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ON THE ONE-DIMENSIONAL NONLINEAR
ELASTOHYDRODYNAMIC LUBRICATION

DANIEL GOELEVEN AND VAN HIEN NGUYEN

In this paper the authors prove an abstract theorem for solutions of a variational
inequality on a cone and use it to study the free boundary problem of elastohydro-
dynamic lubrication from mechanical engineering. The mathematical model is set
in a one-dimensional geometry. The existence of a solution for every non-negative
lubricant viscosity is proved, and some properties useful for the numerical analysis
are obtained.

1. INTRODUCTION

This paper is concerned with the analysis of the one-dimensional nonlinear elasto-
hydrodynamic lubrication problem. The case of a thin film of lubricant contained in the
narrow gap between two circular cylinders has been intensively analysed in the literature
(see, for example, [2] and [11]). We consider here the case when the viscous lubricant
is forced to flow between elastic bearings; in this case substantial elastic deformation
of the bearings can take place which in turn affects the flow field of the lubricant, and
the film thickness depends upon the elastic deformation of the bearings. This latter
phenomenon is called the nonlinear elastohydrodynamic lubrication problem.

The most evident way of setting up this model is to consider an associated
(quasi - ) variational inequality or nonlinear complementarity problem. This approach
was pursued, for example, by Hu [12], Kostreva [14], Oden and Wu [16], Oh [17],
[18] and Rodrigues [19]. Among these works, Oden and Wu [16] presented an inter-
esting mathematical study of the elastohydrodynamic problem for the case when the
lubricant viscosity is constant. In reality, the lubricant viscosity reaches its equilibrium
value instantaneously according to an exponential pressure dependent law (Barus's law
A'(p) = Mo exp(ap), fio > 0, a > 0) which leads to a highly nonlinear problem. In this
direction, we refer the reader to the recent and very interesting paper by Rodrigues [19]
which treated a general class of non-local obstacle problems on an open bounded subset
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354 D. Goeleven and V.H. Nguyen [2]

of RN, where N ^ 1. The author obtained an existence result ([19, Theorem 2.1])
and a uniqueness result ([19, Theorem 2.6]) for these problems. He then applied his
results to the bidimensional elastohydrodynamic lubrication (see [19, p.88-89] where
explicitly N — 2). The main part of the results presented in [19] applies only when
a. = 0. However, for the case where a > 0, the author of [19] was able to obtain an
existence result ([19, Theorem 3.4]), which improves and extends an earlier result of
Hu [12, Theorem 6.1]. We also refer the reader to the work of Hu [12] where the author
uses fixed point theory to analyse the complete lubrication problem for small viscosity
coefficients.

In this paper we follow the nonlinear complementarity approach. We believe that
this approach for treating the complete one-dimensional nonlinear elastohydrodynamic

lubrication problem is beneficial from both analytical and numerical points of view.
However, this nonlinear complementarity approach is not, for the moment, completely
satisfactory since the analysis does not readily carry over to the higher dimensional
problem. We shall be concerned with this problem in a follow-up paper.

The paper is organised as follows. In Section 2, the complete one-dimensional non-
linear elastohydrodynamic lubrication model is introduced, and an abstract existence
theorem similar to a result of Brezis [3] is presented. We show in Section 3 some in-
teresting properties which generalise results obtained previously by Oden and Wu [16].
More precisely, these authors have established in [16] that the Reynolds operator is co-
ercive, bounded, hemicontinuous and pseudomonotonefor the case where a = 0. Here,
we extend these properties - except, of course, the coercivity property - to the case
where a > 0. Using our abstract existence theorem, we are able to prove in Section 4
the existence of a solution for each a satisfying certain conditions; our conditions are
different from the ones used in [12], [19], and in this way we enlarge the domain of
existence for a solution to the problem under consideration. Moreover, if we assume
that the right hand side of our problem equation lies in — K*, then we are able to prove
the existence of a solution for each a > 0. It is worthwhile to notice that this last con-
dition is a classical condition for the solvability of noncoercive variational inequalities
(see, for example, [6, 7, 8, 10, 15].) In this sense, this last result of existence is more
natural, and we think that it constitutes an interesting improvement in the theory of
lubrication. The technique of proof we use is entirely different from that of Hu [12] and
Rodrigues [19], and our results presented here are not covered by the ones given in [12]
and [19].

2. PRELIMINARIES

In this section we shall use some basic definitions and mathematical results from
Functional Analysis and from variational inequality theory, which will be needed in the
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[3] One-dimensional elastohydrodynamic lubrication 355

rest of this work. We follow the references [4] and [20].

2.1 T H E ELASTOHYDRODYNAMIC LUBRICATION PROBLEM. Let ft := (a, b) be a

bounded open interval in !R; ft is the region where two solid bodies are in contact.
These two bodies are moving with a (scalar) velocity denoted by U(x), and the (scalar)
pressure p(x) which develops in a (viscous, isotropic and incompressible) fluid layer
confined between these two bodies satisfies the following:

PROBLEM

(2.1)

(2.2)

(2.3)

(2.4)

[Po\-

- ^ ( e - Q p / i 3 ( ;

p = 0 in fto,

fti U ft0 := ft,

p(a) = p(b) = 0,

(2.5) h{p) = ho(x) + / k(x, z)p(z)dz
Ja

where ho is the initial geometric gap between the two bodies, /ii(p) := Ja fc(x, z)p(z)dz

is the elastic component of the film thickness, a is the viscosity coefficient (a j£ 0) and

fio is the initial viscosity of lubricant (//<> > 0). See, for example, [5] and [14].

For the rest of this paper we make the following assumptions on the model:

HI. k{x, •) e l 1 (ft) for every x € SI;

H2. k(x, z) ^ 0 for all x, z £ ft;
H3. \\k(x, -)\\Li (x) is continuous on ft;
H4. ho £ C1(Sl) and there exist ho and ho > 0 such that

feo. ^ ho(x) < h0 x £ ft;

H5. UeC^Sl).

2.2 A WEAK FORMULATION. Let X be the usual Sobolev space W0
ll2(ft); see, for

example, [1]. Let K be the nonempty closed convex cone of X defined by

K := {v £ X I v > 0 in ft}.

We shall denote by A the nonlinear Reynolds operator

A: X -» X\ p -» Ap = -jL
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and by / the given function in X*

f := -6^(U(x)ho(x)).

If we denote by (•, •) the duality pairing between X and X*, we consider as a
variational formulation of problem [Po] the following nonlinear complementarity prob-
lem:

Find p £ K such that

(Ap-f,v-p)^0 Vve K.

As in {14], it is easy to prove that each solution of [CP] is a solution of problem [Po]
in the sense of distributions.

Our theory is based on Theorem 2.2. To prove it, we first recall the following.

Let £ be a vector space, and let C be a subset of E. A continuous operator
P: E —> E is called a •projection onto C if

P(E) = C and P(x) = x for every x £ C.

Then we have:

THEOREM 2 . 1 . (J. Dugundji) Let (E, \\.\\) be a Banach space and let C C E

be a nonempty closed convex set. For every a > 0, there exists a projection Pa onto

C such that

\\x - Pa(x)\\ ^ (1 + a)p(x, C) {or every xeE

where p(x, C) denotes the distance of x to C.

THEOREM 2 . 2 . Let (X,X*) be a dual system of two reflexive Banach spaces,

K a nonempty closed convex and separable cone with vertex at the origin, f S X* .

Let T: X —> X* be an operator verifying:

(i) T is pseudomonotone on K, that is, if un —>• u, lim{Tun, un — u) ^ 0,
then {Tu, u — v) ^ hjn(Twn, un — v) for each v £ K;

(ii) T is bounded on K;

(iii) There exists R>0 such that u£ K, \\u\\ = R => (Tu - f, u) ^ 0.

Then there exists u* £ K such that

(i') (Tu* - / , v - u*} ^ 0 for each v £ K;

(ii') IKIKi*.

P R O O F : L e t {<j>i,--- , 4>n, • • • } b e a d e n s e s e q u e n c e i n K, a n d Xn :—
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[5] One-dimensional elastohydrodynamic lubrication 357

Let j n : Xn —> X be the injection map, j ^ . : X* —> X^ the corresponding dual
mapping; the duality product (•, •)„ is chosen such that (jn(x), y) = (x, Jn(y))n Vz G
Xn, Vy£X*.

Let Tn: Xn -» X; , x -» Tn(x) =j*n°To jn(x).

We have that Tn is pseudomonotone and bounded on Xn, and since Xn is open

and finite dimensional, Tn is continuous on Xn.

We also have

(Tx-f,x) = (Tojn{x)-f,jn(x))

= (3*n°T°jn(x)-j*J,x)n V x 6 l n

and

Tn: -X̂n —> X^ is continuous and, if a; £ KDXn, \\x\\ = R, than (Tnx—j^f, x)n ^
0. We now prove that there exists x£ € K D -X̂ n such that

<rn< - i;/, v - <)„ > o Vi;e-R:nxn.

Define the set D = {x £ K (1 Xn \ \\x\\ ̂  R}\ D is convex compact in Xn and thus,

by the Hartman-Stampacchia theorem, there exists i j £ i ) such that

(2-6) {Tnx*n-j*J,v-x*n)n>0 VvGD.

(i) If IKH < R, then, for all x e KC\Xn, there exists A G (0, 1) such that

v = Xx + (1 - A)x* £ D and thus

(Tnx*n - ; ; / , Ax + (1 - A)x; - *;)„ ^ 0 Vx e K n Xn

so that

(Tnx*n-j*J, x-x*n)n>0 Vx&

(ii) If ||x*|| = R, with u = 0 in (2.6), we have

and by assumption
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so that

(2.7) <rn< - ; ; / , o » = o.

(2.6) together with (2.7) gives

{Tnx*n-j*nf,v)n>0 VveD.

If x G K, there exists A > 0 such that Ax £ D, and then

M^n< - >;/ , *) > 0 Vz G # n Xn.

This impUes

(2.8) (Tnx*n-j*J,x)>Q VxeKHXn.

(2.8) and (2.7) give

(Tn< - j*f, x-x*n)>Q VxeKnXn.

Thus, for all n £ N, there exists x^ e K D Xn such that

<T< - / , x - < ) ^ 0 Vz G iC n Xn

and

IKII < R-
Let P n : -X" —» K l~l -X"n be a projection such that

b'm ^(s 1 ) = x-
n—•oo

This projection exists. Indeed, let a > 0 be fixed, and put Pn{x) := Pa,Kn(x), where

Pa,Kn is the projection defined by Theorem 2.1:

Va; G K, Ve > 0, 3n G N such that Vm Js n,

||X - Pm(x)|| < (1 + a)p(x, Xm) < (1 + o)p(aj, Jifn) < (1 + o)e

and thus
lim Pn{») = x.

n—>oo

For all x G if, -Pn(s) G A" D X n , and thus

(2.9) (T< - / , Pn(x) - x*n) > 0 VxeK.
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The sequence {x^} is bounded (||x^|| ^ R), and thus passing possibly to a subse-

quence, x£ —* x* and i j e i f , for all n , by (2.9)

hm~(T< - / , < - x) < 0 Vx G K,

and thus, by pseudomonotonicity of T,

(TV - / , x* - x) ^ Um(Tx; - / , x*n - x) < 0,

so that

(Tx* - f, x - x*) ^ 0 VxGK.

D
Our Theorem 2.2 is similar to a well-known theorem of Brezis [3], but our restriction

on a cone allows us to relax the coercivity assumption of [3]. Also, our technical proof is
quite different from the one given in [3]. For similar results on a general closed convex
set, see [9].

We now return to the one-dimensional elastohydrodynamic lubrication problem.
In the following proposition we prove that hi is continuous from /^(fi) = W1>2(^1)

into Z°°(«).

PROPOSITION 2 . 1 . Under assumptions H1-H3, there exists M > 0 such that

max MP)I < M ||p||L=o(n) Vp £ W1'2^).

PROOF: We have the injection Wlt2(Q) •-> L°°(Q), and we can apply Holder's
inequality to get

and thus, by assumption H3,

max|/ii(p)| ^ Af

where

(2.10) M = max||fc(x,
xen

D
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3. PROPERTIES OF THE REYNOLDS OPERATOR

In this section, we shall generalise, in the one-dimensional case, Lemmas 2-6 of
[16]. The authors have proved that, in the case where a = 0, the Reynolds operator A
is bounded, hemicontinuous and pseudomonotone on K.

We prove here that the same properties hold in the case where a > 0.
The proof of boundness and hemicontinuity is similar to that of Oden and Wu [16];

we give details of the proof for the sake of completeness. The proof of pseudomono-
tonicity is rather complex, and requires a certain amount of involved computations.

Furthermore, the fact that the function e~ax is "rapidly" decreasing implies that
the operator A is no larger coercive; this has as a consequence that Brezis' theorem
does not apply as in [16].

However, we shall show that, under compatibility between certain parameters of
the model (the initial gap and the maximal velocity of lubricant), assumption (iii) of
Theorem 2.2 is satisfied.

PROPOSITION 3 . 1 . The operator A maps bounded sets in K into bounded
sets in X* .

PROOF: Let p £ K. For every <f> S W0
1>2(n), we have

{Ap, </>)= c

so that

where

dp
dx dX

dx + 6/J.O I
d~x~

dx

For every p S K, the positive function e ap is bounded by the constant 1, and by
Proposition 2.1, we obtain

+ M\\P\\Loomy f
J a

so that, by Holder's inequality,

dp
dx dx lL°°(fi) /

Ja dx

3 I! dp

Wdx L'(fl) dx\
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Now, since we have the injection W1<2(£1) •—> L°°(Cl), there exists a c > 0 in fact c is

the Sobolev constant: c — (b — a) ' + (b — a) ' such that

HullL°°(n) ^ cilull
and this

\(Ap, 0)| ^ (ho + Me \\p\\wi,2{Q))

+ 6fi0UMc(b - af12 ||

Then

1 1 ^ . = sup

/ \ 3

^ [ho+Mc\\p\\wl,2{n)J \\p\\wi,2{n)

+ 6WFMc(i - a)1/2 | |p|Ui,J(n)

and the proof is complete. D

PROPOSITION 3 . 2 . For every r/ > 0, there exists C(r}) > 0 such that whenever

u,v £ K, ||u||wi.»

(3.2) {Au -Av,u-v)^ -C(TJ) ||U - w||Loo(n) ||« - v\\wi,i{a) .

PROOF: We have

I A A \ ^ U3/ \ - c u d u d ( u - v ) . 3 / x -av d v d(U ~ V) j

{Au — Av,u-v)= / h(u)e i— — h Me i—; -dx
Ja ax dx dx dx
-6(J.O ( U{x)h1{u-v)d(-U~~V^dx.

Ja dx

It is easy to see that this last expression can also be written as

{Au -Av,u-v) = A{u) - B{u) - C{u)

where

B{u) = [

C(U) = 6Mo / U{x)h1{u-v)^f
Ja dx

We claim the following.
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1. Clearly, A(u) ^ 0 for every u £ K.

2. The functional B(u) can also be written as

B{u) = / '
Ja

(u) + e-a(-u+v)'3h(u)h{v)

dx dx

We have, for all u, v £ K, ||u|lw».*(n) ^ V a n d lkllwi,2(n) ^ V,

v)\ ^ \h2{u) + h{u)h(v) + h2{v)\

and thus

B(u) ^A(ho+cMrj)2 f
Ja

dv
~dx~

d(u - v)
dx

dx.

Now, since the function e yx is 7-Lipschitz continuous on R+, we can also write

(av)'\h{v) - h{u))\ + \h(u)

^ \h{v) - h{u)\

^ M \\U - v\\Lco(n) + -\JlQ+M ||u||Lo<,(O)) \U ~ V\

^ Af ||w - •u| | i o o ( n ) + -(hl+Mcrj) \u-v\.

We thus obtain

— 2 th

B(u) < 4 ^ + cMr,) M \\u-v\\LOO{n) /
dv
dx

d(u — v)
dx

dx

4 3 rb

+ -(ho+cMr]) a I \u - v\

and finally, since W1'1^) «-» £~(n) ,

B(u) ^ 4(fe^+ CMTJ) M ||U - v\\Lao,ns 11̂ 11̂ 1,2

dv
d~x~

d{u - v)
dx

dx,

, 4 . — >3

+ - (Ao + cMrj) a \\u - v\\Lca(n) \\v\\wi,i(n) \\u - v\\wl,2

< Kiiv) \\u ~ v\\i,°°(n) \\u ~ v\\ W.2(n) + K2(l) II" - u|lz,oo(
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where

K^TI) = 4(/£ + cMr,)2 Mr,,
4 3

K2(jl) = 3«(^o + cMrj) T}.

3. We have

C{u) ^ 6fj.0U I \hi{u-v)\
Ja

d(u - v)
dx

dx

\\u - v||Lco(n) (6 - a)1'2 \\u - v

where

K3\\u-v\\Loom\\u-

K3 = 6fi0U(b-a)1/2.

Thus, we finally get

(Au — Av, v — u)

with

D

REMARK 3.1. If a = 0, then, as we can see in the proof of Proposition 3.2, #2(77) = 0,
C(r)) — Ki(ri)+K3 , and, by the Poincare inequality, A(u) ^ (ft/{ft + l))^o \\u ~ vllvi
for each » £ if so that

(Au -Av,v-u)>

where ft is the Poincare constant: ft = (b — a)
We now present some properties concerning the Reynolds operator A.

PROPOSITION 3 . 3 . For all u, v e K, w e X, A > 0, we have

lim (A(u + Xv), u) = (Au, u).
x—>o+

PROOF: Indeed, we have

fb -at. -<x\v(
Ja

-6fi0 / U(x)(hi
Ja

ax j ox
du

iu) + Xh^v))—dx,
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and taking the limit as A —> 0 + , we obtain

l im (A(u + \v), w) = / e - Q U ( / l l H + / l o ) 3 ^ ? d x - 6 M o / ff(*)M«)T^Ja dx ax Ja ax
= (Au, w).

PROPOSITION 3 . 4 . The operator A is pseudomonotone on K.

PROOF: Let {un \ n e N} C K be such that un -* u, and

\im{Aun, un — u) ^ 0.

A can also be written as

A = Ax + A2

where

The map Aj is pseudomonotone. To prove it, it suffices to prove the following:

(3.3) lim(^4iM,, — AiU, un — u) ^ 0

and, for every v G K,

(3.4) Um(Aiun - AiU, u - v) ^ 0.

Indeed, (3.3) and (3.4) give

Iim(i4iun — Aiu, un — v)~^ 0,

and thus

]im{Aiun, un — v) ^ lim(AiU, u — v).

We have

(3.5) {A1un-A1u,un-u)= I (e-a^h3{un)un-e-auh3(u)u)(un-u)dx
Ja
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[13] One-dimensional elastohydrodynamic lubrication 365

where u = ^ (for example) denotes the weak derivative of u with respect to x . It is

easy to see that (3.5) can also be written as

(AiUn - Aiu,un - u) = Ii + I2

where

h = I e-a»"h\un)(un - u)(un - u)dx,
J a

J2 = f (e-a^h3(un) - e-a»h3(u))u(un - u)dx.
Ja

We claim the following,

(i) Clearly

(ii) We have

where
fn = (e-a»»h3(un)-e-a»h3(u))u.

c- wl-2(n) L°°(n) L~(n)
Since un —>• u, un —> u and thus / n —» 0. By the bobolev
injection L°°(n) '-> Z/2(f2), / n -̂ -> 0 and, by the continuity of d/dx

rj — 1 /O^

from L2(fi) into H'1^), we obtain ^ / n —^ 0, and thus

Uml2 = 0,

so that Uin(Aiun — Aiu, un —u) ^ 0.

If v G if, we also have

(Aiun - Aiu, U - v) — h + h

where

I3= f e-
a^h3(un)(un - u)(« - !>)«&,

/4 = / (e-
a""fe3(Un) - e-

auh3{u))u(u - v)dx.
J a
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(iii) We have

h = -{-J-9TI, un-u)ax
where

As in (ii), it is easy to prove that j^gn —> g, where g = e~arih3(u)(u — v),
and thus

hm/3 = 0.

(iv) We have

fb
h= I gndx

Ja
where

gn = fn(u-v).

Thus

and since / „ —> 0, so that by Lebesgue's dominated convergence the-
orem,

lim/4 = 0,

and thus
Iim(j4iun — Aiu, u — v) ^ 0

and then A\ is pseudomonotone.

Now we prove that A% is completely continuous. Indeed, by Proposition 2.1, h\
is continuous from W1>2(Q) into L°°(tt), and since the injection Wll2(Q) •—> L°° is
compact, hx is compact from W1>2(fl) into L°°(£l), or also since we have the injection

-> L2{n), ^ is compact from Wl'2{Sl) into L2(Cl):

Now, since d/dx is continuous from Z2(fl) into H~1(^l), we obtain easily that Ai
is completely continuous from Wll2(fi) into H~1(Q). Since every completely continu-
ous operator is pseudomonotone, the proof is complete. D

P R O P O S I T I O N 3 . 5 . Define

k2 :=6fj.0cUM(b-a)1/2,

k3 :=6fj.0Uh^(b-a)1/2.
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If fci, k2
 a n ^ &3 satisfy (3.6) and (3.7) below, then there exists a real number R > 0

such that u £ K, with II^HiyMrn) = -̂ » implies (Au — / , u) ^ 0.

PROOF: We have

*6

Ja

- 6/i0

6 i

f^(x)/io(x)^-

-6/xo / U{x)h1{x)-^
Ja dx

Let | |w||wi,2(n) = -R-

So, for every u £ K, IMIvyi,2(n) = i? implies

/ : dx
ho

3e-acR f"
~ Ja

du
dx

dx.

Now, by the Poincare inequality [10], there exists /? > 0 such that

rb d 2 tb

and thus

Also

/ e-auh3{u)
Ja

du
dx

L Jn
)h1(u)^dx + 6fj,0 f U(x)ho{x)^

dx Ja dx

6/xo!/M(6 - a)1/2cR2 + GIMiUh~0{b - a)1/2R,

and we can then write

(Au -f,v)2 k1R
2e-

It remains now to prove the existence of R > 0 satisfying

- k2R
2 - ksR.

This inequality occurs if we choose k\, k2, £3 such that

(3.6)

(3.7)

, &1
k3 < —e

etc
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where #(£3) is the angle between the straight line D tangential to the curve f(x) =

k\xe~a~<Xt and passing by the point (0, £3).

Let P = (x% f(x*)). Then we have

D = y + f(x*) + f(x*)(x - x*) = f'(x*)x + k3,

so that

(3.8) ** = /(**)-/'(O**,
and we can thus write condition (3.7) under the form

where x* is the first positive solution of (3.8), and thus also the solution of

(3.9) ^ 2 \

The equation (3.9) has a solution, since the maximum of the continuous concave function
g(x) = x2e~acx on R+, is (4e~2)/(a2c2) , and by (3.6)

k3 e~x 4e~2

D
PROPOSITION 3 . 6 . Assume that k^ > k2. If f e -K*, that is, (/, v) ^ 0 for

all v £ K, then there exists a read number R > 0 such that ||u||iyi,2(n) = -^ implies

{Av-f,u) >0.

PROOF: In this case, we have

(Av - f, u) > R2(kie-
acR - k2).

Thus, if we choose R ^ (In(fci/fc2))/(ac)) then we get our desired result. D

4. EXISTENCE THEOREM

After these preparations we are now ready for the main results of this paper, which
are two existence theorems for the general one-dimensional nonlinear elastohydrody-
namic lubrication model.

THEOREM 4 . 1 . Under assumptions H1-H5, it fci, k^ and k3 (as defined in

Proposition 3.5) satisfy (3.6) and (3.7), then Problem [CP] has a solution.

PROOF: By Propositions 3.1, 3.4, 3.5 and Theorem 2.2. D

THEOREM 4 . 2 . Under assumptions H1-H5, if ki > k2 and f € -K*, then

Problem [CP] has a solution.

PROOF: By Propositions 3.1, 3.4, 3.6 and Theorem 2.2. D
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REMARK 4.1. If we neglect the elastic component (that is, k(x, z) = 0), then ki = 0,
and in this case we only have to satisfy the condition (3.6) in Theorem 4.1.

REMARK 4.2. The smaller a is, the easier it is to satisfy conditions (3.6) and (3.7).

REMARK 4.3. Theorem 4.2 is better than Theorem 4.1 in the sense that the imposed
condition does not depend on a; it is in fact a mild assumption made on the model
under consideration. On the other hand, the condition / £ — K* is frequently made in
the literature concerning noncoercive problems (see, for example, [6, 7, 8, 10, 15].)

REMARK 4.4. Some concrete examples of one-dimensional lubrication problem can be
found in [5].

REMARK 4.5. If a = 0, then, by Proposition 3.2 and Remark 3.1, it is clear that
if R ^ sup{77 | 77 > 0, C(T/) < (/3/(/3 + l))hl} then Problem [CP] has at most one
solution u* such that ||i**||vyi,2(n) ^ R-

In the case where a = 0, under certain conditions, Oden and Wu [16, Remark
on p. 214] have proved that the Reynolds operator is strictly monotone, so that the
solution is unique. A similar result has also been established by Hu [12, Theorem 5.1].
The reader can finally find a uniqueness result in Rodrigues [19, Theorem 5.1] for a
special case, namely, for a cylindrical journal bearing problem.

REMARK 4.6. Proposition 3.4 can also be proved by using Proposition 3.2 (see [7].)

We conclude this section by giving a simple example in order to illustrate the

flexibility of our existence theorem.

EXAMPLE: Let us consider the problem of lubrication of two cylinders in contact.
The first cylinder has a radius Ra and an angular velocity wa . The data corresponding
to the second cylinder are Ri, and Ub- We are interested in the case of pure rolling
(without sliding) under isothermal conditions. The lubricant between the two cylinders
in contact will be considered incompressible. We are concerned with a pressure depen-
dent law for the viscosity, fj. = //<> exp (ap) with a > 0. The elastic deformation of the
two cylinders will be neglected in this illustration. Any load W applied externally will
be balanced by the pressure generated in the lubricant fluid. If the pressure is assumed
to be constant along the direction parallel to the axes of the two cylinders as well as
across the lubricant film gap, then the Reynolds equation may be considered in the
plane of x := Ri,6 (see Frene and Nicolas [5] for the meaning of the polar coordinate
6), and the pressure p satisfies the following system (see [5] and Kostreva [14] for more
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details):

6>ioUic
h{p)=o>

p = 0 in n0 ,

l ^ o J p(a) = P(2wRb) = 0,

h(p) = ho(x) = cf 1 +ecos- .,

_ .Rawa + Rbwb

2

where C := Rb — Ra,
 a n ( l £ :— d/C is the relative eccentricity ratio, <£ denoting the

distance between the centres of the two cylinders (the evolution of d depends on the
applied load W). We have thus:

ho=C(l- e),

2nRb

(2xi?6)1 /2 '

By Remark 4.1 we only have to satisfy the condition (3.6) in order to get the existence
of a steady state solution of [Eg]. This will be the case if

a 6Ufio(l + e)(l + 47r2^)(i + 2nRb)e'

5. CONCLUSION

Our theory is limited to the one-dimensional case because the injection Wlt2(fl) •—>
L°°(Cl) where fi C Mn, holds true only for n = 1, and does not hold for n ^ 2. We could
work with W^llP(f2), where p > 2, in order to have a compact injection into L°°(fl),

but in this case Jn \Du\ dd ^ c IMIvc^pfn) s o *na*' w e COU1<1 n ° t extend the result of
Proposition 3.5. So, the question how to generalise our work to the bidimensional case
remains open for the case a > 0. If a = 0, the above injection is unnecessary, and one
is able to obtain interesting results in the bidimensional case; see theories developed in
Oden and Wu [16] and Rodrigues [19]. If a is small, an appropriate change of variables
allows us to convert the problem into the case where a = 0 (see the theory developed
in Hu [12]).

https://doi.org/10.1017/S0004972700013484 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700013484


[19] One-dimensional elastohydrodynamic lubrication 371

REFERENCES

[1] R.A. Adams, Sobolev spaces (Academic Press, New York, NY, 1975).

[2] G. Bayada and M. Chambat, 'Existence and uniqueness for a lubrication problem with
non-regular conditions on the free boundary', Boll. Un. Mat. Hal. 6 (1984), 543-557.

[3] H. Brezis, 'Equations et inequations non lineaires dans les espaces vectoriels en dualite',

Ann. Inst. Fourier 18 (1968), 115-175.

[4] H. Brezis, Analyse fonctionnelle, Theorie et applications (Masson, Paris, 1983).

[5] J. Frene and D. Nicolas, Lubrification hydrodynamique. Paliers et butees, Collection de la

Direction des Etudes et Recherches d'Electricite de France (Eyrolles, Paris, 1980).

[6] D. Goeleven, 'On the solvability of noncoercive variational inequalities', J. Optim. Theory
Appl. 79 (1993), 493-511.

[7] D. Goeleven, On noncoercive variational inequalities and some applications in Nonsmooth
Mechanics, Ph.D. Mathematics (Department of Mathematics, Facultes Universitaires de
Namur, 1993).

[8] D. Goeleven and M. Thera, Recession functions and the solvability of noncoercive varia-
tional inequalities, Mathematics Research Report (Department of Mathematics, Facultes
Universitaires de Namur, 1993).

[9] J.P. Gossez and V. Mustonen, 'Variational inequalities in Orlicz-Sobolev spaces', Nonlin-
ear Anal. 11 (1987), 379-392.

[10] M.S. Gowda and J. Seidman, 'Generalized linear complementary problems', Math. Pro-
gramming 46 (1990), 329-340.

[11] J.S. Guo, 'A variational inequality associated with a lubrication problem', Nonlinear Anal.

16 (1991), 13-14.

[12] B. Hu, 'A quasi-variational inequality arising in elastohydrodynamics', SIAM J. Math.
Anal. 21 (1990), 18-36.

[13] N. Kikuchi and J.T. Oden, Contact problem in elasticity: A study of variational inequal-
ities and finite elements methods, SIAM Stud. Appl. Math. (SIAM, Philadelphia, PA,
1988).

[14] M.M. Kostreva, 'Elasto-hydrodynamic lubrication: A non-linear complementarity prob-
lem', Intnat. J. Numer. Methods Fluids 4 (1984), 337-397.

[15] C.E. Lemke, 'Bimatrix equilibrium points and mathematical programming', Management
Sci. 11 (1965), 681-689.

[16] J.T. Oden and S.R. Wu, 'Existence of solutions to the Reynolds equation of elastohydro-
dynamic lubrication', Internat. J. Engrg. Sci. 23 (1985), 207-215.

[17] K.P. Oh, 'The numerical solution of dynamically loaded elastohydrodynamic contact as
a nonlinear complementarity problem', Trans. AMSE, J. of Tribology 106 (1984), 88-95.

[18] K.P. Oh, 'The formulation of the mixed lubrication problem as a generalized nonlinear
complementarity problem', Trans. AMSE, J. of Tribology 108 (1986), 598-603.

[19] J.-E. Rodrigues, 'Remarks on the Reynolds problem of elastohydrodynamic lubrication',

European J. Appl. Math. 4 (1993), 83-96.

[20] N. Sibony, Iterations et Approximations (Hermann, Paris, 1988).

https://doi.org/10.1017/S0004972700013484 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700013484


372 D. Goeleven and V.H. Nguyen [20]

Department of Mathematics
Facultes Univeisitaires N.-D, de la Paix
B-5000 Namur
Belgium

https://doi.org/10.1017/S0004972700013484 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700013484

