
A HOMOMORPHISM IN EXTERIOR ALGEBRA 
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1. Introduction. In the following, F is a vector space over an arbitrary 
field F, d im F F = n. Let {e1, . . . , en} be a basis for V, and {/i, . . . , / » } be 
the dual basis for F*, (fj} el) = b). If u = e1 A . . . A ep and g = fi A *. - A fP, 
then the operators e(u) and i(g) (exterior and inner multiplication by u and 
g respectively) set up an equivalence between the ideal 3 = range of e(u) 
and the sub-algebra 3Ï = range of i(g) considered as vector spaces. That is, 
e(u)i(g) is the identity on 3 , i(g) e(u) is the identity on 21. Under this equivalence 
{u A eil A . . . Aeik} and {eil A . . . A eik] are corresponding bases of 3 and 
21 respectively (p < ix < . . . < ik < n). While §1 is a subalgebra of A F (namely 
AW, where Wd V is the space spanned by ep+1, . . . , en), 3 is multiplicatively 
trivial, i.e., within 3 all products vanish. Throughout A F is a generic relation 
for the exterior algebra over the vector space V and APV for elements of 
degree p. 

2. Below we establish that certain homomorphisms on A F induce homo-
morphisms on §1 = AW. Using the above equivalence of 3 and §1 we then 
establish a matrix identity ("Sylvester's identity") as a corollary. 

LEMMA 1. If e G V and f G F*, then 

(1) i(f)e(e) + e(e)i(f) =<f,e)L 

This is entirely standard. In fact 
V 

i(J)(xi A . . . A xp) = X) (~ 1 ) Î _ 1 ( ^ > J 0 ^ I A . . . A xt A . . . A xv 

from which (1) follows when both sides are restricted, as operators, to decom
posable elements Xi A . . . A xp, p = 1, . . . , n. The unrestricted validity of 
(1) then follows by linearity. 

COROLLARY 1. i(fk) and e(ej) anti-commute if k 9e j . 

LEMMA 2. Any two of the following three statements imply the third, where 
P is a linear map on AV. 

(i) P is a derivation. 

(ii) The range of P is multiplicatively trivial {i.e. Px A Py = 0 for all x, y). 
(iii) I — P is a homomorphism. 
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Proof. 

(a) (I - P)x A (I - P)y = x A y - (Px A y + x A Py) + Px A Py. 

(b) ( J - P ) ( x A 3 ' ) = x A 3 ' - i 3 ( x A y). 

From (a) and (b) we have 

(I - P)x A (7 - P)y - (I - P)(x A y) = P(x A y) - (Px A y + x A Py) 

+ Px A Py 

from which the result is immediate. 

COROLLARY 2. If e e F, / 6 F*, (f, e) ^ 0, then 

i(Me) 
<f,e) 

is a homomorphism. In particular i(f^)e(ek) is a homomorphism. 

Proof. e(e) i(J) is a derivation whose range is multiplicatively trivial. Use 
equation (1) and Lemma 2. 

The next lemma replaces the e and / of Corollary 2 by u and g, decomposable 
elements in APV, APF*, respectively. 

LEMMA 3. If g 6 APV*, u Ç APV, g and u decomposable, and (g, u) = i{g)u 7± 0, 
then \i(g)e(u) is a homomorphism on AV where the scalar X is chosen so that 
X"1 = <g, u). 

Proof. Let u = u1 A . . . A uv. No non-zero element in the subspace of V* 
determined by g can vanish on each of u1, . . . , up (for then (g, u) would 
vanish), so there exist gi, . . . , gp such that (gk, u

j) = b{ and g — \~lgi A . . . A gv. 
Further, since (g, u) = (X_1gi. . . gpi u

l. . . up) we have X""1 = (g, u). However, 

\i(g)e(u) = i(gi A . . . A gp)e(ul A . . . A up) 

= i(gP) ...i(gi)e(ui) ...e(up). 

Using Corollary 1 and the anti-commutativity of i(gi), . . . , i fe ) among each 
other, we have \i(g)e(u) = i(gi)e(u1)i(g2)e(u2) . . . i(gP)e(up)} which, by 
Corollary 2, is the product of p homomorphisms and hence a homomorphism, 
as desired. 

The next theorem is an immediate consequence of Lemma 3. 

THEOREM. / / A is a homomorphism of AV and g, u are decomposable elements 
of APV*, APV respectively y such that (g, Au) = X"1 ^ 0, then \i(g)Ae(u) is a 
homomorphism of AV (and indeed, one which leaves the subalgebra % invariant). 

Proof. Xi(g)Ae(u)(x A y) = \i(g)e(A(u))(Ax A Ay) for x and y in AV. By 
Lemma 2 \i(g)e(A(u)) is a homomorphism, so that 
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M(g) Ae[u)(x A y ) = \i(g) e(Au)Ax A \i(g) e(Au)Ay 

= \i(g) Ae(u)x A \i(y) Ae(u)y 

as desired. 

3. Application. Let B$ denote the restriction to 3 of e(u)i(g)\A and 
B% the restriction to 21 of i{g) \Ae{u). Then B$ : 3 -> 3 and 5 a : 21 -> 21 
are equivalent under the maps i(g) and e(u), i.e., there is commutativity in 

B$ 

3 > 3 

*'(«UT«(«) €(«)U*(g) 

a — • a 

where X is determined as in Lemma 3. 
It follows that BQ and B% have the same matrix 

"(!:::S j)-*© 
with respect to the corresponding bases {u A e*}, {e*} (i = p + 1, . . . , w) 
in Ap+1 H 3 and A1 F Pi 2Ï = W respectively. 

As a consequence of our theorem, B% is a homomorphism on 21. We then 
have that B$ on Ap+k P\ 3 has the matrix 

V i . • -J*/ 

with respect to the 3 basis {u A eZl A . . . A ey*} p < ii < . . . < ik < m. 
Since the corresponding matrix for J5^ on Ak V C\ 21 is 

xJl Pn.-.H) 
\ l . . . p j i . . .jj 

we have 

^ B n y . A k \ j i p i y . A , \ 

or 

-C::::;::)-(-C:::?))*"Xl:::^::::;:). 
the well-known identity of Sylvester. 
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