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ABSTRACT. We describe methods for measuring crystal orientation fabric with sonic waves in an ice
core borehole, with special attention paid to vertical-girdle fabrics that are prevalent at the WAIS
Divide. The speed of vertically propagating compressional waves in ice is influenced by vertical cluster-
ing of the ice crystal c-axes. Shear-wave speeds – particularly the speed separation between fast and slow
shear polarizations – are sensitive to azimuthal anisotropy. Sonic data from the WAIS Divide comple-
ment thin-section measurements of fabric. Thin sections show a steady transition to strong girdle
fabrics in the upper 2000 m of ice, followed by a transition to vertical-pole fabrics below 2500 m
depth. Compressional-wave sonic data are inconclusive in the upper ice, due to noise, as well as the
method’s inherent insensitivity to girdle fabrics. Compared with available thin sections, sonic data
provide better resolution of the transition to pole fabrics below 2500 m, notably including an abrupt
increase in vertical clustering near 3000 m. Our compressional-wave measurements resolve fabric
changes occurring over depth ranges of a fewmeters that cannot be inferred from available thin sections,
but are sensitive only to zenithal anisotropy. Future logging tools should be designed to measure shear
waves in addition to compressional waves, especially for logging in regions where ice flow patterns favor
the development of girdle fabrics.
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1. INTRODUCTION
A better understanding of the physics governing ice deform-
ation is critical both for predicting the dynamic response of
ice sheets to climate forcing (e.g. Vaughan and Arthern,
2007), and for interpreting paleo-climate records from ice
cores (e.g. Alley and others, 1997; Waddington and others,
2001) and ice-sheet internal layer measurements (e.g.
Waddington and others, 2007; Martin and others, 2009). A
key constraint on the flow of ice sheets is crystal orientation
fabric (COF), the distribution of crystal orientations within the
ice (e.g. Alley, 1988; Azuma, 1994; Mangeney and others,
1997).

Because ice crystals are elastically anisotropic, the speed
of an elastic wave traveling through ice is affected by COF.
By measuring sonic waves in a borehole, it is possible to con-
strain the types of fabric that prevail in the surrounding ice
and to determine parameters describing that fabric. This
method is readily implemented at sites where boreholes
remain open after core drilling, and uniquely complements
other methods for measuring COF.

In this paper we present background on COF, wave propa-
gation in ice, and sonic logging in general. We review how
sonic logging can be used to measure COF in ice, and con-
strain the information that can and cannot be gained with
the method. With results from sonic and thin-section
studies at the West Antarctic Ice Sheet Divide ice core site
(WAIS-D), we demonstrate the relationship between sonic
wave speeds and several fabric parameters, and present a
framework for interpreting existing sonic data, as well as a
prescription for future developments in sonic logging.

2. COF IN ICE SHEETS
Naturally occurring ice is an aggregate of grains that range
from less than a millimeter to centimeters in size. Each of
these grains has a layered molecular structure (crystal) that
results in anisotropic elasticity (Fletcher, 1970, p. 271) and
viscoplasticity (Duval and others, 1983). Consequently, the
deformation rate of an ice-grain aggregate is strongly con-
strained by its COF. Under a given stress regime, the strain
rate of ice can vary by an order of magnitude depending
on its COF (e.g. Castelnau and others, 1998; Thorsteinsson
and Waddington, 2002). Accounting for COF can substan-
tially alter the results of ice-sheet modeling (Pettit and
others, 2007; Seddik and others, 2008).

2.1. Representations of ice fabrics
The orientation of a single ice crystal can be described by the
direction of its c-axis, the axis that is normal to its crystalline
planes (basal planes). The distribution of c-axis orientations is
conventionally displayed as a Schmidt projection, in which
each dot represents the orientation of a crystal c-axis; the dis-
tance from center describes the zenith (from vertical) angle,
whereas azimuths within the plane of the plot describe the
azimuthal (in the horizontal plane) angle of each c-axis
(Fig. 1). Although young ice at the top of an ice sheet is
often near-isotropic (random distribution of crystal orienta-
tions, Fig. 1a), strain and recrystallization (both of which
are influenced by temperature and impurity content) lead
to strongly anisotropic COF at sufficient (1000–2000 m)
depths (Gow and Williamson, 1976; Alley, 1988;
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Thorsteinsson and others, 1997). Both vertical-pole (Fig. 1c)
and vertical-girdle (Fig. 1b) fabrics, as well as abrupt
changes between the two have been observed in
Greenland (Herron and Langway, 1982; Gow and others,
1997; Wang and others, 2002) and Antarctica (Lipenkov
and others, 1989; Azuma and others, 1999; Gusmeroli and
others, 2012).

Fabric eigenvalues are the most prevalent parameteriza-
tion for COF in recent glaciological literature. Eigenvalues
are calculated from the following tensor:

A ¼
XN
k¼1

fkck ⊗ ck ð1Þ

N is the number of grains, fk is the volume weight of the kth

grain, ck is a unit vector in the direction of each associated
crystal c-axis and ⊗ indicates the outer matrix product
(Woodcock, 1977). Properties for these eigenvalues include:

λ1 þ λ2 þ λ3 ¼ 1

λ1 � λ2 � λ3
ð2Þ

For an isotropic fabric, λ1= λ2= λ3. For a pure pole (all c-
axes aligned along one vector), λ1= 1; λ2= λ3= 0. For
pure girdle fabrics (all c-axes distributed evenly throughout
one plane): λ1= λ2= 0.5; λ3= 0.

Grain volumes cannot be measured directly in a thin
section. Gagliardini and others (2004) showed that the area
ak of the kth grain within a thin section is a good representa-
tion of the grain’s volume among the represented grains. A
characterization of ice fabric with area weighting

fk ¼ ak
PN

i¼1 ai
� ��1

� �
provides better estimates for fabric

properties than equal-area weighting (fk=N−1).
We use the following parameters to track fabric develop-

ment into pole and girdle types:

Pole Parameter ≡ λ1 � λ2

Girdle Parameter ≡ 2ðλ2 � λ3Þ

Both parameters range from zero to unity as a fabric develops
from isotropic to a perfect form of their respective types. Any
pole fabric with the property that λ1> λ2= λ3 will have a
girdle parameter of zero, and likewise any girdle fabric
with the property that λ1= λ2> λ3 will have a pole parameter

of zero. This means that these parameters are independent in
the sense that pole or girdle development will not affect the
fabric’s girdle or pole parameter, respectively.

2.2. Measuring COF
Established methods for measuring crystal fabric include
thin-section analyses (e.g. Gow and Williamson, 1976),
seismic reflections (Bentley, 1971; Horgan and others,
2011), radar reflections (Matsuoka and others, 2003; Fujita
and others, 2006) and sonic logging (Bentley, 1972;
Kohnen and Gow, 1979; Anandakrishnan and others,
1994). These methods have complementary strengths and
weaknesses.

Thin-section analyses provide the most detailed measure-
ment of COF in small volumes, but are impractical for meas-
uring abrupt fabric variations throughout extensive depth
domains. In addition, because average grain sizes generally
increase with age (e.g. Duval and Lorius, 1980), decreasing
numbers of grains in a thin section make this method statistic-
ally less reliable deeper in an ice core – the fabric sampled in
the thin section becomes less representative of the surround-
ing volume.

Seismic and radar methods allow users to remotely char-
acterize ice properties throughout the depth of an ice sheet.
Abrupt changes in COF in the vertical direction can be
inferred with seismic and radar reflections, and azimuthal
anisotropy in the horizontal plane can be inferred with
birefringence (Matsuoka and others, 2012). These methods
do not provide a detailed characterization of local fabric or
an accurate measurement of length scale over which transi-
tions occur. Nevertheless, these methods are vital to detect
spatial patterns of COF in ice sheets, and to extend ice
core-based knowledge of COF (mainly from ice domes
where ice cores are drilled) to COF that occurs throughout
large volumes in various flow regimes.

Sonic logging is an efficient method for measuring depth-
continuous profiles of COF in the vicinity of a borehole. The
method was first implemented in ice by Bentley (1971), and
was used to measure crystal fabric by Gusmeroli and others
(2012). Sonic logs that measure the velocity of compressional
(P) waves traveling vertically along a borehole wall were
effective for measuring vertical clustering of ice-crystal c-
axes in regions where vertical-pole fabrics prevail. More-
advanced methods are necessary to detect and quantify ver-
tical-girdle fabrics.

3. ELASTIC WAVES IN ICE

3.1. Single crystal
A single ice crystal is hexagonally symmetric in its elasticity.
A number of values for the stiffness tensor have been reported
in the literature and were summarized by Gusmeroli and
others (2012). In each case, the crystal is more resistant to
longitudinal stress along its c-axis and to shear stress in the
transverse plane; for a crystal with its c-axis aligned with
the z-axis this means that Czzzz>Cxxxx=Cyyyy, and Cxyxy>
Cyzyz=Cxzxz, with C defined so that σ ij ¼ Cijkl ekl where fσ
is stress and fe is strain. Using the summation convention
(e.g. Mase and Mase, 1999, p. 5), this stiffness tensor can
be viewed in a rotated coordinate system according to the

Fig. 1. Schmidt plots for typical fabric types in ice. C-axis data are
from thin-section records of the WAIS-Divide ice core at (a)
540 m, (b) 2500 m and (c) 3205 m depth. Fabric parameters
λi (eigenvalues) are explained in subsequent sections. (a) Isotropic
λ1≃ λ2≃ λ3 (b) Vertical Girdle λ1≃ λ2≫ λ3 (c) Vertical Pole λ1≫
λ2≃ λ3.

604 Kluskiewicz and others: Sonic methods for measuring crystal orientation fabric in ice

https://doi.org/10.1017/jog.2017.20 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2017.20


rule:

C0
ijpn ¼ aiqa jsa pkanmCqskm ð3Þ

where direction cosines aij are defined so that ê0i ¼ aijêj
where êi and ê0i are the coordinate axes in the original and
rotated coordinate systems (Mase and Mase, 1999, p. 221).

From the stiffness tensor, one can use the Christoffel
Equation to find three normal-mode solutions to the elastody-
namic wave equation (Aki and Richards, 1980, pp. 177–
178). The Christoffel equation is:

Aðn̂Þû ¼ c2û ð4Þ

where n̂ is a unit vector in the direction of wave propagation
and

Aklðn̂Þ ¼
1
ρ
ninjCiklj ð5Þ

where ρ is the ice density. The three eigenvalue-and-eigen-
vector pair (c and û) solutions are the speeds and polarization
directions for one compressional-wave and two shear-waves.
For analytical solutions, see Bennett (1968).

3.2. Crystal aggregates
Preceding literature on sonic logging in ice has relied on
wave velocity predictions for arbitrary COFs that are the har-
monic mean of velocities for waves traveling in the head-
wave direction through the individual crystals that
compose the aggregate distribution, i.e.

v ¼ N
XN
i¼1

1
vi

 !�1

ð6Þ

where N is the number of crystals, v is velocity, and the sub-
script i denotes an individual crystal. This method is compu-
tationally cheap and reasonably intuitive, but has no
reasonable physical interpretation for wavelengths greater
than the typical grain size, which is always the case for
sonic logging in ice.

An alternative method is to average stiffness characteris-
tics for a given fabric distribution and to solve the
Christoffel Equation on the aggregate stiffness tensor. While
(relatively) computationally expensive, this method can be
performed quickly with modern hardware and lends itself
to homogeneous-medium wave modeling for which aggre-
gate physical qualities of the ice must be known.

The elastic properties for a crystal aggregate can be esti-
mated by a volume-weighted mean of the orientation-
dependent stiffness tensor for each component crystal:

C ¼
XN
k¼1

wkCðθk;fkÞ
XN
i¼1

wi

 !�1

ð7Þ

where C is the aggregate stiffness tensor, and C(θk, ϕk) and wk

are respectively, the crystal stiffness-tensor and volume of
each represented grain. This method, termed the Voigt
average, inherently assumes that strain among the grains is
uniform. An alternative (Reuss) method takes the harmonic
mean of stiffness-matrix components over crystal orienta-
tions; the corresponding assumption is uniform stress

throughout the aggregate. For the Voigt assumption, inter-
grain forces could not be in equilibrium, whereas for the
Reuss assumption grains could not fit together. Real-world
behavior lies somewhere between the two models (Hill,
1952). For our purposes, the two methods produce similar
results. We use the Voigt average for its numerical stability
around near-zero terms in the stiffness matrix. Both
methods predict velocities that are similar, but not equivalent
to predictions based on (6).

3.3. Idealized fabric distributions
For modeling purposes, it is often necessary to consider idea-
lized distributions with a parameterized orientation distribu-
tion function (Gagliardini and others, 2009). Lliboutry (1993)
proposed a Fisherian distribution defined by the parameter κ:

fκðθÞ ¼ κeκ cos θ

eκ � 1
sin θ ð8Þ

where θ ∈ [0, π/2] is the zenith angle for a crystal. This distri-
bution varies continuously from a strong horizontal girdle
(κ≪ 0), to isotropic (κ= 0), to a strong pole (κ≫ 0).
Vertical girdles can be represented with a coordinate rotation
applied to a horizontal-girdle distribution. All idealized distri-
butions used later in this paper are Fisherian. They are gener-
ated by controlling the parameter κ, and are described by
their eigenvalues, which apply to all distributions. For
girdle fabrics, the coordinate system is rotated 90° about a
horizontal axis. Eigenvalues for a continuous distribution
can be calculated numerically with (1) on a discrete
sample of the distribution. Figure 2 shows a qualitative rela-
tionship between the Fisher parameter κ and fabric eigenva-
lues, as well as relationships for fabric parameters and wave
velocities that are discussed later in this paper. For our pur-
poses, this distribution was chosen for its qualitative resem-
blance to real fabrics. The results that follow are similar
with other idealized distributions, for example cone angles
(Thorsteinsson and others, 1997).

3.4. Head waves
A sonic source in a fluid-filled borehole in an anisotropic for-
mation (the medium surrounding the borehole, in this case
ice) will generate three head waves corresponding to the
three plane-wave solutions to the Christoffel Equation: the
qP-waves, qSv-waves and qSh-waves. (Sinha and others,
1994). The subscripts v and h signify different polarizations
for the two shear wave modes. A preceding q (short for
quasi) indicates that particle motions are not necessarily par-
allel or perpendicular to the respective P and S propagation
directions. The first-arriving signal from source to receiver
is a critically refracted wave; it travels from source to bore-
hole wall as a fluid longitudinal wave (velocity vf), along
the borehole wall as a corresponding head wave in the ice
and back to the receiver as a fluid longitudinal wave. For
the case of isotropic and transverse isotropic formations
with a vertical axis of symmetry (e.g. vertical-pole fabrics)
or horizontal axis of symmetry (e.g. vertical-girdle fabrics),
head-wave particle motions will be parallel or perpendicular
to the propagation direction and the three head waves can be
referred to simply as P, Sv and Sh.

Velocities for the three head waves are shown in Fig. 3. All
are calculated with (4), (5) and (7), and are based on
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Fisherian-distribution fabrics (8) with the parameter κ varied
to produce various strengths of pole and girdle fabrics.
Fabrics are described by the parameter λ3, which varies
from 1/3 to zero for both girdle and pole types.

P-wave velocities increase with the strength of a vertical-
pole fabric, but are insensitive to vertical-girdle distributions.
Shear wave velocities exhibit the opposite behavior for pole
fabrics – decreasing with greater concentration of crystal c-
axes along the vertical axis. For girdle fabrics, we follow
Bennett (1968) and define the Sv and Sh polarizations so
that respective motions are parallel and normal to the
girdle plane. Given this definition, vsv will become

progressively greater than vsh as c-axes concentrate toward
a vertical plane. This phenomenon is called shear splitting.
Note that velocities for the first-arrival shear wave (Sv for
strong girdles) are relatively insensitive to girdle strength.

3.5. Borehole guided waves
Sonic logging generates several borehole modes that propa-
gate due to interactions between the formation and fluid
compressional waves within the borehole. The amplitudes
of these modes, as well as the relative prominence of the
head waves, are controlled by the borehole geometry, fluid
and formation body-wave speeds, and the source frequency
and radiation pattern (Crain, 2004).

Three borehole modes that are commonly present in
sonic-log waveforms are the pseudo-Rayleigh, Stoneley and
flexural waves. The pseudo-Rayleigh mode is produced by
shear waves within the formation interacting at the margin
with direct and reflected fluid compressional waves within
the borehole. They are excited in fast (vs> vf, e.g. ice) forma-
tions and have speed similar to the S head wave so that the
two (S and pseudo-Rayleigh waves) are generally not separ-
able (Paillet and Saunders, 1990, p. 66).

Stoneley and flexural waves are borehole-guided shear
modes activated respectively by monopole (isotropic) and
dipole (anisotropic) sources (Fig. 4). A monopole source
emits an azimuthally isotropic signal, whereas a dipole
source emits two opposite-phase signals along opposing azi-
muths. Both waves are highly dispersive in fast formations,
approaching the formation shear-wave velocity for low (∼1
kHz) frequencies and the fluid compressional-wave velocity
for high (∼10 kHz) frequencies (Crain, 2004). For low fre-
quencies in an azimuthally anisotropic formation, the flex-
ural wave splits into fast and slow components that
correspond to the Sv and Sh waves in speed and polarization.
The Stoneley wave has one intermediate (between Sv and Sh)
speed (Haldorsen and others, 2006).

Fig. 2. A qualitative view of how several fabric parameters vary for a range of idealized fabrics. The left side shows three Fisherian distributions
that correspond to positive, zero and negative values for the Fisher parameter κ. Minimum and maximum values for each fabric parameter are
printed above their respective graphs. Each colored line shows the values that a parameter takes for a strong pole (top), isotropic (middle) and
strong girdle (bottom) fabric, and is labeled with the parameter name in a corresponding color. P.P. and G.P are abbreviations for the pole
parameter and girdle parameter.

Fig. 3. Predictions for P-waves (top plot) and S-waves (bottom plot)
traveling vertically in both pole and vertical-girdle fabrics. Both
fabric types are described by the lowest corresponding eigenvalue
(λ3), which varies from λ3= 0.33 for isotropic fabric to λ3= 0 for a
strong pole or girdle. vsv and vsh are the same for pole fabrics.
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4. INSTRUMENT AND METHODS

4.1. Wave-speed measurement
Our tool (Mount Sopris CLP-4877 modified with extended
receiver spacing) measures the travel times for P waves that
propagate from a monopole signal source, outwards to the
surrounding ice, upwards along the ice at the borehole
boundary and back through the borehole fluid to each
receiver (Fig. 5). Wave transmission is recorded as pressure
measurements at 2 µs intervals at each receiver. Properties
of the tool are listed in Table 1. Although our tool does not
resolve shear-wave arrivals well, much of the following ana-
lysis is equally applicable to shear waves. We use the symbol
v to describe velocities of head waves that could be P or S
types.

From Snell’s law in ray theory, the critical angle of refrac-
tion for head waves satisfies sin ϕ= vf/v. The borehole-fluid
velocity, vf is approximately 1500 m s–1. Within the range
of measured values for vp, the refraction angle ϕ is ∼20°

Ideally, measurements are made with the tool centered in
the borehole, in which case d0= d1= d2 and from the wave-
propagation geometry:

v ¼ L2
T

ð9Þ

where v is the velocity of a measured head wave (P or S) that
travels along the borehole wall, and T is the difference
between arrival times at the two receivers. Centralizers
were placed at three positions along the length of the tool
in order to align the transmitter and receivers with the bore-
hole central axis. In principle, wave speeds can be calculated
from the Source-Rx2 travel time, but in that case the inferred
speeds are more sensitive tool-borehole geometry, as well as
the fluid P-wave speed.

Arrival times are calculated from waveforms at both recei-
vers. The vicinity of the first arrival is detected by comparing
two adjacent time averages of signal amplitude over domains
equal to half the emission period (1/2ν where ν is the central
frequency). Because wave arrivals consistently begin with a
pressure ‘dip’, their onset can be located by searching for
the region where the second average is significantly less
than the first. The arrival time is further refined by selecting

the zero-crossing of a linear interpolation of the (discretely
sampled) waveform (Fig. 6).

4.2. Fresnel volume for sampled ice
The propagation time for an elastic wave that travels between
two points is affected by the medium in the vicinity of the ray
path between the two points. The domain for this effect can
be approximated as the region through which diffracted rays
will interfere constructively with the direct-path ray, i.e. the
combination of all ray paths such that the greatest path
length is half a wavelength greater than the shortest. We
expand on the treatment for a homogeneous medium from

Table 1. Properties of Mount Sopris CLP-4877.

Source central frequency 24 kHz

L1 90 cm
L2 303.5 cm
Diameter 3.8 cm
Sampling rate 2 µs
# Samples per receiver 1024
Sample resolution 12 bit

Fig. 4. Here we characterize the deformation of an initially
cylindrical borehole-surface with a circular cross section for (a)
Stoneley and (b) flexural normal modes. Stoneley and flexural
modes are activated by monopole and dipole transmitters,
respectively. (a) Stoneley wave (b) flexural wave.

Fig. 5. Geometry of the sonic tool, borehole, surrounding ice and
the propagation path for measured waves. The red, semi-elliptic
region represents the Fresnel volume for ice that is sampled by
sonic methods. Radius r is measured from the center of the
borehole. Waves travel from the source, through the borehole
fluid, through ice along the borehole wall and back through the
fluid to each receiver. In the ideal case for a centralized tool, d0=
d1= d2= r and the propagation geometry is azimuthally isotropic
around the borehole.
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Spetzler and Snieder (2004) by approximating the Fresnel
volume as an elongated toroidal object that wraps around
the ice borehole. Calculations are in Appendix A. The
Fresnel volume for a head wave between two points sepa-
rated by a distance L2 in a borehole of radius r is

V ¼ πabð4a=3þ 2πrÞ ð10Þ

where

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2λ
4

þ λ2

16

s
ð11Þ

and

b ¼ L2=2þ λ=4 ð12Þ

For our experiment, r ≃ 8 cm, L2≃ 300 cm, and λ≃ 16 cm –

this indicates a Fresnel volume of ∼2.5 m3, with an elliptical
semi-minor axis (penetration depth) a≃ 35 cm.

4.3. Effects of temperature and pressure
Elastic wave velocities in ice are affected by temperature (Θ)
and pressure (p). In order to correct for this effect, the veloci-
ties need to be adjusted as

vpc ¼ vp � A � ðΘ� ΘrÞ � B � p: ð13Þ

where p is pressure, Θ is temperature and Θr is a reference
temperature. Following Gusmeroli and others (2012), we
use A=−2.7 m (S°C)−1, and Θr ¼ �16○C (Kohnen and
Gow, 1979), as well as B= 0.2 m (s MPa)–1 (Helgerud and
others, 2009). Both temperature and pressure corrections
have been applied to our data (temperature data are from
Cuffey and Clow (2014)). Pressure is calculated as p= ρgz
where ice density ρ= 920 kg m–3, g= 9.81 m s–2 and z is
the depth from surface. Actual densities are lower in the
firn (∼0–100 m depth (Albert, 2015), but we restrict our ana-
lysis to lower depths where density is near constant and the
relevant change in overburden pressure does not signifi-
cantly alter the pressure correction, which is small compared
with the temperature correction.

4.4. Error analysis
The primary source of error for this sonic method is differing
radial location of the two receivers. Consider the case of a
tool resting off the borehole central axis with inconsistent
spacing between receivers and the borehole wall, as in

Figure 5. In this case, the difference between wave arrival
times at receivers Rx1 and Rx2 will be:

T ¼ d2 � d1

vf � cosf
þ L2 þ ðd1 � d2Þ tanf

v
ð14Þ

Recalling that sin ϕ= vf/v, this can be rearranged to

v ¼ L2
T

d̂ � cosf
T � vf

� 1

 !�1

; ð15Þ

where d̂ ¼ d2 � d1.
Note that for the case of a centralized tool (d1= d2) this

reduces to (9), and for small d̂:

v≃
L2
T

1þ d̂ � cosf
T � vf

 !
ð16Þ

Let vi represent the value for the inferred wave speed.
Without knowing the value of d̂, vi will be calculated as in
(9). The inferred wave speed will differ by the true value by
the correction term:

δv ¼ L2 � d̂ � cosf
T2 � vf

ð17Þ

Given typical values for vp and vf of 3850 m s–1 and 1500 m
s–1 respectively, and inserting v= vp and T≃ L2/v, this results
in an error in inferred waves speed equal to

δv

d̂
≃30

m s�1

cm
ð18Þ

Wave speeds inferred from a sonic log are influenced
strongly by the position of receivers relative to the borehole
central axis. Erratic or sustained offset of either receiver will
respectively result in random or systematic error for inferred
wave speeds; this error will be positive or negative in accord-
ance with the sign of d̂.

Error from uncertainty in arrival times is relatively small.
Letting σt and σv respectively, represent errors in arrival-
time picks and velocity, then

σv

σ t
¼ σT

σ t

σv

σT
¼

ffiffiffi
2

p ∂v
∂T

¼
ffiffiffi
2

p L2
T2 ¼

ffiffiffi
2

p v2i
L2

≃7
ms�1

μs
; ð19Þ

where σT=σ t ¼
ffiffiffi
2

p
because T is the difference between two

arrival times. In the least noisy depth regions in our logs, we
are able to resolve velocity differences on the order of 1 m s–1

as repeated features in multiple logs (Fig. 8c). Assuming that
(resolution-limiting) random error in inferred velocities is pri-
marily from uncertainty in arrival time picks, this indicates an
arrival-time uncertainty of no greater than order 0.1 µs,
which is significantly smaller than the sampling interval
and the source period.

Moderate changes in the tool sampling rate do not
strongly affect arrival time uncertainty. Sampling rates of
250 kHz or faster resulted in similar uncertainties, but
slower sample rates resulted in a degraded waveform and
higher uncertainties in arrival time measurements and vel-
ocity estimates. The zero-crossing method for determining
wave arrivals is effective for sampling rates of at least 10
times the source frequency.

Fig. 6. Sample of a wave incident at Rx1. The arrival time (red dot) is
chosen as the zero-crossing of the waveform subsequent to the initial
dip in recorded pressure.
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In summary, our wave-speed measurements are subject to
small (order 1 m s–1) random error from arrival-time uncer-
tainty, but large (order 10 m s–1) error from receiver drift.
The receiver-drift error will be predominantly systematic,
but may behave erratically if a receiver bounces around
within the borehole.

5. APPLICATIONS TO THE WAIS DIVIDE

5.1. Site characteristics
The WAIS Divide ice core site is located in the Ross drainage
basin, 24 km downstream of the boundary with the
Amundsen basin (Morse and others, 2002). This boundary
shows a topographic saddle between higher ice surfaces at
the Executive Committee Range and at another ice dome
that divides Weddell and Ross/Amundsen drainage basins
(Fig. 7a). The surrounding ice lies in a regime of laterally con-
vergent flow – extending across the divide and compressing
along it. The Divide is migrating at ∼10 m a–1 (Conway and
Rasmussen, 2009), but the strain configuration and ice topog-
raphy have not changed substantially in the last several thou-
sand years (Matsuoka and others, 2012). Some properties for
the borehole are listed in Table 2.

Surface velocities at the WAIS Divide were measured by
Conway and Rasmussen (2009). Strain rates at various sites
around the divide were calculated with a vector polynomial
fit to this data (Conway and Rasmussen, 2009), and from
strain nets around individual sites (Matsuoka and others,
2012). We infer typical values for extension and compression
in this region with a vector polynomial fit to the surface vel-
ocity data (Appendix B) using a modified version of the strat-
egy employed by Conway and Rasmussen (2009). We force

the fitted polynomial to assume spatially independent values
(zeroth order) for divergence and curl. Strain rates in the core
vicinity are derived by differentiating this flow field.

A depth/age relationship for ice within the WAIS-D core
was derived by the WAIS Community Members (2013).
Assuming steady state, the rate of vertical compression can
be estimated from this relationship by differentiating in time
and then depth: _ezz ¼ ð∂=∂zÞ ð∂z=∂tÞ where z is the depth
and t is the age in years. We obtain an average value by
fitting a first-order polynomial to the depth profile of the
time derivative, ∂z/∂t. The slope of this polynomial is a repre-
sentative value for vertical compression: _ezz. These findings
are summarized in Table 3.

Our results show extension across the divide of magnitude
greater than the rate of vertical compression, accompanying
substantial compression along the divide. For mass continu-
ity: _exx þ _eyy þ _ezz ¼ 0, which is consistent with the values in
Table 3.

Uniform horizontal extension is characterized by the
strain relationship _exx ¼ _eyy ¼ � _ezz=2. Pure uniaxial exten-
sion across a divide, in contrast, has the strain relationship
_exx ¼ _ezz ¼ � _eyy=2. The WAIS Divide strain configuration,
shown in Table 3, is closer to the case for horizontal uniaxial
extension; this favors the development of vertical-girdle
fabrics (Alley, 1988).

5.2. Sonic logs
We conducted several sonic logs throughout the depth of the
WAIS-D borehole during the 2011/12 season (Data available
at http://nsidc.org/data/nsidc-0592). Raw P-velocities inferred
from our logs are shown in Figure 8a. Measurements in the

Fig. 7. (a) Topography of the WAIS Divide near the WAIS Divide Ice Core (WDC) site. Elevation data are from Liu and others (2001). The GPS
survey area for (b) is outlined in red. The contour interval is 40 m. (b) Surface velocities near the WAIS-Divide core site. Divide is at 0 km on
vertical axis. Data from Conway and Rasmussen (2009).
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upper 2000 m of ice are pervaded by noise that precludes
detailed interpretation. All of our logs were performed with
a damaged transmitter that likely produced an azimuthally
asymmetric signal (The transmitter is a ring-shaped piezo-
electric crystal. One section of this ring (∼20% of its area)
was pulverized on arrival at WAIS. The rest of the transmitter
appeared to be intact). This, coupled with poor tool-central-
ization within the borehole, is the most likely explanation for
abrupt upward shifts in inferred P-velocity (typically span-
ning of the order of 10 m in depth) that are not consistent
between logs.

Figure. 9 shows waveforms and measured arrival times for
one of our logs. In the upper 1000 m of this log, there are sub-
stantial variations in Rx1 arrival times that have no visible
counterparts in the Rx2 arrivals. Following from the wave-
travel geometry (4L1≃ [L1+ L2]), arrival time variations due
to ice fabric should be exaggerated in the second receiver
by about a factor of 4 (i.e. if the tool enters a fast layer
where the Rx1 arrival occurs 2 µs earlier than the local
norm, then the Rx2 arrival should occur ≈ 8 μs earlier).
The behavior in Figure 9 is not consistent with this rule,
and could be explained by Rx1 moving back and forth
across the borehole central-axis.

There are also persistent differences between logs in the
upper 1500 m of ice. This was most likely caused by
changes in the tool-centralizer diameter – an unfortunate
problem that we were able to partially address for our later
logs.

For reasons that are not entirely clear, our measurements
have far less noise below 2200 m depth. This improvement
could result from greater off-vertical deviation for the bore-
hole axis at greater depths – the tool would have rested
more consistently on the down-hole side of a more inclined
borehole. Measurements of borehole inclination are consist-
ent with this interpretation; the inclination increases substan-
tially between 1000 and 2000 m depth, and then remains
constant. It is also possible that the tool isolators straightened
because of warmer ice and borehole fluid at greater depths.

Figure 8b shows 3 m running averages for each log below
2000 m depth. We discard data from shallower depths where
data quality was particularly poor. Each log was processed to
remove artificial features – we removed major outliers, as
well as spikes where the relative behavior of arrival times
at Rx1 and Rx2 were not consistent (as described above).
Some undesirable artifacts remain, including distinctly
opposing velocity features between 2000 and 2200 m in
the blue and yellow-green profiles. Presumably, some fea-
tures in the borehole at these depths caused tool behavior
with opposite results for two logs. This behavior underlies

Table 2. Properties of the WAIS-D Borehole.

Location 79.484°S, 112.086°W W
Elevation 1807 m
Depth 3405 m
Diameter 17.0 cm for depth <1530 m

16.3 cm for depth >1530 m
Temperature −30.1°C≤Θ≤−6.05°C
Inclination* 0°≤ I≤ 5°†

Borehole Fluid Isopar-k with densifying agent

* Inclination measured in degrees from vertical.
† Data from Slawny and others (2014).

Fig. 8. P-wave velocities measured in the WAIS-D borehole. Separate logs are distinguished by color. (a) Raw measurements. (b) 3 m running
mean for P-wave velocities from each log. The logs were truncated above 2000 m and were processed to remove large errors associated with
physical receiver drift. (c) A close-up comparison of four separate logs near the bottom of the borehole. Separate logs consistently show small
(several m s–1) velocity features that occur over short (several meters) depth ranges, but differ systematically by up to 40 m s–1.

Table 3. Strain Rates averaged throughout depth in the vicinity of
the WAIS Divide. x, y and z are respectively, the along-divide,
across-divide and vertical directions.

_exx −0.45 × 10−4 a−1 (compression along divide)
_eyy +1.33 × 10−4 a−1 (extension across divide)
_ezz −0.92 × 10−4 a−1 (compression in vertical)P
i
_eii

+0.04 × 10−4 a−1 (mass continuity)
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the need for precise tool centralization, as well as redundant
logs to verify features.

Below 2200 m depth, the noise level decreases substan-
tially, and we see good agreement between features on sep-
arate logs. A close-up view of data near the bottom of the ice
sheet is shown in Figure 8c. Small velocity features of several
m s–1 that occur over short depth ranges (several m) are
repeated among separate logs. Although velocities differ sys-
tematically between logs by up to 40 m s–1, small-scale fea-
tures are very consistent between logs (i.e. the results of
different logs differ primarily by translation). The most
likely explanation for this systematic error is that the distance
between receivers and the borehole wall was not consistent
between logs. This problem was not a surprise – the tool cen-
tralizers were too small for the WAIS-D borehole and were
prone to changing diameter – but could easily be corrected
for future logs. See the section on error analysis for a quanti-
tative treatment of this effect.

A schematic for a (bow-spring) centralizer that we used at
the WIAS Divide is shown in Figure 10. We tried to control
the diameter of the centralizers by adjusting the distance
between cuffs – this was ineffective because the cuffs
would slide apart during logs until the centralizer diameter
was barely greater than that of the tool. For subsequent
logs (at the North Greenland Eemian Ice Drilling (NEEM)
core), we were able to control the distance between cuffs
by connecting them under tension with a steel rod. We rec-
ommend that future sonic loggers do the same.

5.3. Thin sections
Using optical methods, Voigt and colleagues measured
crystal fabrics (Data available at http://nsidc.org/data/nsidc-
0605) on ∼10 cm × 10 cm thin sections that were cut

vertically from the WAIS-D core at 83 depths (average separ-
ation of ∼40 m vertical between measurements). Fitzpatrick
and others (2014) provided an area and two orientation
angles for each thin section. This provides a detailed descrip-
tion of ice fabric at a discrete set of depths. From each fabric
measurement, we can calculate a corresponding eigenvalue
set with (1) or a corresponding vertical P-wave velocity with
(4) and (7).

Fig. 9. Waveforms measured in the WAIS-Divide borehole. Shades
correspond to pressure amplitudes. Calculated arrival times are
marked in blue. This particular log is the same as for the dark-blue
profile in Figure 8.

Fig. 11. Depth variation of COF characteristics inferred from thin
sections. (a) Fabric eigenvalues (Section 2.1). (b) Pole and girdle
parameters derived from eigenvalues.

Fig. 10. Bow-spring centralizers can keep a tool in the center of a
borehole. Flexible rods bow out between two cuffs. For our logs at
the WAIS Divide, we did not have an effective way to control the
centralizer radius. One way to control centralizer radius is by
adjusting the distance between cuffs with a steel rod that connects
them under tension (not shown). This method has worked well in
subsequent logs.
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Fabric eigenvalues for all thin-section measurements are
shown in Figure 11a. Fabric parameters, as a function of
ice depth, are shown in Figure 11b. At the WAIS Divide,
fabric gradually develops into strong girdles in the upper
2000 m of ice. Below 2000 m, there is a relatively abrupt
shift to vertical-pole fabrics, until the bottom several
hundred meters, where the pole parameter varies substan-
tially between measurements and has a lower average
magnitude.

5.4. Prevailing fabrics at the WAIS divide
Strain evolution causes ice-crystal c-axes to align in direc-
tions of compression. As a consequence, vertical-pole
fabrics are favored in ice where vertical compression accom-
panies approximately uniform extension in the horizontal.
This is the case at ice domes and ridges with no lateral con-
vergence (Dome C and NEEM, respectively). At the WAIS
Divide, in contrast, horizontal ice flow convergence that is
transverse to the flow direction produces a compression
rate (along one horizontal axis) of magnitude sufficiently
close to the vertical compression rate for c-axes to distribute
throughout a vertical plane – they form vertical girdles that
include both the vertical and horizontal axes of compression.
The prevalence of these girdles in the upper 2500 m of ice is
demonstrated by thin-section measurements (Fig. 11), and is
consistent with, but not readily inferred from, the existing
sonic data. Radar measurements at the core site show polari-
metric features that can be caused by vertical-girdle fabrics at
depths <1800 m (Matsuoka and others, 2012); below 1800
m the signals are too small to see such features. Below 2500
m depth there is a transition to pole fabrics, which our sonic
logs record in detail.

6. DISCUSSION

6.1. P-wave interpretation

6.1.1. Resolution and accuracy
Our tool measures elastic waves that travel a distance of 3 m
between receivers. Velocity features that are repeated among
separate logs occur over depth ranges of this magnitude
(Fig. 8c). These same features have velocity magnitudes as
low as 1 m s–1. Based on the repeatability of these measure-
ments, we report that our tool can resolve relative velocity
differences on the order of 1 m s–1 with a depth resolution
of 3 m.

Consistent separation between redundant logs demon-
strates substantial systematic error in our data, with up to
40 m s–1 separation between measurements at the same
depth (in regions where noise was low). Because of this sys-
tematic bias, raw velocity profiles inferred from our data
should be assumed to be offset from correct velocities, with
biases on the order of 10 m s–1. One way to reduce this
bias is to shift the measured velocity profiles so that they
coincide with theoretical velocity profiles based on thin-
section measurements. We employ this method below to
infer fabric parameters from the sonic data. Ideally, future
surveys will reduce this problem with a well-centralized tool.

6.1.2. Relationship to fabric – λ1 (vp)
The speed of a vertically propagating P-wave is related to ver-
tical clustering of ice-crystal c-axes. Figure 12 compares
eigenvalue-based fabric parameters to predicted (using 4
and 7) wave velocities for both thin-section and idealized
synthetic fabric distributions. Figures 12a, b show predicted
velocities for a fabric based on its pole parameter and first
eigenvalue, respectively. In each case, the idealized fabrics

Fig. 12. Comparison of COF features and predicted (using 4 and 7) wave speeds for both measured thin-section fabrics (dots) and for idealized
Fisher-distribution (dashed lines) fabrics. (a) shows the relationship between pole parameter λ1− λ2 and P-wave speed vp. (b) shows P-wave
speed vp as a function of the largest eigenvalue λ1. This relationship is also shown for the Fisher girdle distributions, although their range on the
λ1 axis is narrow. (c) shows how the speeds of fast- and slow-polarized shear waves are affected by girdle development for observed fabrics
and synthetic girdles. (d) shows the separation between fast and slow shear waves for the same fabrics as in (c).
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are a set of pole-type Fisherian distributions. In Figure 12b,
the relationship for girdle-type Fisherian distributions is also
shown – this cannot be done for Figure 12a because all
girdle-type Fisherian distributions have a pole parameter of
zero, regardless of fabric strength.

P-wave velocity is sensitive to a fabric’s pole parameter, as
well as its first eigenvalue, λ1. Figure 12b shows that the rela-
tionship between vp and λ1 is similar for a variety of fabrics –
girdle- and pole-type Fisherian distributions, as well as
fabrics measured at the WAIS Divide. This observation justi-
fies using vp as a proxy for the first eigenvalue of the fabric of
the measured ice. The vp(λ1) relation for pole-type Fisherian
distributions is one-to-one, as well as a good representation
of the relation for thin-section fabrics. By taking the inverse
of this relationship, measured P-wave velocities can be con-
verted to fabric eigenvalues λ1.

Figure 13 shows the results of this λ1(vp) function applied
to P-wave speeds (average of multiple logs) that we measured
at the WAIS Divide. Before solving for λ1 (Fig. 13b), we
shifted the velocity profile (Fig. 13a) to minimize the first-
order mismatch between measured velocities and thin-
section predicted velocities at corresponding depths below
2500 m. The sonic-derived eigenvalues agree well with
thin-section measurements in the low-noise region below
2500 m. There is a region ∼3100 m depth where the thin-
section λ1s are consistently lower than the sonic-derived
values. This disagreement is not present in the relationship
between velocity measurements and thin-section predictions
(Fig. 13a), and reflects the imperfect (but generally very good)
relationship between velocities and eigenvalues. Because
sonic data quality was poor in the upper ice, we draw no
conclusions about fabric from our sonic logs above 2500 m.

Gusmeroli and others (2012) suggested a similar relation-
ship between vp and λ1 that was interpolated from a direct
comparison of thin-section-derived eigenvalues to elastic
wave speeds measured with the same CLP-4877 tool.
Because of systematic bias inherent in this tool, we advocate
interpreting measured wave-speeds as possible offsets from

true values, rather than as absolute values. We avoid this
problem by employing a vp(λ1) relationship based on theoret-
ical values for measured fabrics, and using it to calibrate our
measured velocities so they coincide with thin-section data.

The relationship between vp and λ1 relies on the eigen-
vector associated with λ1 being aligned near the vertical.
This is consistently the case for thin-section measured
fabrics at the WAIS Divide. The relationship would break
down for pole fabrics that are not aligned with the vertical,
such as may be present in regions of stratigraphic folding.
The general interpretation – that fast P-wave speeds corres-
pond to clustering of c-axes in the vertical – would still be
true.

6.2. S-Wave interpretation – next step for sonic
logging
P-wave velocities are not sensitive to azimuthal clustering of
ice-crystal c-axes, as is present in vertical-girdle fabrics. This
can be seen in Figures 3 and 12b (Note that in Fig. 12b, ver-
tical girdles occur only within a small subset of the plotted
domain. Although vp varies rapidly with λ1, its total range
is small because λ1 for vertical-girdle fabrics is restricted to
the narrow range between 0.33 and 0.5). First-arriving
shear waves are respectively, faster and slower for strong
girdle and pole fabrics, and may be useful for distinguishing
between the two. As a fabric develops from isotropic to a
strong girdle, vsv increases by ∼2%, which would be difficult,
but not necessarily impossible to detect with sonic methods.
Another sonic feature of vertical-girdle fabrics is shear-wave
splitting into fast and slow polarizations (vsv and vsh) that are
respectively, parallel and normal to the girdle plane. For a
strong girdle, the difference between these two velocities is
∼100 m s–1 (5%).

Shear-wave splitting is strongly related to girdle strength
for both synthetic and observed fabrics. Figure 12c shows
the relationship between girdle parameter and shear-wave
velocities for observed (thin section) and synthetic

Fig. 13. Fabric parameter λ1 inferred from P-wave velocities, compared with thin-section values. (a) Measured P-wave velocities compared to
theoretical predictions (using (4) and (7)) from thin-section data at corresponding depths. Raw velocities (dashed line) were shifted (solid line)
to minimize the first-order misfit with corresponding thin-section values. (b) Fabric eigenvalues λ1 inferred from wave velocities, compared
with those calculated from thin sections. Eigenvalues are inferred from P-wave velocities using the red curve in Figure 12b.
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(Fisherian girdle) distributions. Points in the bottom left that
appear at odds with the Fisherian-distribution relationships
correspond to vertical-pole fabrics, which have low girdle
parameters and low speeds for both shear-wave types.
Because it is hard to distinguish corresponding pairs of vsv
and vsh, we plot the difference vsv – vsh in Figure 12d. A
clear relationship between girdle strength and velocity split-
ting is evident for both observed and synthetic distributions.
Notably, the girdle model for azimuthally-anisotropic
fabrics is an imperfect representation of the actual fabrics
that exist at the WAIS divide, and this is reflected in disagree-
ment between the real-fabric and idealized distribution
shear-splitting predictions. Nevertheless, thin-section
fabrics demonstrate a correlation between shear-wave split-
ting and girdle strength that can be used to infer girdle
strength from shear-wave splitting in a probabilistic sense.
Alternatively, one could use shear-wave splitting on its
own as a proxy for azimuthal anisotropy.

The data we collected at the WAIS Divide are of insuffi-
cient quality to accurately distinguish S-wave arrivals. This
was in part due to clipping of the high-amplitude S-wave
signals that precludes most forms of signal processing.
Receivers with greater dynamic range could better record
both P- and S-wave arrivals. Because S waves are slower
than P waves, their arrivals are obscured by any remnant
energy in the P-wave coda – even without amplitude clip-
ping, S-wave arrivals cannot be picked with the same reso-
lution as P-wave arrivals. Shear-wave speeds can also be
measured by optimizing a correlation coefficient across the
S-wave regions of multiple waveforms. This method,
known as semblance analysis, is common in borehole
logging (e.g. Luo and Hale, 2012). We are working with a
contractor to build a new tool with improved dynamic
range to simultaneously resolve both P- and S-waves. This
tool will feature five receivers that are equally spaced over
a vertical span of 3 m, allowing us to resolve SV velocities
with semblance analysis.

Ideally, future loggers will be able to detect both vsv and
vsh arrivals. An industry precedent for detecting separate
shear-wave velocities uses a combination of flexural-wave
logging (Haldorsen and others, 2006) and semblance ana-
lysis (Luo and Hale, 2012). Flexural-wave logging requires
a low-frequency (order kHz) tool that is not well suited to
P-wave logging, so we have focused on measuring P and S
head-waves in our ongoing tool development.

6.3. Method comparison
Fabric can be expected to vary on long spatial scales (meters
to hundreds of meters) due to general bulk strain, and on
short spatial scales (centimeters to meters) due to local differ-
ences in grain/scale interactions and recrystallization, as well
as to seasonal and annual differences in impurity loading in
snowfall. In principle, thin sections can resolve sub-meter
fabric properties, if thin sections can be obtained continu-
ously along the length of a core. However, in practice, thin
sections have not been obtained continuously along the
length of any major ice core, and the distance between
nearby thin sections has typically been tens of meters. For
example, at WAIS Divide, thin-section measurements were
taken at an average interval of 40 m.

In our study, sonic logs, which average fabric over 3 m
depth, show relatively minor deviations from a local trend
over distances of 100 m or more, suggesting that fabric

varies relatively smoothly on wavelengths greater than a
few meters. In contrast, individual thin sections capture
local fabric on the decimeter scale at isolated points in a
core, and the wide scatter of thin-section results in
Figure 13b (relative to the sonic results) implies that there
are large variations in fabric on some spatial scale that is sig-
nificantly shorter than 3 m.

Neither sonic nor thin-section data from the WAIS Divide
can resolve these meter-scale variations. Sonic measure-
ments average out fabric properties at the meter scale, and
therefore are unable to resolve any features at or less than
that scale. With available thin sections, meter-scale varia-
tions are irretrievably aliased, due to the typically large
depth separations between thin sections.

Our sonic data from the WAIS Divide do detect small
fabric changes (variations in λ1 that are much smaller than
0.1 in Fig. 13b) over depth spans of a few meters and
greater. Notably, this is the smallest scale of interest for ice-
sheet modeling, for which model mesh size is a constraint.
These same features cannot be resolved at all with the thin
sections that are available from the WAIS divide. In order
to resolve fabric variability occurring over depth ranges of
a few meters, the depth interval between thin sections
would need to be reduced to a few decimeters, i.e. by one
to two orders of magnitude.

Automated fabric analyzers (e.g. Wilen, 2000) have
reduced the labor requirements for thin-section measure-
ments and may allow for much smaller separations
between thin sections in future cores. At the same time,
thin-section measurements consume core, and a generous
allotment of ice would likely be necessary to greatly increase
the number of thin-section samples. Given the small number
of grains in each thin section, particularly at depths where
grains have grown substantially, it could take multiple
samples per meter of core to convincingly detect the fabric
variations over several meters to which a sonic tool is sensi-
tive. Given this constraint, we anticipate that for the foresee-
able future sonic logging will be the most effective means to
detect fabric changes that occur over depth ranges of a few
meters.

7. CONCLUSIONS
By measuring the velocities of vertically-propagating P waves
in a borehole, we are able to infer the vertical clustering of
ice crystal c-axes, including abrupt variations that occur in
the lower ice at the WAIS Divide. The velocity that we
measure is closely related to the fabric eigenvalue λ1. We
measure λ1 continuously in depth, and are able to resolve
small (≪ 0.1) changes that occur over several meters of
depth. These features cannot be inferred from available
thin sections, and could not be detected with thin sections
without a great increase in the thin-section sampling rate.

We recommend inferring eigenvalues from P-wave vel-
ocities as follows:

(1) Shift measured velocities to minimize disagreement with
theoretical values based on thin-section measurements,
as in Figure 13a.

(2) Use the red curve in Figure 12b. to convert adjusted vel-
ocities to values for λ1.

Better tool centralization will minimize systematic bias in
raw wave speeds, but the strong sensitivity of sonic measure-
ments to receiver position probably necessitates some
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calibration with direct fabric measurements (step 1) for future
logs.

Current methods for sonic logging can also be improved
with additional tool receivers that allow for semblance ana-
lysis. P-wave measurements are appropriate for distinguish-
ing vertical-pole from isotropic fabrics; they are insensitive
to girdle-fabrics. In the future, by measuring both P- and S-
wave arrivals, as well as the separation between fast and
slow shear polarizations, it will be possible to further distin-
guish girdle fabrics around an ice borehole. This will be espe-
cially useful for logging at sites like the WAIS Divide where
ice flow converges along a horizontal axis.
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APPENDIX A
FRESNEL ZONE CALCULATION
We approximate the first Fresnel zone as an elongated tor-
oidal object with a half cross section as is depicted in the
red region of Figure 14. This cross section is half of an
ellipse with semi-major axis b and semi-minor axis a. From
the definition of the first Fresnel zone, it follows that b= L/
2+ λ/4 and a2+ (L/2)2= b2. The solution for a is

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lλ
4
þ λ2

16

s
ðA1Þ

Let q(z) be the radial distance from the borehole wall to
the edge of the Fresnel zone at a given depth z. The
Fresnel volume can be found with an integral along the

Fig. 14. A cross section of the Fresnel volume for sampled ice is
shown in red. It is half of an ellipse with semi-major axis b and
semi-minor axis a. The volume was calculated by rotating the
cross section about the borehole central axis.
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z-axis:

V ¼ 2
ðb
0
π½ðr þ qðzÞÞ2 � r2�dz ðA2Þ

¼ 2π
ðb
0
½2rqðzÞ þ q2ðzÞ�dz ðA3Þ

¼ 2πrAe þ Ve ðA4Þ

where Ae and Ve are the area and volume for an ellipse
with semi-minor and semi-major axes a and b. Then
Ae= πab, Ve= 4πa2 b/3 and

V ¼ πabð4a=3þ 2πrÞ ðA5Þ

APPENDIX B
FITTING A FLUX FIELD
Given vectors uðx; yÞ and vðx; yÞ describing velocity compo-
nents on coordinate vectors x and y (e.g. u1 is the along-
divide surface velocity at point (x1, y1), see Fig. 7b), the
local horizontal ice flux is

qxðx; yÞ
qyðx; yÞ

� �
¼ hðx; yÞ ○ gðx; yÞ ○

uðx; yÞ
vðx; yÞ

� �
ðB6Þ

where h is the measured height corresponding to points in x
and y, γ is a scale factor that converts surface velocity to the
depth-averaged velocity and ° indicates element-wise multi-
plication. Values for u, v, x, y, h and γ are taken from Conway
and Rasmussen (2009).

A vector polynomial can be fitted to the ice fluxes with
arbitrary limits on the polynomial order for divergence and
curl. Let N be the number of measurement points and P be
the desired order for the flux polynomial. The vector polyno-
mial can take the form

qxðx; yÞ
qyðx; yÞ

� �
¼
XP
k¼0

Xk
i¼0

αi;k�i
βi;k�i

� �
xiyk�i ðB7Þ

Over the domain x and y, this relationship takes the form

qx qy
��� ���0¼ Gp0 ðB8Þ

where

p ¼ α0;0 α1;0 α0;1 ::: α0;P β0;0 β1;0 β0;1 ::: β0;P
�� �� ðB9Þ

G is the coordinate matrix

G ¼ G0 0
0 G0

����
���� ðB10Þ

and

G0 ¼

1 x1 y1 x21 x1y1 ::: yP1
1 x2 y2 x22 x2y2 ::: yP2
..
. ..

. ..
. ..

. ..
. . .

. ..
.

1 xN yN x2N xNyN ::: yPN

���������

���������
ðB11Þ

(B8) can be solved for p without any constraints on the
divergence and curl. To limit the polynomial order for
divergence and curl fields to D and C, respectively, it must
be that

iαi;k�i þ ðk� i þ 1Þβi�1;k�iþ1 ¼ 0 ðB12Þ

for k>D+ 1 and 1≤ i≤ k

and

iβi;k�i � ðk� i þ 1Þβi�1;k�iþ1 ¼ 0 ðB13Þ

for k>C+ 1 and 1≤ i≤ k
This can be accomplished by solving

½Gþ ηL�p0 ¼ qx qy
��� ���0 ðB14Þ

where

Lðrow; ζ i;k�iÞ ¼ i

Lðrow; ζ i�1;k�iþ1 þM=2Þ ¼ k� i þ 1
ðB15Þ

for D <k≤ P and 1≤ i≤ k

and

Lðrow; ζ i;k�i þM=2Þ ¼ i

Lðrow; ζ i�1;k�iþ1Þ ¼ k� i þ 1
ðB16Þ

for C< k≤ P and 1≤ i≤ k
ζi,j is the index of αi,j in p andM is the number of columns in

G. ‘row’ is increased iteratively with each assignment, starting
from 1. η is a trade-off parameter between the least-squares fit
and the polynomial order constraints – a large value strictly
constrains the divergence- and curl-field orders.

This method is readily implemented with any linear
algebra programming package that can calculate a matrix
pseudo-inverse, including matlab and numpy.
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