A HOMOMORPHISM IN EXTERIOR ALGEBRA

B. KOSTANT AND A. NOVIKOFF

1. Introduction. In the following, V is a vector space over an arbitrary field $F, \operatorname{dim}_{F} V=n$. Let $\left\{e^{1}, \ldots, e^{n}\right\}$ be a basis for V, and $\left\{f_{1}, \ldots, f_{n}\right\}$ be the dual basis for $V^{*},\left\langle f_{j}, e^{i}\right\rangle=\delta_{j}^{i}$. If $u=e^{1} \wedge \ldots \wedge e^{p}$ and $g=f_{1} \wedge \ldots \wedge f_{p}$, then the operators $\epsilon(u)$ and $i(g)$ (exterior and inner multiplication by u and g respectively) set up an equivalence between the ideal $\mathfrak{J}=$ range of $\epsilon(u)$ and the sub-algebra $\mathfrak{N}=$ range of $i(g)$ considered as vector spaces. That is, $\epsilon(u) i(g)$ is the identity on $\Im, i(g) \epsilon(u)$ is the identity on \mathfrak{A}. Under this equivalence $\left\{u \wedge e^{i_{1}} \wedge \ldots \wedge e^{i_{k}}\right\}$ and $\left\{e^{i_{1}} \wedge \ldots \wedge e^{i_{k}}\right\}$ are corresponding bases of \mathfrak{F} and \mathfrak{U} respectively $\left(p<i_{1}<\ldots<i_{k} \leqslant n\right)$. While \mathfrak{H} is a subalgebra of ΛV (namely ΛW, where $W \subset V$ is the space spanned by $\left.e^{p+1}, \ldots, e^{n}\right), \Im$ is multiplicatively trivial, i.e., within \mathfrak{J} all products vanish. Throughout ΛV is a generic relation for the exterior algebra over the vector space V and $\Lambda^{p} V$ for elements of degree p.
2. Below we establish that certain homomorphisms on ΛV induce homomorphisms on $\mathfrak{A}=\Lambda W$. Using the above equivalence of \mathfrak{Y} and \mathfrak{A} we then establish a matrix identity ("Sylvester's identity") as a corollary.

Lemma 1. If $e \in V$ and $f \in V^{*}$, then

$$
\begin{equation*}
i(f) \epsilon(e)+\epsilon(e) i(f)=\langle f, e\rangle I \tag{1}
\end{equation*}
$$

This is entirely standard. In fact

$$
i(f)\left(x_{1} \wedge \ldots \wedge x_{p}\right)=\sum_{i=1}^{p}(-1)^{i-1}\left\langle x_{i}, f\right\rangle x_{1} \wedge \ldots \wedge \hat{x}_{i} \wedge \ldots \wedge x_{p}
$$

from which (1) follows when both sides are restricted, as operators, to decomposable elements $x_{1} \wedge \ldots \wedge x_{p}, p=1, \ldots, n$. The unrestricted validity of (1) then follows by linearity.

Corollary 1. i(f_{k}) and $\epsilon\left(e^{j}\right)$ anti-commute if $k \neq j$.
Lemma 2. Any two of the following three statements imply the third, where P is a linear map on ΛV.
(i) P is a derivation.
(ii) The range of P is multiplicatively trivial (i.e. $P x \wedge P y=0$ for all x, y).
(iii) $I-P$ is a homomorphism.

Proof.
(a) $\quad(I-P) x \wedge(I-P) y=x \wedge y-(P x \wedge y+x \wedge P y)+P x \wedge P y$.
(b) $\quad(I-P)(x \wedge y)=x \wedge y-P(x \wedge y)$.

From (a) and (b) we have

$$
\begin{array}{r}
(I-P) x \wedge(I-P) y-(I-P)(x \wedge y)=P(x \wedge y)-(P x \wedge y+x \wedge P y) \\
+P x \wedge P y
\end{array}
$$

from which the result is immediate.
Corollary 2. If $e \in V, f \in V^{*},\langle f, e\rangle \neq 0$, then

$$
\frac{i(f) \epsilon(e)}{\langle f, e\rangle}
$$

is a homomorphism. In particular $i\left(f_{k}\right) \epsilon\left(e^{k}\right)$ is a homomorphism.
Proof. $\epsilon(e) i(f)$ is a derivation whose range is multiplicatively trivial. Use equation (1) and Lemma 2.

The next lemma replaces the e and f of Corollary 2 by u and g, decomposable elements in $\Lambda^{p} V, \Lambda^{p} V^{*}$, respectively.

Lemma 3. If $g \in \Lambda^{p} V^{*}, u \in \Lambda^{p} V, g$ and u decomposable, and $\langle g, u\rangle=i(g) u \neq 0$, then $\lambda i(g) \epsilon(u)$ is a homomorphism on ΛV where the scalar λ is chosen so that $\lambda^{-1}=\langle g, u\rangle$.

Proof. Let $u=u^{1} \wedge \ldots \wedge u^{p}$. No non-zero element in the subspace of V^{*} determined by g can vanish on each of u^{1}, \ldots, u^{p} (for then $\langle g, u\rangle$ would vanish), so there exist g_{1}, \ldots, g_{p} such that $\left\langle g_{k}, u^{j}\right\rangle=\delta_{k}^{j}$ and $g=\lambda^{-1} g_{1} \wedge \ldots \wedge g_{p}$. Further, since $\langle g, u\rangle=\left\langle\lambda^{-1} g_{1} \ldots g_{p}, u^{1} \ldots u^{p}\right\rangle$ we have $\lambda^{-1}=\langle g, u\rangle$. However,

$$
\begin{aligned}
\lambda i(g) \epsilon(u) & =i\left(g_{1} \wedge \ldots \wedge g_{p}\right) \epsilon\left(u^{1} \wedge \ldots \wedge u^{p}\right) \\
& =i\left(g_{p}\right) \ldots i\left(g_{1}\right) \epsilon\left(u^{1}\right) \ldots \epsilon\left(u^{p}\right) .
\end{aligned}
$$

Using Corollary 1 and the anti-commutativity of $i\left(g_{1}\right), \ldots, i\left(g_{p}\right)$ among each other, we have $\lambda i(g) \epsilon(u)=i\left(g_{1}\right) \epsilon\left(u^{1}\right) i\left(g_{2}\right) \epsilon\left(u^{2}\right) \ldots i\left(g_{p}\right) \epsilon\left(u^{p}\right)$, which, by Corollary 2 , is the product of p homomorphisms and hence a homomorphism, as desired.

The next theorem is an immediate consequence of Lemma 3.
Theorem. If A is a homomorphism of ΛV and g, u are decomposable elements of $\Lambda^{p} V^{*}, \Lambda^{p} V$ respectively, such that $\langle g, A u\rangle=\lambda^{-1} \neq 0$, then $\lambda i(g) A \epsilon(u)$ is a homomorphism of ΛV (and indeed, one which leaves the subalgebra \mathfrak{A} invariant).

Proof. $\lambda i(g) A \epsilon(u)(x \wedge y)=\lambda i(g) \epsilon(A(u))(A x \wedge A y)$ for x and y in ΛV. By Lemma $2 \lambda i(g) \epsilon(A(u))$ is a homomorphism, so that

$$
\begin{aligned}
\lambda i(g) A \epsilon(u)(x \wedge y) & =\lambda i(g) \epsilon(A u) A x \wedge \lambda i(g) \epsilon(A u) A y \\
& =\lambda i(g) A \epsilon(u) x \wedge \lambda i(y) A \epsilon(u) y
\end{aligned}
$$

as desired.
3. Application. Let B_{\Im} denote the restriction to \mathfrak{F} of $\epsilon(u) i(g) \lambda A$ and $B_{\mathfrak{A}}$ the restriction to \mathfrak{U} of $i(g) \lambda A \epsilon(u)$. Then $B_{\mathfrak{F}}: \mathfrak{F} \rightarrow \mathfrak{Y}$ and $B_{\mathfrak{Y}}: \mathfrak{X} \rightarrow \mathfrak{A}$ are equivalent under the maps $i(g)$ and $\epsilon(u)$, i.e., there is commutativity in

$$
\begin{gathered}
\mathfrak{F} \longrightarrow \mathcal{Y} \\
i(g) \downarrow \uparrow \epsilon(u) \quad \epsilon(u) \uparrow \downarrow i(g) \\
\mathfrak{H} \longrightarrow \underset{B_{\mathfrak{N}}}{\longrightarrow}
\end{gathered}
$$

where λ is determined as in Lemma 3.
It follows that $B_{\mathfrak{Y}}$ and $B_{\mathfrak{A}}$ have the same matrix

$$
\lambda A\left(\begin{array}{ll}
1 \ldots p & i \\
1 \ldots p & j
\end{array}\right)=B\binom{i}{j}
$$

with respect to the corresponding bases $\left\{u \wedge e^{i}\right\},\left\{e^{i}\right\}(i=p+1, \ldots, n)$ in $\Lambda^{p+1} \cap \mathfrak{F}$ and $\Lambda^{1} V \cap \mathfrak{N}=W$ respectively.

As a consequence of our theorem, $B_{\mathfrak{N}}$ is a homomorphism on \mathfrak{A}. We then have that B_{\Im} on $\Lambda^{p+k} \cap \Im$ has the matrix

$$
\lambda^{k} B\binom{i_{1} \ldots i_{k}}{j_{1} \ldots j_{k}}
$$

with respect to the \Im basis $\left\{u \wedge e^{i_{1}} \wedge \ldots \wedge e^{j_{k}}\right\} p<i_{1}<\ldots<i_{k} \leqslant m$. Since the corresponding matrix for $B_{\mathfrak{A}}$ on $\Lambda^{k} V \cap \mathfrak{A}$ is

$$
\lambda A\binom{1 \ldots p i_{1} \ldots i_{k}}{\ldots p j_{1} \ldots j_{k}}
$$

we have

$$
\lambda^{k-1} B\binom{i_{1} \ldots i_{k}}{j_{1} \ldots j_{k}}=A\binom{1 \ldots p i_{1} \ldots i_{k}}{1 \ldots p j_{1} \ldots j_{k}}
$$

or

$$
B\binom{i_{1} \ldots i_{k}}{j_{1} \ldots j_{k}}=\left(A\binom{1 \ldots p}{1 \ldots p}\right)^{k-1} A\binom{1 \ldots p i_{1} \ldots i_{k}}{1 \ldots p j_{1} \ldots j_{k}}
$$

the well-known identity of Sylvester.

Massachusetts Institute of Technology and
Stanford Research Institute

