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Abstract

In this paper, some ordering properties of convolutions of heterogeneous Bernoulli
random variables are discussed. It is shown that, under some suitable conditions, the
likelihood ratio order and the reversed hazard rate order hold between convolutions of two
heterogeneous Bernoulli sequences. The results established here extend and strengthen
the previous results of Pledger and Proschan (1971) and Boland, Singh and Cukic (2002).
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1. Introduction

The Bernoulli distribution is one of the most fundamental distributions in statistics, and has
found key applications in engineering, actuarial science, operations research, and reliability
theory. Recently, much attention has been paid to the study of convolutions of independent
random variables, such as exponential, gamma, Weibull, and geometric. We refer the reader to
Zhao and Balakrishnan (2010), Mao et al. (2010), Kochar and Xu (2011), and the references
therein for some related developments.

Let Xp1 , . . . , Xpn be a sequence of independent Bernoulli random variables with parameters
p1, . . . , pn, respectively. The convolution of independent Bernoulli random variables was first
considered in Hoeffding (1956), who showed that

P

( n∑
i=1

Xpi
≤ k

)
≤

k∑
j=0

(
n

j

)
p̄j (1 − p̄)n−j for 0 ≤ k ≤ np̄ − 1

and

P

( n∑
i=1

Xpi
≤ k

)
≥

k∑
j=0

(
n

j

)
p̄j (1 − p̄)n−j for np̄ ≤ k ≤ n,

where p̄ = ∑n
i=1 pi/n. As a consequence, Hoeffding further showed that, for any two integers

b and c such that 0 ≤ b ≤ np̄ ≤ c ≤ n,

P

(
b ≤

n∑
i=1

Xpi
≤ c

)
≥

c∑
j=b

(
n

j

)
p̄j (1 − p̄)n−j .

Received 14 September 2010; revision received 24 February 2011.
∗ Postal address: Department of Mathematics, Illinois State University, Normal, IL, USA.
Email address: mxu2@ilstu.edu
∗∗ Postal address: Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada.

877

https://doi.org/10.1239/jap/1316796922 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1316796922


878 M. XU AND N. BALAKRISHNAN

Gleser (1975), by utilizing the concept of majorization, refined the results of Hoeffding (1956)
and showed that if

(p1, . . . , pn) �m (p∗
1, . . . , p∗

n) (1.1)

then

P

( n∑
i=1

Xpi
≤ k

)
≤ P

( n∑
i=1

Xp∗
i

≤ k

)
for 0 ≤ k ≤ np̄ − 2

and

P

( n∑
i=1

Xpi
≤ k

)
≥ P

( n∑
i=1

Xp∗
i

≤ k

)
for np̄ + 2 ≤ k ≤ n,

where ‘�m’ denotes the majorization order (see Definition 2.2 below).
This result was further extended in Boland and Proschan (1983), who proved that, under

condition (1.1), if pi ≥ k/(n − 1) for all i = 1, . . . , n then

P

( n∑
i=1

Xpi
≤ k

)
≤ P

( n∑
i=1

Xp∗
i

≤ k

)
,

and if pi ≤ k/(n − 1) for all i = 1, . . . , n then

P

( n∑
i=1

Xpi
≤ k

)
≥ P

( n∑
i=1

Xp∗
i

≤ k

)
.

It is also of interest to mention that Pledger and Proschan (1971) established the following
results:

(− log(p1), . . . ,− log(pn)) �m (− log(p∗
1), . . . , − log(p∗

n)) �⇒
n∑

i=1

Xpi
≥st

n∑
i=1

Xp∗
i

(1.2)
and

(
1 − p1

p1
, . . . ,

1 − pn

pn

)
�m

(
1 − p∗

1

p∗
1

, . . . ,
1 − p∗

n

p∗
n

)
�⇒

n∑
i=1

Xpi
≥st

n∑
i=1

Xp∗
i
, (1.3)

where ‘≥st’ denotes the usual stochastic order (see Definition 2.1 below).
Wang (1993) considered the variance of the convolution of independent Bernoulli random

variables, and proved that

(p1, . . . , pn) �m (p∗
1, . . . , p∗

n) �⇒ var

( n∑
i=1

Xpi

)
≤ var

( n∑
i=1

Xp∗
i

)
,

which means that the variance of the convolution increases as the components of (p1, . . . , pn)

become more homogeneous. Actually, a stronger version of this result has been proved in
Karlin and Novikoff (1963) by using the convex transforms; see also Ma (2000) and Hu and
Ruan (2004) for some additional results in this direction.

More recently, Boland et al. (2002), (2004) further studied the comparison of convolutions of
heterogeneous and homogeneous Bernoulli random variables. Specifically, letting Y1, . . . , Yn
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be independent and identically distributed Bernoulli random variables with parameter p, they
showed that

n∑
i=1

Xpi
≥st

n∑
i=1

Yi ⇐⇒ p ≤ pg

and
n∑

i=1

Xpi
≤st

n∑
i=1

Yi ⇐⇒ p ≥ pcg,

where pg = n

√∏n
i=1 pi and pcg = 1 − n

√∏n
i=1(1 − pi) are the geometric mean of pi and the

complement of the geometric mean of 1 − pi , respectively. Furthermore,

n∑
i=1

Xpi
≥hr

n∑
i=1

Yi ⇐⇒
n∑

i=1

Xpi
≥lr

n∑
i=1

Yi ⇐⇒ p ≤ ph

and
n∑

i=1

Xpi
≤hr

n∑
i=1

Yi ⇐⇒
n∑

i=1

Xpi
≤lr

n∑
i=1

Yi ⇐⇒ p ≥ pch,

where ph = n/
∑n

i=1 1/pi and pch = 1 − n/
∑n

i=1 1/(1 − pi) are the harmonic mean of pi

and the complement of the harmonic mean of 1 − pi , respectively, and ‘≥hr’ and ‘≥lr’ denote
the hazard rate order and the likelihood ratio order, respectively (see Definition 2.1 below).
We refer the reader to Boland and Singh (2006) and Boland (2007) for reviews of various
developments on this topic.

In this paper we continue further in this direction and show that

(− log(p1), . . . ,− log(pn))
w� (− log(p∗

1), . . . , − log(p∗
n)) �⇒

n∑
i=1

Xpi
≥rh

n∑
i=1

Xp∗
i

(1.4)
and (

1

p1
, . . . ,

1

pn

)
w�

(
1

p∗
1
, . . . ,

1

p∗
n

)
�⇒

n∑
i=1

Xpi
≥lr

n∑
i=1

Xp∗
i
, (1.5)

or, equivalently,

(
1 − p1

p1
, . . . ,

1 − pn

pn

)
w�

(
1 − p∗

1

p∗
1

, . . . ,
1 − p∗

n

p∗
n

)
�⇒

n∑
i=1

Xpi
≥lr

n∑
i=1

Xp∗
i
,

where ‘
w�’ denotes the weak supermajorization order (see Definition 2.3 below), and ‘≥rh’

denotes the reversed hazard rate order (see Definition 2.1 below). Our results not only strengthen
Equations (1.2) and (1.3) of Pledger and Proschan (1971), but also generalize the results of
Boland et al. (2002) from homogeneous to heterogeneous Bernoulli random variables. It should
also be pointed out that the condition in (1.5) is stronger than that in (1.4) (see Marshall and Olkin
(1979, p. 117)). Some applications of these results in reliability theory and software testing
can be found in Pledger and Proschan (1971), Boland et al. (2002), and Xu and Balakrishnan
(2010).
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2. Preliminaries

In this section we first recall some notions of stochastic orders and majorization orders which
are closely related to the main results to be developed in the following section.

Definition 2.1. Let X and Y be two discrete random variables with common support on the
integers N0 = {0, 1, 2, . . .}, respective probability mass functions f (k) and g(k), respective
distribution functions F(k) = P(X ≤ k) and G(k) = P(Y ≤ k), and respective survival
functions F̄ (k) = P(X ≥ k) and Ḡ(k) = P(Y ≥ k). Then, X is said to be smaller than Y in
the

(i) likelihood ratio order, denoted by X ≤lr Y , if g(k)/f (k) is increasing in k ∈ N0;

(ii) hazard rate order, denoted by X ≤hr Y , if Ḡ(k)/F̄ (k) is increasing in k ∈ N0;

(iii) reversed hazard rate order, denoted by X ≤rh Y , if G(k)/F (k) is increasing in k ∈ N0;

(iv) usual stochastic order, denoted by X ≤st Y , if F̄ (k) ≤ Ḡ(k) for all k ∈ N0.

The following implications are well known:

X ≤lr Y �⇒ X ≤hr(rh) Y �⇒ X ≤st Y.

For a comprehensive discussion on various stochastic orders, we refer the reader to Shaked and
Shanthikumar (2007).

We shall also use the concept of majorization in the development of our main results. Let
{x(1), x(2), . . . , x(n)} denote the increasing arrangement of the components of the vector x =
(x1, x2, . . . , xn).

Definition 2.2. The vector y is said to be majorized by the vector x (denoted by x �m y) if

j∑
i=1

x(i) ≤
j∑

i=1

y(i)

for j = 1, . . . , n − 1 and
∑n

i=1 x(i) = ∑n
i=1 y(i).

By relaxing the last equality condition we have the following definition.

Definition 2.3. The vector y is said to be weakly supermajorized by vector x (denoted by

x
w� y) if

j∑
i=1

x(i) ≤
j∑

i=1

y(i)

for j = 1, . . . , n.

For extensive and comprehensive details on the theory of majorization orders and their
applications, we refer the reader to the book by Marshall and Olkin (1979).

3. Main results

The following lemma will be used in the sequel (see Theorem A.8 of Marshall and Olkin
(1979, p. 59)).
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Lemma 3.1. A real-valued function φ defined on R
n satisfies

x
w� y �⇒ φ(x) ≥ φ(y)

if and only if φ is decreasing and Schur convex on R
n.

Let us first discuss the two-dimensional case.

Lemma 3.2. Let Xp1 and Xp2 be independent Bernoulli random variables with parameters p1
and p2. Then,

(
1

p1
,

1

p2

)
w�

(
1

p∗
1
,

1

p∗
2

)
�⇒ Xp1 + Xp2 ≥lr Xp∗

1
+ Xp∗

2
.

Proof. Define, for j = 0, 1, 2,

f (j) = P(Xp1 + Xp2 = j)

and
g(j) = P(Xp∗

1
+ Xp∗

2
= j).

Note that (1/p1, 1/p2)
w� (1/p∗

1, 1/p∗
2) implies that

1

p1
+ 1

p2
≤ 1

p∗
1

+ 1

p∗
2
. (3.1)

Now, let us show that Xp1 + Xp2 ≥lr Xp∗
1

+ Xp∗
2
. This is true if and only if f (j)/g(j) is

increasing in j = 0, 1, 2, or, equivalently,

(1 − p1)(1 − p2)

(1 − p∗
1)(1 − p∗

2)
≤ p1 + p2 − 2p1p2

p∗
1 + p∗

2 − 2p∗
1p∗

2
≤ p1p2

p∗
1p∗

2
. (3.2)

The second inequality of (3.2) follows from (3.1). Hence, it is enough for us to show the first
inequality, which could be simplified as

1

1/p∗
1 − 1

+ 1

1/p∗
2 − 1

≤ 1

1/p1 − 1
+ 1

1/p2 − 1
. (3.3)

Observing that

h(x, y) = 1

x − 1
+ 1

y − 1
, x > 1, y > 1,

is the sum of decreasing convex functions, h(x, y) is decreasing Schur convex (see Theorem C.1
of Marshall and Olkin, (1979, p. 64)). Hence, upon using Lemma 3.1, (3.3) follows immediately.

Lemma 3.3. Let Xp1 and Xp2 be independent Bernoulli random variables with parameters p1
and p2. Then,

(− log(p1), − log(p2))
w� (− log(p∗

1), − log(p∗
2)) �⇒ Xp1 + Xp2 ≥rh Xp∗

1
+ Xp∗

2
.
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Proof. Define, for j = 0, 1, 2,

F(j) = P(Xp1 + Xp2 ≤ j)

and
G(j) = P(Xp∗

1
+ Xp∗

2
≤ j).

Note that (− log(p1), − log(p2))
w� (− log(p∗

1), − log(p∗
2)) implies that

p1p2 ≥ p∗
1p∗

2 . (3.4)

We now have to show that
F(j)

G(j)

is increasing in j = 0, 1, 2 for the reversed hazard rate order, which is equivalent to showing
that

(1 − p1)(1 − p2)

(1 − p∗
1)(1 − p∗

2)
≤ 1 − p1p2

1 − p∗
1p∗

2
≤ 1. (3.5)

The second inequality of (3.5) follows from (3.4). Now, let us show the first inequality, which
could be simplified as

1

1/p∗
1 − 1

+ 1

1/p∗
2 − 1

≤ 1

1/p1 − 1
+ 1

1/p2 − 1
.

Since

h1(x, y) = 1

ex − 1
+ 1

ey − 1
, x > 0, y > 0,

is the sum of decreasing convex functions, h1(x, y) is decreasing Schur convex. Hence, by
using Lemma 3.1 once again, (3.5) follows immediately.

The following two results present natural extensions of Lemmas 3.2 and 3.3 from the two-
dimensional case to the general case. The technique used here is similar to that used in Bon
and Pǎltǎnea (1999).

Theorem 3.1. Let Xp1 , . . . , Xpn be independent Bernoulli random variables with parameters
p1, . . . , pn, respectively. Then,

(
1

p1
, . . . ,

1

pn

)
w�

(
1

p∗
1
, . . . ,

1

p∗
n

)
�⇒ Xp1 + · · · + Xpn ≥lr Xp∗

1
+ · · · + Xp∗

n
.

Proof. Without loss of generality, assume that p1 ≤ p2 ≤ · · · ≤ pn and p∗
1 ≤ p∗

2 ≤ · · · ≤
p∗

n. The proof is carried out by mathematical induction. For n = 1, the proof is trivial. When
n = 2, the result follows from Lemma 3.2. Now, assume that the result holds for n − 1. We
will then prove the case for n ≥ 3. Note that

(
1

p1
, . . . ,

1

pn

)
w�

(
1

p∗
1
, . . . ,

1

p∗
n

)

implies that
n∑

i=j

1

pi

≤
n∑

i=j

1

p∗
i

for j = 1, . . . , n.
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If
1

p1
≤ 1

p∗
n

then we have 1/pi ≤ 1/p∗
i for i = 1, . . . , n. Hence,

Xpi
≥lr Xp∗

i
, i = 1, . . . , n.

The likelihood ratio order has the preservation property that if X ≥lr Y and Z is independent
of X and Y , where X, Y , and Z have log-concave densities, then X + Z ≥lr Y + Z (see
Theorem 1.C.9 of Shaked and Shanthikumar (2007)). Since Bernoulli random variables have
log-concave densities, and the sum of independent random variables with log-concave densities
has a log-concave density (see Theorem 2.18 of Dharmadhikari and Joag-Dev (1988)), it follows
that

n∑
i=1

Xpi
≥lr

n∑
i=1

Xp∗
i
.

Now, if
1

p1
>

1

p∗
n

then there must exist some integer k such that

1

pk+1
≤ 1

p∗
n

<
1

pk

.

Observing that (
1

pk

,
1

pk+1

)
w�

(
1

p∗
n

,
1

pk

+ 1

pk+1
− 1

p∗
n

)
,

due to Lemma 3.2, we have

Xpk
+ Xpk+1 ≥lr Xp∗

n
+ Z, (3.6)

where Z is a Bernoulli random variable with parameter p = 1/{1/pk + 1/pk+1 − 1/p∗
n},

independent of Xp∗
i

for i = 1, . . . , n.
Meanwhile, we have(

1

p1
, . . . ,

1

pk−1
,

1

p
,

1

pk+2
, . . . ,

1

pn

)
w�

(
1

p∗
1
, . . . ,

1

p∗
n−1

)
.

By induction,

Xp1 + · · · + Xpk−1 + Z + Xpk+2 + · · · + Xpn ≥lr Xp∗
1
+ · · · + Xp∗

n−1
. (3.7)

From (3.6) and Theorem 1.C.9 of Shaked and Shanthikumar (2007), it follows that

Xp1 + · · · + Xpn ≥lr Xp1 + · · · + Xpk−1 + Z + Xp∗
n
+ Xpk+2 + · · · + Xpn. (3.8)

Hence, by (3.7) we have

Xp1 + · · · + Xpk−1 + Z + Xp∗
n
+ Xpk+2 + · · · + Xpn ≥lr Xp∗

1
+ · · · + Xp∗

n
. (3.9)

Now, upon combining (3.8) and (3.9), the required result follows immediately.
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Using a similar argument and Lemma 3.3, we obtain the following result.

Theorem 3.2. Let Xp1 , . . . , Xpn be independent Bernoulli random variables with parameters
p1, . . . , p2, respectively. Then,

(− log(p1), . . . ,− log(pn))
w� (− log(p∗

1), . . . , − log(p∗
n))

�⇒ Xp1 + · · · + Xpn ≥rh Xp∗
1
+ · · · + Xp∗

n
.
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