1. Introduction. If X is a topological space then S(X) will denote the semigroup, under composition, of all continuous functions from X into X. An element f in a semigroup is regular if there is an element g such that fgf = f. The regular elements of S(X) will be denoted by R(X). Elements f and g are inverses of each other if fgf = f and gfg = g. Every regular element has an inverse [1]. If every element in a semigroup has a unique inverse then the semigroup is an inverse semigroup. In this paper we examine maximal inverse subsemigroups of S(X).

For certain idempotents e we will define a set I_e and show that I_e is a maximal inverse subsemigroup of S(X) with e as its smallest idempotent. N. R. Reilly [5], J. W. Nichols [4] and B. M. Schein [7] have looked at maximal inverse subsemigroups of T(X), the full transformation semigroup on the set X. By letting X have the discrete topology we can apply our theorems about 0-dimensional spaces to yield the results of Nichols and Reilly. Further results give conditions on X which ensure that G(X), the group of units of S(X), is a maximal inverse subsemigroup. Other theorems will give results for X a Euclidean n-cell or Euclidean n-space.

2. Preliminary results. Throughout the paper we will use the notation and basic results about semigroups from Clifford and Preston [1]. A retract is the range of an idempotent in S(X), f|_A will denote the restriction of the map f to the set A. The juxtaposition fg will mean the composition f ° g. We begin with a result of R. D. Hofer [2] which gives conditions for f and g to be inverses of each other.

Proposition 1. Let f ∈ R(X). Then g is an inverse for f if and only if there exist retracts A, B of X such that B = range of f, A = range of g, f|_A is a homeomorphism onto B, g|_B is a homeomorphism onto A, f|_B = id|_B (identity map on B) and g|_A = id|_A.

Note that if f ∈ R(X) then the set B above is uniquely determined; we will denote it by B_f. If the set A is also uniquely determined (for example, if f belongs to an inverse semigroup) then it will be denoted by A_f. If f is an idempotent then we will say A_f = B_f. Finally, if f belongs to an inverse semigroup J then the unique algebraic inverse of f (in J) will be denoted by f^{-1}. We will also occasionally use the symbol f^{-1} for the inverse image of the map f; no confusion should result from this.

The next lemma is concerned with composing two elements in R(X).

Lemma 2. Suppose f, g ∈ R(X) with inverses f', g' respectively. Let A = g'(B_f ∩ B_g) and B = fg(A).

1. If range of fg = B then (fg)(g'(fg)) = fg, fg ∈ R(X) and fg maps A homeomorphically onto B.
2. If range of fg = B and range of g'f = A then g'f' is an inverse for fg.
Proof. (1) Suppose $\text{range of } fg = B$. If $y \in A$ then $y \in B_g$, $g(y) \in B_f$, and so $f'fg(y) = g(y)$ ($f'|_{B_f} = \text{id}|_{B_f}$) and hence $g'f'fg(y) = g'g(y) = y$. But now, if $x \in X$ then $fg(x) = fg(y)$ for some y in A. Thus

$$(fg)(g'f')fg(x) = (fg)(g'f')(fg)(y) = fg(y) = fg(x).$$

Thus $fg \in \text{R}(X)$ and fg maps A homeomorphically onto B ($g|_{A_e}$ and $f|_{B_f}$ are both homeomorphisms).

(2) Assume range of $fg = B$ and range of $g'f' = A$. If we show that $A = g'f'(f'(B_g \cap B_f))$ then we can apply (1) to the element $g'f'$ to conclude that $(g'f')(fg)(g'f') = g'f'$. But this is true since $A = g'(B_f \cap B_g)$ and $f'|_{B_f} = \text{id}|_{B_f}$.

We now introduce a new notion.

Definition. Let e be an idempotent in $S(X)$. We say that an element $f \in S(X)$ respects A_e if there exists an inverse f' of f with $A_e \subseteq B_f \cap B_f$ and $f|_{A_e}$ is a homeomorphism onto A_e. If we wish to emphasize the role of f' we will say f respects A_e via f'.

Next we consider Green’s relation \mathcal{H}. Let H_e denote the \mathcal{H}-class of an idempotent $e \in S(X)$. Then by using results of K. D. Magill, Jr. and S. Subbiah [3] we see that

$$H_e = \{ f \in \text{R}(X): \text{there exists an inverse } f' \text{ of } f \text{ such that } B_f = B_f, e(x) = e(y) \text{ if and only if } f(x) = f(y) \}.$$

Note that every element of H_e respects A_e and that if $f \in H_e$ then $e(x) = e(y)$ if and only if $ef(x) = ef(y)$ (e is the identity on B_f). We now state a result pertaining to these notions (the proof will be omitted).

Lemma 3. Let e be an idempotent in $S(X)$ and suppose that h respects A_e. Then $he \in H_e$ and $he|_{A_e} = h|_{A_e}$.

Lemma 4. Suppose e and f are idempotents in $S(X)$ which commute.

(1) If $A_e = A_f$ then $e = f$.

(2) If $e(x), f(x) \in A_e \cap A_f$ then $e(x) = f(x)$. In particular, if $A_e \subseteq A_f$ and $f(x) \in A_e$ then $e(x) = f(x)$.

Proof. The proof is straightforward and will be omitted.

Recall that in an inverse semigroup J all idempotents commute. J has a smallest idempotent e if $fe = ef = e$ for all idempotents f in J. If this is the case then $A_e \subseteq A_f$, with equality occurring only if $e = f$ (by the last lemma).

Lemma 5. Let J be an inverse subsemigroup of $S(X)$ with smallest idempotent e and suppose $g \in J$. Then g respects A_e, $g^{-1}eg = e$, $ge = eg$ and for all $x, y \in X, e(x) = e(y)$ if and only if $eg(x) = eg(y)$.

Proof. The elements geg^{-1} and $g^{-1}eg$ are idempotents in J and so $A_e \subseteq g(A_e) \subseteq B_g$ and $A_e \subseteq g^{-1}(A_e) \subseteq A_g$. But then $g|_{A_e}$ maps onto A_e and so g respects A_e. Now $A_{geg^{-1}} =
MAXIMAL INVERSE SUBSEMIGROUPS OF $S(X)$

$A_{e^{-1}e} = A_e$ and so, by Lemma 4, $ge^{-1} = e$ and thus $eg = geg^{-1}g = gg^{-1}ge = ge$. Now
\[e(x) = e(y) \iff ge(x) = ge(y) \quad (g \text{ is one-to-one on } A_e) \]
\[\iff eg(x) = eg(y). \]

The next corollary shows us that every maximal inverse subsemigroup with a smallest idempotent e must contain H_e (also proved by Reilly [5]).

Corollary 6. Let J be an inverse subsemigroup of $S(X)$ with smallest idempotent e and let $g \in J$. If $f \in H_e$ then $fg, gf \in H_e$; if J is maximal then $He \subseteq J$.

Proof. Suppose f respects A_e via f'. Then we apply Lemmas 2 and 5 to show that fg and gf are in $R(X)$ and that $B_{g^{-1}f} = B_{fg} = B_{f^{-1}g^{-1}} = B_{gf} = A_e$. Now if $f \in H_e$ then $ef = fe = f$. Thus
\[fg(x) = fg(y) \iff feg(x) = feg(y) \]
\[\iff eg(x) = eg(y) \quad (f \text{ is one-to-one on } A_e) \]
\[\iff e(x) = e(y) \quad (\text{by the last Lemma}). \]

Also,
\[gf(x) = gf(y) \iff f(x) = f(y) \quad (g \text{ is one-to-one on } B_f) \]
\[\iff e(x) = e(y) \quad (f \in H_e). \]

Thus fg and gf both belong to H_e. Now suppose J is maximal. Then $H_e \cup J$ is a subsemigroup by the above. Clearly idempotents in $H_e \cup J$ commute and so $H_e \cup J$ is an inverse subsemigroup [1]. Hence $H_e \subseteq J$ by maximality of J.

Later in the paper we will define several maximal inverse subsemigroups with smallest idempotent e. This last corollary then tells us that each of these maximal inverse subsemigroups contains H_e. The next results indicate when such a smallest idempotent is present.

Definition. Let J be an inverse subsemigroup of $S(X)$. Then we define $A_J = \cap \{A_f : f \in J\}$. (Note that the collection $\{A_f : f \in J\}$ satisfies the finite intersection property; if X is compact then $A_J \neq \emptyset$.)

Lemma 7. Let J be an inverse subsemigroup of $S(X)$ and suppose $f \in J$. Then $A_J \subseteq A_f \cap B_f$ and $f|_{A_J}$ is a homeomorphism onto A_f. If there exists an idempotent $e \in J$ such that $A_e = A_J$ then e is the smallest idempotent of J.

Proof. $A_J \subseteq A_f$ by definition and since there exists $f^{-1} \in J$ with $A_{f^{-1}} = B_f$ we have $A_J \subseteq B_f$ also. Thus $f|_{A_J}$ is a homeomorphism. If $x \in A_J$ and $f(x) \notin A_f$ then there exists $g \in J$ such that $f(x) \notin B_g$. Without loss of generality we may assume g is an idempotent and $B_g \subseteq B_f$ (ff$^{-1}$gg$^{-1} \in J$). Now $f^{-1}gf$ is an idempotent in J and so $f^{-1}gf(x) = x$ ($x \in A_J \subseteq A_{f^{-1}gf}$. But then $f^{-1}gf(x) = f(x)$. Since $B_g \subseteq B_f$ we have $ff^{-1}gf(x) = gf(x)$. Thus $gf(x) = f(x)$ but $f(x) \notin B_g$. This is a contradiction. Hence $f(x) \in A_f$. This means that f maps
Apply this result to \(f^{-1} \) to conclude that \(f \) maps \(A_J \) onto \(A_J \). Now suppose \(e \) is an idempotent in \(J \) with \(A_e = A_J \). Then if \(f \) is any other idempotent, \(f(x) = x \) for all \(x \in A_e = A_J \) (\(A_J \subseteq A_J \)). Thus \(ef = fe = e \) and so \(e \) is the smallest idempotent.

Corollary 8. Let \(J \) be an inverse subsemigroup of \(S(X) \), \(e \) an idempotent in \(J \). Suppose the following condition is satisfied: if \(B \) is any retract of \(X \) with \(B \subseteq A_e \) then there exists \(f \in J \) such that \(f(B) \cap B = \emptyset \). Then \(A_J = A_e \), \(e \) is the smallest idempotent in \(J \) and if \(g \in J \) then \(g \) respects \(A_e \).

Proof. We know \(A_J \subseteq A_e \). If \(A_e \not\subseteq A_J \) then there exists an idempotent \(g \in J \) such that \(A_g \not\subseteq A_e \). Then by the condition there exists an \(f \in J \) such that \(f(A_g) \cap A_e = \emptyset \). Then \(fgf^{-1} \) is an idempotent in \(J \) and so \(g(fgf^{-1}) = (fgf^{-1})g \). But \(B_{fgf^{-1}} \subseteq A_g \), \(B_{fgf^{-1}} \subseteq f(A_g) \) and \(f(A_g) \cap A_e = \emptyset \). This is a contradiction. Thus \(A_e = A_J \). The rest of the corollary follows from Lemmas 7 and 5.

3. Main results. We first prove several results about maximal inverse subsemigroups of \(S(X) \) where \(X \) is 0-dimensional. The symbol \(c_y \) will signify the constant map in \(S(X) \) which sends everything to the point \(y \).

Theorem 9. Let \(X \) be \(T_1 \) and 0-dimensional and suppose \(e = c_y \) for some fixed \(y \in X \). Let

\[
I_e = \{ f \in R(X) : f(y) = y, \text{ there exists an inverse } f' \text{ of } f \text{ such that } \{y\} \subseteq B_f \cap B_{f'}, \text{ and if } f(x) \neq y \text{ then } |\{z : f(z) = f(x)\}| = 1 \}.
\]

Then \(I_e \) is a maximal inverse subsemigroup of \(S(X) \) with smallest idempotent \(e \).

Proof. We initially note that if \(f \in I_e \) with inverse \(f' \) then \(f \) respects \(A_e \) via \(f' \), if \(x \in B_f \) and \(x \neq y \) then \(f(x) \neq y \), and if \(x \notin B_f \) then \(f(x) = y \). This, coupled with the fact that \(X \) is \(T_1 \), means that the boundaries of \(B_f \) and \(B_{f'} \) are contained in \(\{y\} \). We can now show that if \(f \in I_e \) then \(f \) has an inverse \(k \in I_e \); define \(k \) by

\[
k(x) = \begin{cases} f'(x) & \text{if } x \in B_f \\ y & \text{otherwise}. \end{cases}
\]

Note that \(k \) is continuous by the above remarks and it is straightforward to show that \(k \in I_e \). Now suppose \(f, g \in I_e \) with inverses \(f', g' \in I_e \). Let \(h = fg \). If \(A = g'(B_f \cap B_g) \) and \(B = h(A) \) we show that \(B = \text{range of } h \). Let \(x \in X \). Then there exists \(z \) such that \(g(z) = g(x) \) and \(g'(z) = z \). If \(g(z) \in B_f \) then \(z \in A \) and \(h(z) = h(x) \). If \(g(z) \notin B_f \) then \(fg(x) = y \) and \(h(y) = h(x) \) with \(y \in A \). Thus range of \(h = B \). Now by Lemma 2, \(h \in R(X) \). Clearly \(h \) respects \(A_e \) since \(h(y) = fg(y) = y \). It is also clear that if \(h(x) \neq y \) then \(|\{z : h(z) = h(x)\}| = 1 \). Hence \(h \in I_e \) and so \(I_e \) is a subsemigroup. We have already shown that \(I_e \) contains inverses. Note that if \(f \) is an idempotent in \(I_e \) then

\[
f(x) = \begin{cases} x & \text{if } x \in A_f \\ y & \text{otherwise}. \end{cases}
\]

Two such idempotents commute and so \(I_e \) is an inverse subsemigroup of \(S(X) \).
To show that I_e is maximal suppose $I_e \subseteq J$ where J is an inverse subsemigroup. By Corollary 8 we have that e is the smallest idempotent in J and if $f \in J$ then f respects A_e. Now suppose $f(w) \neq y$ and
\[|\{z : f(z) = f(w)\}| > 1.\]
We may assume $w \in A_e$. Then there exists $z \notin A_e$ such that $f(w) = f(z)$. Choose a clopen (closed and open) set G so that $z, y \in G$ and $w \notin G$. Define $g \in S(X)$ by
\[g(x) = \begin{cases}
 x & \text{if } x \in G, \\
 y & \text{otherwise}.
\end{cases} \]
It is easy to see that g is an idempotent in I_e, hence in J. Thus $gf^{-1}f = f^{-1}fg$. But $gf^{-1}f(z) = g(w) = y$ and $f^{-1}fg(z) = f^{-1}f(z) = w$ and $w \neq y$. This is a contradiction. Hence if $f(w) \neq y$ then $|\{z : f(z) = f(w)\}| = 1$ and so $f \in I_e$. Thus $J \subseteq I_e$ and I_e is maximal with smallest idempotent e.

If we let X be discrete then $S(X) = T_X$, the full transformation semigroup on the set X. We may then apply the last theorem to obtain the result of Nichols [4]. The next theorem is also concerned with 0-dimensional spaces. Recall that a space X is homogeneous if for every two points x and y there exists a homeomorphism h of X onto X such that $h(x) = y$.

Theorem 10. Let X be a homogeneous, 0-dimensional space and suppose e is an idempotent in $S(X)$ such that A_e is open. Let $I_e = \{f \in R(X) : f$ respects A_e, B_f is open, if $f(x) \notin A_e$ then $|\{y : f(y) = f(x)\}| = 1$ and for all $x, y \in X, e(x) = e(y)$ if and only if $ef(x) = ef(y)\}$. Then I_e is a maximal inverse subsemigroup of $S(X)$ with smallest idempotent e.

Proof. Note that if $f \in I_e$ respects A_e via f' and $x \notin B_f$, then $f(x) \in A_e$. Thus $B_f = (f^{-1}(X - A_e) \cup A_e)$ and so B_f is clopen. We first show that if $f \in I_e$ then there exists an inverse g of f which also belongs to I_e. Define g by
\[g(x) = \begin{cases}
 f'(x) & \text{if } x \in B_f, \\
 f'e(x) & \text{otherwise}.
\end{cases} \]
Since B_f is clopen we have that $g \in S(X)$. Clearly g is an inverse for f, B_g is open, g respects A_e and if $g(x) \notin A_e$ then $|\{y : g(y) = g(x)\}| = 1$. To show the last condition for membership in I_e we consider several cases:

1. $x, y \in B_f : eg(x) = eg(y) \Leftrightarrow ef'(x) = ef'(y) \Leftrightarrow ef'(x) = ef'(y) \Leftrightarrow e(x) = e(y)$.
2. $x \notin B_f, y \notin B_f : eg(x) = eg(y) \Leftrightarrow e'f(x) = e'f(y) \Leftrightarrow e'f(x) = e'f(y) \Leftrightarrow e(x) = e(y)$.
3. $x \in B_f, y \notin B_f : eg(x) = eg(y) \Leftrightarrow e'f'(x) = e'f'(y) \Leftrightarrow e'f'(x) = e'f'(y) \Leftrightarrow e(x) = e(y)$.

Thus $g \in I_e$.

We now show I_e is a subsemigroup. Let $h = fg$ with $f, g \in I_e$ and inverses $f', g' \in I_e$. Let $h = fg$, let $A = g'(B_g \cap B_f)$ and $B = h(A)$. We show $B = \text{range of } h$. Let $x \in X$. Then there exists y such that $g(x) = g(y)$ and $g'g(y) = y$. If $g(y) \in B_f$, then $y \in A$, $g(x) = g(y)$ and hence $h(x) = h(y)$. If $g(y) \notin B_f$, then $fg(x) \in A_e$ and so there exists $z \in A_e \subseteq A$ such that $h(z) = h(z)$. Now we use Lemma 2 to conclude that $h \in R(X)$. Clearly B_h is open and h respects
Now suppose \(h(x) = h(y) \) where \(h(x) \notin A_e \). Then \(fg(x) = fg(y) \) with \(fg(x) \notin A_e \). This means that \(g(x) = g(y) \). Now \(g(x) \notin A_e \) (otherwise \(fg(x) \in A_e \)) and so \(x = y \). Thus if \(h(x) \notin A_e \) then \(|\{y : h(x) = h(y)\}| = 1 \). Finally, note that for any \(x, y \in X \),

\[
e(x) = e(y) \iff eg(x) = eg(y) \iff ef(x) = ef(y) \iff eh(x) = eh(y).
\]

Thus \(h \in I_e \).

To show that \(I_e \) is an inverse subsemigroup we need only show that idempotents in \(I_e \) commute. But note that if \(f \) is an idempotent in \(I_e \) then

\[
f(x) = \begin{cases}
 x & \text{if } x \in A_f, \\
 e(x) & \text{otherwise}.
\end{cases}
\]

Thus any two idempotents in \(I_e \) will commute and so \(I_e \) is an inverse subsemigroup.

For maximality suppose that \(I_e \subseteq J \) where \(J \) is an inverse subsemigroup. We first show that \(A_e \subseteq A_f \). If not, then there exists an idempotent \(f \in J \) and \(y \in X \) such that \(y \in A_e - A_f \). But then \(ef(y) = fe(y) \in A_f \cap A_e \) and so \(fe(y) \neq y \). By the homogeneity of \(X \) choose a homeomorphism \(h \) from \(X \) onto \(X \) such that \(h(y) = fe(y) \). Now choose clopen disjoint sets \(U, V \) of \(X \) so that \(y \in U, fe(y) \in V, U \cup V \subseteq A_e, U \cap A_f = \emptyset \) and \(h(U) = V \). Now define a homeomorphism \(k \) from \(X \) onto \(X \) by

\[
k(x) = \begin{cases}
 h(x) & \text{if } x \in U, \\
 h^{-1}(x) & \text{if } x \in V, \\
 e(x) & \text{otherwise}.
\end{cases}
\]

Then \(B_k = A_e \) and \(ke = ek \). Thus \(k \in I_e \), hence \(k \in J \). Now \(k^{-1}fk \) is an idempotent of \(J \). So

\[
(fk^{-1}fk)(fe) = (k^{-1}fk)(fe).
\]

But

\[
(fk^{-1}fk)(fe)(y) = (fk^{-1}fk)(fe)(h(y)) = (fk^{-1}fkfe)(y) = (fk^{-1}fkfe)(y) = fe(y)
\]

and \((k^{-1}fk)(fe)(y) \in k^{-1}f(U) \). Now \(f(U) \cap U = \emptyset \) since \(U \cap A_f = \emptyset \). Thus \(k^{-1}f(U) \cap V = \emptyset \). But \(fe(y) \in V \) and this is a contradiction. Thus \(A_e \subseteq A_f \) and so, by Lemma 7, \(e \) is the smallest idempotent of \(J \). Now by Lemma 5, if \(g \in J \) then \(g \) respects \(A_e, ge = eg \) and

\[
e(x) = e(y) \iff eg(x) = eg(y).
\]

Assume \(f \) is an idempotent in \(J \). Suppose there exists \(z \in A_f - A_e \) such that \(f(z) = z = f(y) \) with \(y \neq z \). Choose clopen \(U \) so that \(y \in U, z \notin U \) and \(U \cap A_e = \emptyset \) (note \(y \notin A_e \)). define \(g \in S(X) \) by

\[
g(x) = \begin{cases}
 e(x) & \text{if } x \in U, \\
 x & \text{if } x \notin U.
\end{cases}
\]
Then g is an idempotent in I_e and so $fg = gf$. But $fg(y) = fe(y) = e(y) \in A_e$ and $gf(y) = g(z) = z$ with $z \not\in A_e$. This is a contradiction. Thus if $f(z) \not\in A_e$ then $|\{x : f(x) = f(z)\}| = 1$. This means that if $x \not\in A_f$ then $f(x) \in A_e$. But then $X - A_f = f^{-1}(A_e) \cap (X - A_e)$ which is closed. Thus A_f (and hence B_f) is open. But then $f \in I_e$.

Now suppose $g \in I$. Then $B_g = A_{gg^{-1}}$ is open, g respects A_e and

$$e(x) = e(y) \iff eg(x) = eg(y).$$

If $g(x) \not\in A_e$ and $g(x) = g(y)$ then $g^{-1}g(x) \not\in A_e$ (g^{-1} respects A_e) and $g^{-1}g(x) = g^{-1}g(y)$. Thus $x = y$ ($g^{-1}g \in I_e$). But then $|\{y : g(x) = g(y)\}| = 1$. This shows $g \in I_e$. Thus $J \subseteq I_e$ and so I_e is a maximal inverse subsemigroup of $S(X)$ with smallest idempotent e.

Corollary 11. Let X be a homogeneous 0-dimensional space. Then $G(X)$, the group of units of $S(X)$, is a maximal inverse subsemigroup of $S(X)$.

Proof. Let e be the identity map on X in the previous theorem.

To see that homogeneity is necessary in this corollary let $X = \{0\} \cup \{1/n : n \in \mathbb{N}\}$. Then $G(X) \cup \{e_0\}$ is an inverse subsemigroup of $S(X)$. If X is discrete then we apply the last theorem to yield the result of Reilly [5]. We now consider other types of maximal inverse subsemigroups of $S(X)$. This will result in applications to \mathbb{R}^n (Euclidean n-space) and T^n (Euclidean n-cell). We first make several definitions.

Definition. Suppose e is an idempotent in $S(X)$ and \mathcal{R} is a decomposition of $X - A_e$ (\mathcal{R} is an equivalence relation on $X - A_e$). We will call \mathcal{R} a ray decomposition of $X - A_e$ if the following conditions are satisfied:

1. for any $x \in X - A_e$, if $[x]$ denotes the \mathcal{R}-equivalence class of x in $X - A_e$ then $\overline{[x]} = [x] \cup \{x_e\}$ where x_e is an element of A_e ($[x]$ denotes the closure of the set $[x]$ in X),
2. for any $x \in X - A_e$, $\overline{[x]}$ is homeomorphic to $[0, 1]$ or $[0, 1)$ via a homeomorphism h such that $h(x_e) = 0$.

When we write $[x]$ we shall understand that $x \in X - A_e$. If $a \in [x]$ we will use the notation $[x_e, a]$ to mean $h^{-1}[0, h(a)]$ and we will say $y > a$ ($y \geq a$) if $a, y \in [x]$ and $h(y) > h(a)$ ($h(y) \geq h(a)$).

Definition. Suppose e is an idempotent in $S(X)$, \mathcal{R} is a ray decomposition of $X - A_e$ and for every $x \in X - A_e$, e is constant on $[x]$. A function $f \in R(X)$ is said to be e-admissible if the following are satisfied:

1. there exists an inverse f' of f such that f respects A_e via f',
2. for every $x \in X - A_e$, either f is constant on $[x]$ or $f[x] \subseteq [z]$ for some $z \in X - A_e$,
3. for every $x \in X - A_e$, either $[x] \subseteq B_f$ or there exists $x_f \in [x]$ such that $[x_e, x_f] \subseteq B_f$ (may have $x_f = x_e$) and f is constant on all $y \geq x_f$. As before, we will also say f is e-admissible via f'.

Note that if f is e-admissible via f', $[x] \subseteq B_f$ and $f[x] \subseteq [z]$ then $f|_{[x]}$ is a homeomorphism into $[z]$ with $f(x_e) = z_e$; and if $[x_e, x_f] \subseteq B_f$ then f is constant on all $y \geq x_f$.

Theorem 12. Suppose X is a topological space, e is an idempotent in $S(X)$, \mathcal{R} is a ray
decomposition of $X - A_e$ and the following conditions are satisfied:

1. For every $x \in X - A_e$, e is constant on $[x]$.
2. If $a \in [x]$ then there exists an idempotent $h \in R(X)$ such that h is e-admissible, $h|_{[x,a)} = \text{id}|_{[x,a)}$ and $h(z) = a$ for all $z \geq a$. If, in addition, there exists y such that $[y] \neq [x]$ then h can be chosen so that $h|_{[y]} = \text{id}|_{[y]}$.
3. If A is a retract of X and $A \subseteq A_e$ then there exists $h \in R(X)$ such that h respects A_e and $h(A) \cap A = \emptyset$.

Now let $I_e = \{ f \in R(X) : \text{there exists an inverse } f \text{ such that } f \text{ is } e\text{-admissible via } f \}$ and I_e is a maximal inverse subsemigroup of $S(X)$ with smallest idempotent e.

Proof. We first show I_e is a subsemigroup. Let $f, g \in I_e$ with inverses $f', g' \in I_e$, $h = fg$, $A = g'(B_f \cap B_g)$ and $B = h(A)$. We show simultaneously that range of $h = B$ and that h satisfies conditions (2) and (3) of the definition of e-admissibility. We can then apply these results to inverses f' and g' of f and g and use Lemma 2 to conclude that $h \in R(X)$, $h' = g'f'$ is an inverse for h and both h and h' are e-admissible (clearly h and h' respect A_e). This will then show that I_e is a subsemigroup. So consider $x \in X$. If $x \in A_e$ then $x \in A$ and $h(x) \in B$. If $x \notin A_e$ and g is constant on $[x]$ then h is constant on $[x]$ and $h(x) \subseteq A_e \subseteq B$. Now suppose $g(x) \subseteq [y]$. If f is constant on $[y]$ then h is constant on $[x]$ and $h(x) \subseteq A_e \subseteq B$. Now suppose $f(y) \subseteq [z]$. Then $h(x) \subseteq [z]$. If $[x] \subseteq B_g$ and $[y] \subseteq B_f$ then $[x] \subseteq A$, $h(x) \subseteq B$ and h is a homeomorphism on $[x]$. If $[x] \subseteq B_g$ and there exists y_t such that $[y_t, y_t] \subseteq B_f$ with f constant on all $w \geq y_t$, then let $x_h = g'(y_t)$. Then $[x_h, x_h] \subseteq A$ and h is constant on all $w \geq x_h$. Thus $h(x) \subseteq B$. Now suppose there exists x_t such that $[x_t, x_t] \subseteq B_g$. If $[x] \subseteq B_f$ or if there exists $y_t \geq g(x_t)$ such that $[y_t, y_t] \subseteq B_f$ then $[x_t, x_t] \subseteq A$, h is constant on all $w \geq x_t$, and $h(x) \subseteq B$. If there exists $y_t < g(x_t)$ such that $[y_t, y_t] \subseteq B_f$ and f is constant on all $w \geq y_t$ then let $x_t = g'(y_t)$. Then $[x_t, x_t] \subseteq A$ and h is constant on all $w \geq x_t$ and again $h(x) \subseteq B$. This completes the proof that I_e is a subsemigroup.

To show that I_e is an inverse subsemigroup we need only prove that idempotents commute. Let f, g be idempotents in I_e and suppose $x \in X$. If $x \in A_e$ then $f(x) = x = g(x)$ and so $fg(x) = gf(x)$. If $x \in X - A_e$, then either $f|_{[x,e]} = \text{id}|_{[x,e]}$ or $f(x) = x_t$ with $x_t < x$. If $f(x) = x_t$ then $g(x) = g(x_t) = x_t = f(x) = gf(x)$. If $g(x) = x_t$ then $g(x) = x_t = f(x) = gf(x)$. If $g(x) = x_t$ then $g(x) = x_t = f(x) = gf(x)$. If $y > a$. By condition (3) of the hypothesis choose g an
idempotent such that g is e-admissible, $g|_{[x, a]} = \text{id}|_{[x, a]}$ and $g(z) = a$ for $z > a$. If $f(y) \notin [x]$ then $f(y) \notin A_e$ (otherwise $f(y) = e(y) = x_e$ by Lemma 4) and so we can also choose g so that $g|_{(f(y))} = \text{id}|_{(f(y))}$. Then g is in I_e; hence in J and so $fg = gf$. If $f(y) \notin [x]$ then $gf(y) = f(y) \notin [x]$ but $fg(y) = f(a) = a \in [x]$, which is a contradiction. Hence $f(y) \in [x]$. Note that this means that $f(y) \leq a(f|x| \subseteq [x]$ and so $A_f \cap [x]$ must be an interval). Now $a = f(a) = fg(y) = gf(y)$. Thus $f(y) \geq a$. Hence $f(y) = a$ and this shows that $f \in I_e$.

Now let $g \in J$. We know that g respects A_e. Let $x \in X - A_e$. Note that if $g(x) \in A_e$ then since $eg = ge$ by Lemma 5 we have $g(x) = eg(x) = ge(x) = g(x_e)$. Consider $[x]$. If $g^{-1}g$ is constant on $[x]$ and $y \in [x]$ then $g^{-1}g(y) = g^{-1}g(x_e) = x_e$. But then $g(y) = g(x_e)$ and so g is constant on $[x]$. Now suppose there exists $a > x_e$ such that $[x_e, a] \subseteq A_e^{-1}\frac{g}{g}$ and let $x_e < y \leq a$. Then $g(y) \notin A_e$ ($y \notin A_e - A_e$). If $g(y) \notin [g(a)]$ then choose an idempotent e so that e is the identity on $[g(a)]$ and constant on $[g(y)]$. Then $g^{-1}fg$ is an idempotent in J, hence in I_e. Now $g^{-1}fg(a) = a$ and so $g^{-1}fg(y) = y$ also ($y \leq a$). But $g^{-1}fg(y) \in A_e$. This is a contradiction. Thus $g(y) \in [g(a)]$ for all y with $x_e < y \leq a$. Thus if $[x] \subseteq A_{e^{-1}}g$ then $[x] \subseteq A_g$ and $g[x] \subseteq [g(x)]$. Now suppose $g^{-1}g$ is such that there exists $a \in [x]$ such that $g^{-1}g$ is the identity on $[x_e, a]$ and constant thereafter. Then $[x_e, a] \subseteq A_g$ and $g[x_e, a] \subseteq [g(a)]$ by the above. Now let $y > a$. Then $g^{-1}g(y) = g^{-1}g(a) = a$ and hence $g(y) = gg^{-1}g(y) = g(a)$. Thus $g \in I_e, J \subseteq I_e$ and so I_e is a maximal inverse subsemigroup.

We have several corollaries.

Corollary 13. Let $X = I$ (the unit interval) or \mathbb{R} (the reals) and let e be defined by

$$
e(x) =
\begin{cases}
x & \text{if } a \leq x \leq b, \\
a & \text{if } x \leq a, \\
b & \text{if } x \geq b,
\end{cases}
$$

where $0 \leq a \leq b \leq 1$ if $X = I$ and $a \leq b$ if $X = \mathbb{R}$. Then e is an idempotent and if $I_e = \{f \in R(X) : \text{there exists an inverse } f' \text{ of } f \text{ such that } f \text{ respects } A_e \text{ via } f', \text{ if } B_f = [c, d] \text{ then } f(x) = f(c) \text{ for all } x \leq c \text{ and } f(x) = f(d) \text{ for all } x \geq d\}$ we have that I_e is a maximal inverse subsemigroup of $S(X)$ with smallest idempotent e.

Corollary 14. Let $X = \mathbb{R}^n$ or I^n and let D be an n-dimensional disk in \mathbb{R}^n (or I^n) with centre y. Define an idempotent e as follows: if $x \in D$, $e(x) = x$; if $x \in \mathbb{R}^n - D$, $e(x) = x_b$, where x_b is the unique element on the boundary of D which intersects the line segment from y to x.

If $x, z \in X - A_e$ then we say x is \mathbb{R}-equivalent to z if x and z lie on the same line segment beginning at y. Then this gives a ray decomposition of $X - A_e$ and if $I_e = \{f \in R(X) : \text{there exists an inverse } f' \text{ of } f \text{ such that } f \text{ is } e\text{-admissible via } f' \text{ and } f' \text{ is } e\text{-admissible via } f\}$ then I_e is a maximal inverse subsemigroup of $S(X)$.

Proof. It is straightforward to see that conditions (1) and (2) of the theorem are satisfied. To see condition (3) note that if A is a retract of X and $A \subseteq D$ then there exists a point x in the boundary of D but not in A. Since A is closed there exists an open neighborhood U of x such that U is homeomorphic to \mathbb{R}^n and $\bar{U} \cap A = \emptyset$. Now there exists $h \in R(X)$ with inverse h' such that $B_h = B_{h'} = D$ and $h(A) \subseteq \bar{U} \cap D$.

Downloaded from https://www.cambridge.org/core. IP address: 54.70.40.11, on 29 May 2019 at 08:35:22, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S001708950000505X
Corollary 15. Let $X = \mathbb{R}^n$ or I^n, $e = c_y$ for fixed $y \in X$ and let the ray decomposition of $X - \{y\}$ be defined by $z \in [x]$ if and only if z, x and y all lie on a line segment beginning at y. Then $I_e = \{f \in R(X) : \text{there exists an inverse } f' \text{ of } f \text{ such that } f \text{ is } e\text{-admissible via } f' \text{ and } f' \text{ is } e\text{-admissible via } f\}$ is a maximal inverse subsemigroup of $S(X)$ with smallest idempotent c_y.

Note that for the above corollary we could have chosen a different ray decomposition of $X - \{y\}$ and this would have resulted in a different maximal inverse subsemigroup, still with the same smallest idempotent c_y.

Corollary 16. Let $X = I^n$. Then $G(X)$, the group of units of $S(I^n)$, is a maximal inverse subsemigroup of $S(X)$.

Proof. Let e be the identity on X in Theorem 12.

Corollaries 11 and 16 give situations where $G(X)$, the group of units of $S(X)$, forms a maximal inverse subsemigroup. This is not always the case. For instance, if X is a triod then every homeomorphism of X will fix the same point y and so $G(X) \cup \{c_y\}$ is an inverse subsemigroup which properly contains $G(X)$. However, we do have the following result (also proved by Reilly [6]):

Proposition 17. Suppose X is a homogeneous, compact space. Then $G(X)$, the group of units of $S(X)$, is a maximal inverse subsemigroup of $S(X)$.

Proof. Clearly $G(X)$ is an inverse subsemigroup. Suppose $G(X) \subseteq J$ where J is an inverse subsemigroup. Then $A_j \neq \emptyset$ since X is compact. Suppose $A_j \neq X$. Then by the homogeneity of X choose $f \in G(X)$ and $x \in X$ so that $x \in A_j$ and $f(x) \neq A_j$. Then $f \in J$ but $f(A_j) \subseteq A_j$. This contradicts Lemma 7. Thus $A_j = X$ and so $J = G(X)$ and $G(X)$ is maximal.

Corollary 18. Let $X = S^n$ (the n-dimensional sphere). Then $G(X)$ is a maximal inverse subsemigroup of $S(X)$.

We now consider one last type of maximal inverse subsemigroup of $S(I)$.

Theorem 19. Let e be an idempotent in $S(I)$ such that if $A_e = [a, b]$ (where possibly $a = 0$ or $b = 1$) then e is a homeomorphism on $[0, a]$ and e is a homeomorphism on $[b, 1]$. Define $I_e = \{f \in R(I) : \text{there exists an inverse } f' \text{ of } f \text{ such that } B_f = [0, b], [0, 1], [a, b] \text{ or } [a, 1], B_{f'} \text{ is also one of these sets, } f \text{ respects } A_e \text{ via } f', \text{ and } e(x) = e(y) \text{ if and only if } ef(x) = ef(y)\}$. Then I_e is a maximal inverse subsemigroup of $S(I)$ with smallest idempotent e.

Proof. Suppose $f \in I_e$ with inverse f'. We define an inverse g for f by

$$g(x) = \begin{cases} f'(x) & \text{if } x \in B_f, \\ f' e(x) & \text{if } x \notin B_f. \end{cases}$$

It is straightforward to check that g is continuous. Clearly g is an inverse for f, g respects A_e and satisfies the conditions on B_f and $B_{g'}$. The proof for the last condition follows the
corresponding proof in Theorem 10. Now suppose \(f, g \in I_e \) with inverses \(f', g' \in I_e \) and let \(h = fg \). Then \(h \in R(X) \), \(h \) respects \(A_e \) and \(B_n, B_{e'} \) are of the desired form. Now

\[
e(x) = e(y) \iff eg(x) = eg(y) \iff efg(x) = efg(y) \iff eh(x) = eh(y).
\]

So \(h \in I_e \). We now show idempotents commute. Suppose \(f \) is an idempotent in \(I_e, f \neq e \) and \(f \) is not the identity on \(I \). Without loss of generality assume \([0, a] \cap A_f = \emptyset\). Then \(f \) is one-to-one on \([0, a]\) (if \(f(x) = f(y) \) then \(ef(x) = ef(y) \) and hence \(e(x) = e(y) \), but \(e \) is one-to-one on \([0, a]\)). Furthermore, if \(x \in [0, a] \) then \(f(x) = e(x) \) (if \(f(x) \in A_e \) then \(f(x) = f(y) \) for some \(y \in A_e \), hence \(e(x) = e(y) = f(y) = f(x) \); if \(f(x) = e(x) = b \) then \(x = 0 \)). This means that if \(f \) is an idempotent in \(I_e \) then

\[
f(x) = \begin{cases} x & \text{if } x \in A_f, \\ e(x) & \text{if } x \notin A_f. \end{cases}
\]

Clearly two such idempotents commute. Thus \(I_e \) is an inverse subsemigroup of \(S(I) \).

To show that \(I_e \) is maximal suppose \(I_e \subseteq J \) where \(J \) is an inverse subsemigroup and \(g \in J \). It is straightforward to show that \(A_e \) and \(J \) satisfy the conditions of Corollary 8 and hence \(e \) is the smallest idempotent for \(J \). Now apply Lemma 5 to conclude that \(g \) respects \(A_e \) and \(e(x) = e(y) \) if and only if \(eg(x) = eg(y) \). To show the remaining conditions we may assume, without loss of generality, that \(g \) is an idempotent and \(A_g = [c, d] \) with \(0 < c < a \). But then \(g(x) = g(y) \) for some \(x, y \in [0, a] \) where \(x \neq y \). Thus \(eg(x) = eg(y) \) and hence \(e(x) = e(y) \), which is a contradiction. Thus \(g \in I_e \) and so \(I_e \) is a maximal inverse subsemigroup of \(S(I) \) with smallest idempotent \(e \).

Note that it is possible to make slight modifications and prove a similar theorem if \(X \) is the reals.

As an example of this last theorem let \(X = [-1, 1] \) and suppose \(e(x) = |x| \). Then \(I_e = \{f \in S(X) : f \text{ maps } [0, 1] \text{ homeomorphically onto } [0, 1] \text{ and either } f \text{ is an odd function } \} \) is a maximal inverse subsemigroup of \(S(X) \). Or, let \(X \) be the reals and again let \(e(x) = |x| \). Then \(I_e = \{f \in S(X) : f \text{ is a homeomorphism from } [0, \infty) \text{ onto } [0, \infty) \text{ and } f \text{ is either an odd or even function} \} \) is a maximal inverse subsemigroup of \(S(X) \).

All of the maximal inverse subsemigroups we have considered thus far have contained a smallest idempotent \(e \). As Reilly [5] remarks, this is not always the case for \(S(X) \), where \(X \) is discrete. Since every inverse subsemigroup is contained in a maximal inverse subsemigroup, to produce examples of inverse subsemigroups with no smallest idempotent one needs to find subsemigroups \(J \) of \(S(X) \) of commuting idempotents such that \(A_J = \emptyset \). For instance, if \(X \) is the reals, define \(f_n \) for \(n = 1, 2, \ldots \) as follows:

\[
f_n(x) = \begin{cases} n & \text{if } x \leq n, \\ x & \text{if } x > n. \end{cases}
\]

Then \(J = \{f_n : n = 1, 2, \ldots \} \) is a subsemigroup of commuting idempotents but \(\bigcap_{n=1}^{\infty} A_{f_n} = \emptyset \) and so \(A_J = \emptyset \).
The author would like to thank the referee for many helpful comments and suggestions.

REFERENCES