relatively norm
compact in X . For each x∗ ∈ X∗, x∗µ is a scalar measure of bounded variation that is
absolutely continuous with respect to λ. Hence limγ→∞

γ∈�
x∗(µ̂(γ )) = limγ→∞

γ∈�
(̂x∗µ)(γ ) = 0

for all x∗ ∈ X∗. Therefore (µ̂(γ ))γ∈� is a weakly null sequence in X and thus, since
{µ̂(γ ) : γ ∈ �} is relatively compact, (µ̂(γ ))γ∈� is norm null. This proves that X has
II-�-RLP. �

3. The results. We begin this section with a characterization of type I-�-RLP.
For this result we need to recall the concept of a good approximate identity.

A sequence (in)n∈� of measurable functions in : G → � is called a good approximate
identity on G if

1. in ≥ 0 for all n ∈ �,
2.

∫
G in(x)dλ(x) = 1 for all n ∈ �,
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3.
∑

γ∈� în(γ ) <∞ for all n ∈ �,
4. limn→∞

∫
U in(x) dλ(x) = 1 for all neighborhoods U of 1 in G.

It is well known that a good approximate identity always exists on G if G is a compact
abelian metrizable group.

Our first result is analogous to the Theorem in [7] and Theorem 3.3 in [12]. We
shall omit the easy proof.

THEOREM 5. Let G be a compact abelian metrizable group, let � ⊆ � and let (in)n∈�

be a good approximate identity on G. For a Banach space X the following are equivalent.
1. X has I-�-RLP.
2. For each bounded linear operator S : L1(G)/L1

�′(G) → X, the sequence
(SQ(γ̄ ))γ∈� is norm null in X, where Q : L1(G) → L1(G)/L1

�′(G) is the natural quotient
mapping.

3. If (aγ )γ∈� is a sequence in X such that (fn)n∈� is bounded in L∞
� (G; X), where

fn = ∑
γ∈� în(γ )aγ γ , then (aγ )γ∈� is a norm null sequence in X.

COROLLARY 6. Let G be a compact abelian metrizable group and let � be an infinite
subset of �. Then c0 fails to have I-�-RLP.

Proof. Since � is countably infinite, c0 and c0(�) are isometric. Let (eγ )γ∈� be the
canonical unit vector basis of c0(�). For each n ∈ �, define fn = ∑

γ∈� în(γ )eγ γ . It
is easy to see that (fn)n∈� is bounded in L∞

� (G; c0(�)), but (eγ )γ∈� is not a norm
null sequence in c0(�). Thus, by Theorem 5, c0(�) (and hence c0) fails to have I-�-
RLP. �

COROLLARY 7. Let G be a compact abelian metrizable group and let � be an infinite
subset of �. Then L1(G)/L1

�′(G) fails to have I-�-RLP.

Proof. Let Q : L1(G) → L1(G)/L1
�′(G) be the natural quotient mapping and note

that (Q(γ̄ ))γ∈� is a sequence of elements of L1(G)/L1
�′(G), each with norm at least 1.

Hence, by Theorem 5, L1(G)/L1
�′(G) fails to have I-�-RLP. �

Before we get to our next result, recall that a subset � of � is called a Sidon set if
C�(G) = �1(�).

COROLLARY 8. Let G be a compact abelian metrizable group, let � be an infinite
Sidon subset of � and let X be a Banach space. Then X has I-�-RLP if and only if X
does not contain a subspace isomorphic to c0.

Proof. Since � is infinite, every Banach space containing c0 will fail to have I-�-
RLP, by Corollary 6. On the other hand, since � is a Sidon set, every Banach space
not containing a subspace isomorphic to c0 has the I-�-RNP, by [6], and hence has
I-�-RLP. �

DEFINITION 9. [9] Let G be a compact abelian metrizable group and let � be a
subset of �. Then � is called a Rajchman set if each ν ∈ V1

�(G) satisfies limγ→∞
γ∈�

ν̂(γ ) = 0.

THEOREM 10. Let � be a subset of �. Then � is a Rajchman set if and only if
L1 [0, 1] has I-�-RLP.

Proof. Suppose that L1[0, 1] has type I-�-RLP. Since G is compact and metrizable,
L1(G) is isomorphic to a subspace of L1[0, 1] and hence L1(G) also has type I-�-RLP.
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Let µ ∈ V1
�(G). Define T : L1(G) → L1(G) by

Th(y) = (h̄ ∗µ)(y) =
∫

G
h(yx−1) dµ(x), for all h ∈ L1(G).

The operator T is clearly linear and is bounded because ‖Th‖1 ≤ ‖h‖1‖µ‖1, for all h ∈
L1(G). Also note that for each γ ∈ �, T(γ̄ ) = µ̂(γ )γ . Therefore, since µ ∈ V1

�(G),
T(γ̄ ) = 0, for all γ /∈ �. Hence T |L1

�′ (G) = 0, and so there exists a bounded linear
mapping S : L1(G)/L1

�′(G) → L1(G) such that T = SQ, where Q : L1(G) → L1(G)/
L1

�′(G) is the natural quotient mapping. Hence, by Theorem 5, (T(γ̄ ))γ∈� is norm
null in L1(G); that is, (µ̂(γ )γ )γ∈� is norm null in L1(G). This means that (µ̂(γ ))γ∈� is
a null sequence in �. Hence � is a Rajchman set.

Conversely, suppose that � is a Rajchman set. Let S : L1(G)/L1
�′(G) → L1[0, 1]

be a bounded linear operator and define T : L1(G) → L1[0, 1] by T = SQ. By the
Fakhoury–Kalton representation theorem [8, 10], there is a family {µω}ω∈[0,1] of
complex measures µω on B(G) such that, for each f ∈ L1(G), we have

T(f )(ω) =
∫

G
f (x) dµω(x),

for m-almost all ω ∈ [0, 1], where m is Lebesgue measure on [0, 1]. The Fakhoury–
Kalton representation theorem also says that

∫
[0,1] ‖µω‖1dm(ω) ≤ ‖T‖ and so µω is of

finite variation, for m-almost all ω ∈ [0, 1].
If γ /∈�, then γ̄ ∈ �′ and so T(γ̄ ) = SQ(γ̄ ) = 0. Hence for m-almost all ω ∈ [0, 1],

we have

0 = T(γ̄ )(ω) =
∫

G
γ̄ (x) dµω(x) = µ̂ω(γ ).

Since � is countable we can conclude that, for m-almost all ω ∈ [0, 1], we have
µ̂ω(γ ) = 0 for all γ /∈ �. Hence, for m-almost all ω ∈ [0, 1], µω ∈ V1

�(G). Therefore, since
� is a Rajchman set, (µ̂ω(γ ))γ∈� is a null sequence in �, for m-almost all ω ∈ [0, 1].
Consequently, we have by Lebesgue’s dominated convergence theorem

lim
γ→∞
γ∈�

‖T(γ̄ )‖1 = lim
γ→∞
γ∈�

∫
[0,1]

|T(γ̄ )(ω)| dm(ω)

= lim
γ→∞
γ∈�

∫
[0,1]

∣∣∣∣
∫

G
γ̄ (x) dµω(x)

∣∣∣∣ dm(ω)

= lim
γ→∞
γ∈�

∫
[0,1]

|µ̂ω(γ )| dm(ω)

= 0,

because the sequence of functions {µ̂(·)(γ )}γ∈� converges m-almost everywhere to 0 on
[0, 1], |µ̂(·)(γ )| ≤ ‖µ̂(·)‖1, for all γ ∈ �, and ‖µ̂(·)‖1 is a m-integrable function. Thus, by
Theorem 5, L1[0, 1] has type I-�-RLP. �

REMARK. Theorem 10 should be compared with the Proposition in [7], where it
is proven that � is a Risez set if and only if L1[0, 1] has I-�-RNP (� of � is called
a Riesz set if V1

�(G) = L1
�(G)). It is clear from the definitions of Rajchman and Riesz

https://doi.org/10.1017/S0017089502001118 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089502001118


164 P. N. DOWLING AND N. RANDRIANANTOANINA

sets, that Riesz sets are Rajchman sets. It is unknown whether Rajchman sets are, in
general Riesz sets. We mention also that a characterization of the �’s for which L1[0, 1]
has I-�-CCP is unknown.

We shall now give a characterization of II-�-RLP. This characterization is
analogous to Theorem 6 of [5] and Theorem 3.4 of [12]. We omit the easy proof.

THEOREM 11. Let G be a compact abelian metrizable group, let � be a Riesz subset
of �, and let (in)n∈� be a good approximate identity on G. For a Banach space X the
following are equivalent.

1. X has II-�-RLP.
2. If (aγ )γ∈� is a sequence in X such that (fn)n∈� is bounded in L1

�(G; X ), where
fn = ∑

γ∈� în(γ )aγ γ , then (aγ )γ∈� is a norm null sequence in X.

REMARK. One particularly interesting result proved in [2, Proposition 3.7] is that
Banach spaces that are B-convex have the Riemann–Lebesgue property. The proof
of [2, Proposition 3.7] uses the fact that the Hausdorff–Young inequality holds in B-
convex Banach spaces (see [1] and [4, p. 281]). Using Theorems 5 and 11, we can easily
prove that B-convex Banach spaces have II-�-RLP and therefore have II-�-RLP and
I-�-RLP, for all � ⊆ �.

When � is a Riesz set, II-�-RNP and III-�-RNP are equivalent [5, Theorem 11],
and II-�-CCP and III-�-CCP are equivalent [12, Proposition 3.8]. We now prove a
corresponding result for Riemann–Lebesgue properties.

PROPOSITION 12. Let G be a compact abelian metrizable group, let � be a Riesz
subset of �. Then a Banach space X has II-�-RLP if and only if X has III-�-RLP.

Proof. If X has III-�-RLP, then X has II-�-RLP, by Proposition 4.
Conversely, suppose that X has II-�-RLP. Let T : C(G) → X be an absolutely

summing operator with T ≡ 0 on C�′(G). Let F : B(G) → X∗∗ be the representing
measure for T ; that is, T(f ) = ∫

f dF for all f ∈ C(G). Since T is absolutely summing
F is an X-valued measure of bounded variation [3]. It is easy to see that F̂(γ ) =
T(γ̄ ), for all γ ∈ �. Hence, since T ≡ 0 on C�′(G), F̂(γ ) = 0, for all γ /∈ �. Thus
F ∈ V1

�(G, X ) and, since � is a Riesz set, F ∈ V1
�,ac(G, X ). Therefore, since X has II-

�-RLP, limγ→∞
γ∈�

‖F̂(γ )‖= 0. Consequently, limγ→∞
γ∈�

‖T(γ̄ )‖= 0 and so {T(γ̄ ) : γ ∈ �}
is relatively compact in X . This proves that X has III-�-RLP. �

REMARK. If � is not a Riesz set, then III-�-RNP is equivalent to the Radon–
Nikodym property and III-�-CCP is equivalent to the complete continuity property.
We do not know if there is a corresponding result for Riemann–Lebesgue properties.

THEOREM 13. Let G be a compact abelian metrizable group, let � be a subset of �.
If X is a Banach space such that L1 ([0, 1], X ) has I-�-RLP, then X has II-�-RLP. On
the other hand, if � is a Riesz set, then X has II-�-RLP if and only if L1 ([0, 1], X ) has
II-�-RLP.

Proof. Suppose that L1([0, 1], X ) has I-�-RLP. Then L1(G, X ) has I-�-RLP. Let

µ ∈ V1
�,ac(G, X ). Define an operator T : L1(G) → L1(G, X ), by T(f ) = µ ∗ f̄ , for all
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f ∈ L1(G). Note that for γ ∈ � and y ∈ G,

(Tγ )(y) =
∫

γ (x−1y) dµ(x)

=
∫

γ (x)γ (y) dµ(x)

= γ (y)
∫

γ (x) dµ(x)

= γ (y)µ̂(γ̄ ).

That is, T(γ ) = µ̂(γ̄ )γ , for all γ ∈ �. In particular, if γ ∈�′, then γ̄ /∈ � so that T(γ ) =
µ̂(γ̄ )γ = 0, since µ∈ V1

�,ac(G, X ). Therefore T ≡ 0 on L1
�′(G) and so there exists an

operator S : L1(G)/L1
�′(G) → X such that T = SQ, where Q : L1(G) → L1(G)/L1

�′(G)
is the natural quotient mapping. Hence, by Theorem 5, since L1(G, X ) has I-�-RLP,
limγ→∞

γ∈�
‖T(γ̄ )‖= 0. That is, limγ→∞

γ∈�
‖µ̂(γ )‖= 0. This proves that X has II-�-RLP.

Now suppose that � is a Riesz set and that X has the II-�-RLP property. Let
T : C(G) → L1([0, 1], X ) be an absolutely summing operator with T ≡ 0 on C�′(G).
By the Fakhoury–Kalton representation theorem [8, 10], there is a family {µω}ω∈[0,1]

of X-valued measures µω on B(G), such that, for each f ∈ C(G), we have

T(f )(ω) =
∫

G
f (x) dµω(x), for m-almost all ω ∈ [0, 1].

Also
∫

[0,1] ‖µω‖1dλ(ω) ≤ π1(T) and so µω is of finite variation for m-almost all ω ∈
[0, 1].

If γ /∈�, then γ̄ ∈ �′ so T(γ̄ ) = SQ(γ̄ ) = 0. Hence for m-almost all ω ∈ G, we have

0 = T(γ̄ )(ω) =
∫

G
γ̄ (x) dµω(x) = µ̂ω(γ ).

Since � is countable we can conclude that, for m-almost all ω ∈ [0, 1], we have µ̂ω(γ ) =
0, for all γ /∈ �. Hence, for m-almost all ω ∈ G, µω ∈ V1

�(G, X ). Therefore, since � is a
Riesz set, µω ∈ V1

�,ac(G, X ), for m-almost all ω ∈ G. Since X has II-�-RLP, (µ̂ω(γ ))γ∈�

is a null sequence in X , for m-almost all ω ∈ G. Finally, applying Lebesgue’s dominated
convergence theorem, just as in Theorem 10, we get

lim
γ→∞
γ∈�

‖T(γ̄ )‖L1([0,1],X ) = lim
γ→∞
γ∈�

∫
[0,1]

‖T(γ̄ )(ω)‖X dm(ω)

= lim
γ→∞
γ∈�

∫
[0,1]

∥∥∥∥
∫

G
γ̄ (x) dµω(x)

∥∥∥∥
X

dm(ω)

= lim
γ→∞
γ∈�

∫
[0,1]

‖µ̂ω(γ )‖X dm(ω)

= 0.

This, in particular, says that {T(γ̄ ) : γ ∈ �} is relatively compact in L1([0, 1], X ).
Therefore L1([0, 1], X ) has III-�-RLP and so it also has II-�-RLP. This completes
the proof.
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REMARK. In the proof of Theorem 13, we used the fact that � is a Riesz set for the
sole purpose of concluding that the measures µω are absolutely continuous. We can
drop the Riesz set condition on � if we replace L1([0, 1], X ) by Lp([0, 1], X ), where
1 < p < ∞. Specifically, the proof of Theorem 13 can be modified to show that, for
any subset � of �, a Banach space X has III-�-RLP if and only if Lp([0, 1], X ) has
III-�-RLP, where 1 < p < ∞.

THEOREM 14. Let � be a subset of �. Then � is a Rajchman set if and only if
L1([0, 1] has III-�-RLP.

Proof. If L1([0, 1] has III-�-RLP, it has I-�-RLP and so � is a Rajchman set, by
Theorem 10.

For the converse, suppose that � is a Rajchman set and let T : C(G) → L1([0, 1]
be an absolutely summing operator with T ≡ 0 on C�′(G). By the Fakhoury–Kalton
representation theorem [8, 10], there is a family {µω}ω∈[0,1] of complex measures µω on
B(G) such that, for each f ∈ C(G), we have

T(f )(ω) =
∫

G
f (x) dµω(x), for almost all ω ∈ [0, 1],

and
∫

[0,1] ‖µω‖1dm(ω) ≤ π1(T ), so that µω is of finite variation, for m-almost all ω ∈
[0, 1]. The remainder of the proof is completed just as in the proof of Theorem 10.
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