A HOMOMORPHISM IN EXTERIOR ALGEBRA

B. KOSTANT AND A. NOVIKOFF

1. Introduction. In the following, V is a vector space over an arbitrary field F, dim_FV = n. Let $\{e^1, \ldots, e^n\}$ be a basis for V, and $\{f_1, \ldots, f_n\}$ be the dual basis for V^* , $\langle f_j, e^i \rangle = \delta_j^i$. If $u = e^1 \wedge \ldots \wedge e^p$ and $g = f_1 \wedge \ldots \wedge f_p$, then the operators $\epsilon(u)$ and i(g) (exterior and inner multiplication by u and g respectively) set up an equivalence between the ideal \mathfrak{F} = range of $\epsilon(u)$ and the sub-algebra \mathfrak{A} = range of i(g) considered as vector spaces. That is, $\epsilon(u)i(g)$ is the identity on $\mathfrak{F}, i(g) \epsilon(u)$ is the identity on \mathfrak{A} . Under this equivalence $\{u \wedge e^{i_1} \wedge \ldots \wedge e^{i_k}\}$ and $\{e^{i_1} \wedge \ldots \wedge e^{i_k}\}$ are corresponding bases of \mathfrak{F} and \mathfrak{A} respectively $(p < i_1 < \ldots < i_k < n)$. While \mathfrak{A} is a subalgebra of ΛV (namely ΛW , where $W \subset V$ is the space spanned by e^{p+1}, \ldots, e^n), \mathfrak{F} is multiplicatively trivial, i.e., within \mathfrak{F} all products vanish. Throughout ΛV is a generic relation for the exterior algebra over the vector space V and $\Lambda^p V$ for elements of degree p.

2. Below we establish that certain homomorphisms on ΛV induce homomorphisms on $\mathfrak{A} = \Lambda W$. Using the above equivalence of \mathfrak{F} and \mathfrak{A} we then establish a matrix identity ("Sylvester's identity") as a corollary.

LEMMA 1. If $e \in V$ and $f \in V^*$, then

(1)
$$i(f)\epsilon(e) + \epsilon(e)i(f) = \langle f, e \rangle I.$$

This is entirely standard. In fact

$$i(f)(x_1 \wedge \ldots \wedge x_p) = \sum_{i=1}^p (-1)^{i-1} \langle x_i, f \rangle x_1 \wedge \ldots \wedge \hat{x}_i \wedge \ldots \wedge x_p$$

from which (1) follows when both sides are restricted, as operators, to decomposable elements $x_1 \wedge \ldots \wedge x_p$, $p = 1, \ldots, n$. The unrestricted validity of (1) then follows by linearity.

COROLLARY 1. $i(f_k)$ and $\epsilon(e^j)$ anti-commute if $k \neq j$.

LEMMA 2. Any two of the following three statements imply the third, where P is a linear map on ΛV .

(i) P is a derivation.

- (ii) The range of P is multiplicatively trivial (i.e. $Px \land Py = 0$ for all x, y).
- (iii) I P is a homomorphism.

Received February 25, 1963.

Proof.

(a)
$$(I - P)x \wedge (I - P)y = x \wedge y - (Px \wedge y + x \wedge Py) + Px \wedge Py.$$

(b) $(I - P)(x \wedge y) = x \wedge y - P(x \wedge y).$

From (a) and (b) we have

$$(I - P)x \wedge (I - P)y - (I - P)(x \wedge y) = P(x \wedge y) - (Px \wedge y + x \wedge Py) + Px \wedge Py$$

from which the result is immediate.

COROLLARY 2. If $e \in V$, $f \in V^*$, $\langle f, e \rangle \neq 0$, then

$$\frac{i(f)\epsilon(e)}{\langle f, e \rangle}$$

is a homomorphism. In particular $i(f_k)\epsilon(e^k)$ is a homomorphism.

Proof. $\epsilon(e) i(f)$ is a derivation whose range is multiplicatively trivial. Use equation (1) and Lemma 2.

The next lemma replaces the *e* and *f* of Corollary 2 by *u* and *g*, decomposable elements in $\Lambda^{p}V$, $\Lambda^{p}V^{*}$, respectively.

LEMMA 3. If $g \in \Lambda^p V^*$, $u \in \Lambda^p V$, g and u decomposable, and $\langle g, u \rangle = i(g)u \neq 0$, then $\lambda i(g)\epsilon(u)$ is a homomorphism on ΛV where the scalar λ is chosen so that $\lambda^{-1} = \langle g, u \rangle$.

Proof. Let $u = u^1 \land \ldots \land u^p$. No non-zero element in the subspace of V^* determined by g can vanish on each of u^1, \ldots, u^p (for then $\langle g, u \rangle$ would vanish), so there exist g_1, \ldots, g_p such that $\langle g_k, u^j \rangle = \delta_k^j$ and $g = \lambda^{-1}g_1 \land \ldots \land g_p$. Further, since $\langle g, u \rangle = \langle \lambda^{-1}g_1 \ldots g_p, u^1 \ldots u^p \rangle$ we have $\lambda^{-1} = \langle g, u \rangle$. However,

$$\lambda i(g)\epsilon(u) = i(g_1 \wedge \ldots \wedge g_p)\epsilon(u^1 \wedge \ldots \wedge u^p)$$

= $i(g_p) \ldots i(g_1)\epsilon(u^1) \ldots \epsilon(u^p).$

Using Corollary 1 and the anti-commutativity of $i(g_1), \ldots, i(g_p)$ among each other, we have $\lambda i(g)\epsilon(u) = i(g_1)\epsilon(u^1)i(g_2)\epsilon(u^2)\ldots i(g_p)\epsilon(u^p)$, which, by Corollary 2, is the product of p homomorphisms and hence a homomorphism, as desired.

The next theorem is an immediate consequence of Lemma 3.

THEOREM. If A is a homomorphism of ΛV and g, u are decomposable elements of $\Lambda^p V^*$, $\Lambda^p V$ respectively, such that $\langle g, Au \rangle = \lambda^{-1} \neq 0$, then $\lambda i(g) A \epsilon(u)$ is a homomorphism of ΛV (and indeed, one which leaves the subalgebra \mathfrak{A} invariant).

Proof. $\lambda i(g)A \epsilon(u)(x \wedge y) = \lambda i(g)\epsilon(A(u))(Ax \wedge Ay)$ for x and y in ΛV . By Lemma 2 $\lambda i(g)\epsilon(A(u))$ is a homomorphism, so that

$$\lambda i(g) \ A \epsilon(u)(x \land y) = \lambda i(g) \ \epsilon(Au)Ax \land \lambda i(g) \ \epsilon(Au)Ay$$
$$= \lambda i(g) \ A \epsilon(u)x \land \lambda i(y) \ A \epsilon(u)y$$

as desired.

3. Application. Let $B_{\mathfrak{F}}$ denote the restriction to \mathfrak{F} of $\epsilon(u)i(g)\lambda A$ and $B_{\mathfrak{A}}$ the restriction to \mathfrak{A} of $i(g) \lambda A \epsilon(u)$. Then $B_{\mathfrak{F}} : \mathfrak{F} \to \mathfrak{F}$ and $B_{\mathfrak{A}} : \mathfrak{A} \to \mathfrak{A}$ are equivalent under the maps i(g) and $\epsilon(u)$, i.e., there is commutativity in

$$\begin{array}{c} & & B_{\mathfrak{F}} \\ \mathfrak{F} & \longrightarrow \mathfrak{F} \\ i(g) \downarrow \uparrow \epsilon(u) & \epsilon(u) \uparrow \downarrow i(g) \\ \mathfrak{A} & \longrightarrow \mathfrak{A} \\ & B_{\mathfrak{A}} \end{array}$$

where λ is determined as in Lemma 3.

It follows that $B_{\mathfrak{F}}$ and $B_{\mathfrak{A}}$ have the same matrix

$$\lambda A \begin{pmatrix} 1 \dots p & i \\ 1 \dots p & j \end{pmatrix} = B \begin{pmatrix} i \\ j \end{pmatrix}$$

with respect to the corresponding bases $\{u \wedge e^i\}$, $\{e^i\}$ (i = p + 1, ..., n)in $\Lambda^{p+1} \cap \mathfrak{F}$ and $\Lambda^1 V \cap \mathfrak{A} = W$ respectively.

As a consequence of our theorem, $B_{\mathfrak{A}}$ is a homomorphism on \mathfrak{A} . We then have that $B_{\mathfrak{F}}$ on $\Lambda^{p+k} \cap \mathfrak{F}$ has the matrix

$$\lambda^k B \begin{pmatrix} i_1 \dots i_k \\ j_1 \dots j_k \end{pmatrix}$$

with respect to the \mathfrak{F} basis $\{u \wedge e^{i_1} \wedge \ldots \wedge e^{i_k}\} \ p < i_1 < \ldots < i_k \leq m$. Since the corresponding matrix for $B_{\mathfrak{A}}$ on $\Lambda^k V \cap \mathfrak{A}$ is

$$\lambda A \begin{pmatrix} 1 \dots p \ i_1 \dots i_k \\ 1 \dots p \ j_1 \dots j_k \end{pmatrix},$$

we have

$$\lambda^{k-1}B\binom{i_1\ldots i_k}{j_1\ldots j_k} = A\binom{1\ldots p \ i_1\ldots i_k}{1\ldots p \ j_1\ldots j_k}$$

or

$$B\binom{i_1\ldots i_k}{j_1\ldots j_k} = \left(A\binom{1\ldots p}{1\ldots p}\right)^{k-1} A\binom{1\ldots p \ i_1\ldots i_k}{1\ldots p \ j_1\ldots j_k},$$

the well-known identity of Sylvester.

Massachusetts Institute of Technology and Stanford Research Institute

168