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Abstract

A class of functional differential equations in some Hilbert space are studied. The results are
applicable to many quasi-linear parabolic partial differential equations with (possibly) countably
many discrete delays and finitely many distributed delays in the highest order spatial derivatives.
For the linear case, an evolution operator on the underline space H is introduced, via which
a variation of constant formula for the solution of the equation in the underline space H is
derived. Some spectral properties of the generator of the solution semigroup denned on some
appropriate space are discussed as well.
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1. Introduction

In this paper, we study a class of abstract delay equations in some Hilbert
space H. One of the interesting cases which is covered by our results is
the following initial-boundary value problem for a parabolic partial integro-
differential equation:
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(1.1)
ut(t, x) - uxx(t, x)

J= J f(t, e, u(t,x), ux(t,

- ri' * ) ' "*( ' ~ ri

uxx(t-ritx)),
(t,x)€(0,oo)x(0, 1),

(f, x) = <p(t, x), (t, x) € [ - r , 0] x (0, 1),

I u(t,O) = u(t, l) = 0,te(0,oo),

where / and gt are some maps and ri e (0, r] are some positive constants.
It is clear that the above equation has the following features:

There are (possibly) countably many discrete delays and finitely many
(which is the same as one) distributed delays appearing in the highest order
spatial derivative terms; the terms with and without delays are nonlinearly
coupled.

At this point, one may realize that our investigation generalizes previous
works relevant to this aspect (cf. [1-4, 11, 19]). We should note that the
mentioned works only discussed the cases with at most finitely many discrete
delays in the highest order derivative terms. The cases in which the delay
only appears in the lower order (including zero-th order) spatial derivatives
were discussed by many authors [5-7, 10, 14, 15, 18, 22]. For a brief survey
of this topic, see [3]. Some other relevant results can be found in [8, 9, 12,
17].

In this paper, we will pose a set of very general conditions under which
the global existence and the uniqueness of the strong solutions to a general
functional differential equation is ensured. This is carried out in Section 2.
Then, in Section 3, we study a delay differential equation which contains
equations of form (1.1). In Section 4, a linear case is discussed. We derive
a variation of constants formula which can be regarded as an extension of
those given in [10]. Finally, the spectral properties of the associated solution
semigroup are studied.

2. An abstract functional differential equation

In this section, we establish the existence and the uniqueness of the (mild)
solution to an abstract functional differential equation. Let us start with some
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assumptions. To this end, we fix a Hilbert space H and a constant r > 0.
(Al) The operator A: 2>{A) c H —> H is linear, closed and densely

defined. There exist SQ e (0, n/2), co0 > 0 and M > 0, such that

(2.1)
p(A) D Z(co0, d0) = {A G C|<50 < | argA| < 7t} |J{A G C| Re A < « 0 } ,

(2.2) ||(A/ - ^ ) - ' \\^{H) < jf^, VA G I(co0, ̂ o).

By [16], we know that under (Al), the operator -A generates an analytic
semigroup on H and the fractional powers A^(fi e l ) are well-defined. We
let (-00 < a < b < +oo)

V(a, b; 3f{A)) = iv(-): [a, b]
b

\2\Av{ttHdt <oo),/
a

^(-r, oo; 3r{A)) = jv(-): [-r, oo) | £ Jr

V5 > -r\ ,

and as in [3], we let

F = IX&H\[ \Ae~Atx\2
Hdt <OO\.

For any v(-) G L2(a, b; ^(^)) a n d x e f . w e let

From [3], we know that F is a Banach space and

( 2 3 ) L 2 ( a , A ; 3 r ( ^ ) ) n Wl'2(a, b ; H ) ^ C([a,

V +oo.

Next, for any v(-) G tf^i-r, oo;&{A)) and i > 0, we let vt(-) G L 2 ( - r , 0;
^ ( ^ ) ) be defined as vt(d) = v(t + 6), V0 G [-r, 0].

(A2) The mapping G: [0, oo) x C([-r, 0]; 3?(A)) -» / / satisfies the fol-
lowing:

(i) For any v(-) G ^ . ( - r , oo; 31 {A)) the map t^ G(t, vt(-)) is almost
everywhere defined and is in i^2

oc(0, oo; 3f(A));
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(ii) There exist nondecreasing functions co(-), K(-):[0,r] —> [ 0 , oo) ,
with

(2.4)
siO

such t h a t for all v ( - ) , v(-) e ̂ {-r, o o ; 2'(A)), se[-r,0] a n d t0 > 0 ,

f 2 1 1/2

i f°+S A f e-A{'-x)[G(x, vx(-)) - G(x, «t(.))] dx dt 1

(2.5) f ftn+s

< (o(s) I J \A[v(t) - v

1/2

K(s)UjA[v(t)-v(t)]\Hdt\ ,

r tQ+s -11/21
+ IA-' * J j "

'°+s 1 1 / 2
(2.6) II \G{t,vt{-))\2

Hdt\ <K(s

The above conditions on the map G are very general. In the next sections,
we will see that they include many interesting concrete examples. One of the
contributions of this paper is the discovery of the above conditions.

Now, let <p{') e L2(-r, Q;3>{A)) and x € F. The abstract functional
differential equation we are going to study is the following:

{ «(/) + Au(t) = G(t, ut{-)), a.e. t e (0, oo),

M(0) = ; C

u(t) = g>(t), a.e. t e [-r, 0).

DEFINITION 2.1. A function «(•) € L^^-r, oo; 3>'(A)) is called a mild
solution of (2.7) if it satisfies the following:

( <p(t), a.e. t e [—r, 0);

JO ' T ' -

We see that under (Al) and (A2), for any u(-) e L^-r, o o ; ^ ( ^ ) ) ,
the integral term in (2.8) makes sense. The following lemma plays a very
important role in the sequel.

LEMMA 2.2. Let (Al) hold. Then, for any h(') e L2(t0, oo; H), co> -co0,

(2 .9) ^ I e~A{-x)h(x) dx e L2(t0, o o ; 3(A)) f ) Wx >2(t0 , o o ; H ) ,
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(2.10) r\e-atA f e-A(t'x)h{x)dx\2
Hdt< (M + I)2 [°° \e-°"h(t)\2

Hdt.

In particular, for all s>0 and h(-) e L2(t0 ,to + s;H),

(2.11)
'o+s

A / e (' x)h{x)d dt<(M+

H

l)2 1 (̂01

PROOF. For any X with Re A > -co0, we know -A e Z(<w0, <S0). Thus,
by (2.2), we have

(2.12) \\A(XI-

On the other hand, by Theorem 3.2 of [13], we know that the following
problem

u(t) + Au(t) = h(t), te[t0,oo),

W
admits a unique solution «(•) e Wx '2([t0, oo); H)nL2(t0, oo; 3>{A)). More-
over, this solution can be represented as

ii(0= / eA(t-x)h{x)dx,
J

*„ , oo).

We extend «(•) and A(-) to be zero outside of [t0, oo) (and still denoted
by themselves). Let co be any complex number with Reco > -co0. By
Plancherel's theorem ([21]), we get (see the proof of Theorem 3.2 in [13] and
notice (2.12) above)

2

eA{t~T)h(x)dx

-i:
H

= r
J—o

at h{t))\2
Hdk

where &~t(y/(t)) stands for the Fourier transformation of the function y/(-).
Then, our conclusion follows.

Now we are ready to prove the main result of this section.

THEOREM 2.3. Let (Al) and (A2) hold. Then, for any <p{-) e L2(-r, 0;
2{A)) and x e F, there exists a unique mild solution «(•) of (2.7).
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PROOF. By (2.4), we may find an S e (0, r] such that

(2.13) co(s)<l.

For any «(•) e L2(0, S; 3{A)), we define

179

<(t), te(O,s].

Then, we see that #(•) e L2{-r, S; 3l{A)). Thus, by (A2), we can define

(2.15) {Tv)(t) = e~Atx+ f e A{t T

Jo
te[O,s].

We observe the following (noting Lemma 2.2)

1/2
. -At .2 ,„

ie x\Hdt

1/2

dt\

J
(2.16) [jT|G(f, (>,(.))&</*]

1/2

< \x\F + (M 1 + (j°JA9{t)\2
Hdt\

¥ (£\Av{t)\2
Hdt)

1/2'

< 00.

Hence, we see that T maps L2(0, s; 3>'(A)) into itself. Next, we let «'(•),
w2(.) e L2(0, J ; ^ ^ ) ) and define v\-) and «2(.) as in (2.14). Then, by
(A2), we have (note v\t) = v2{t), a.e. t€[-r, 0])

f \A[(Tvl)(t) - {Tv2)(t)]\2
Hdt < co{s)2 f \A(v\t) - v2{t))\2

Hdt,
Jo Jo

that is,

(2.17) < co{s)\v\.) - »2

Hence, by (2.13), there exists a unique fixed point M(-) G L2(0, S; 3!{A))
of the operator T. Then, we define u{t) — q>{i) on [-r, 0) and (possibly)
change the values of «(•) on a zero-measure set such that (2.8) holds for
t £ [0,5]. Then we see that «(•) is a mild solution of (2.7) on [-r, s].
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Next, we note that the mapping t <-• G(t, ut(-)) is in L2(0, S; H). Thus, by
Lemma 2.2 and (2.3), we have

«(•) G L2(0, s; 3f{A)) n ^ 1 > 2 ( 0 , J; tf) -» C([0, * ] ; F).

In particular, M(S) G F. Hence, the above procedure can be repeated. Since
the step-length s > 0 is independent of the initial data, the existence and the
uniqueness of the global mild solution of (2.7) follow.

Next, let us collect some basic properties of the mild solution of (2.7) in
the following

(i) Let (x, <p{-)) G F x L2(-r, 0;&(A)). Then the mild solution «(•)

THEOREM 2.4. Let (Al) and (A2) hold.

(i) Let (x, <p{-)) G F x L
of (2.7) satisfies the following:

(2.18) «(.) G L^J-r, oo; 9(A))n < ; 2 (0 , oo; H) - C([0, oo);F),

and for any s > 0, tfiere ejvwto a constant C = C{s), such that

(2.19) l«(-) lL2( 0 ; 5 .^M ) ) n^ ,2 ( 0 ( J . / / )<C(l + |x | f + |?»(-)|L2(_r)

where

\u(-)i*(O.s;!HA)ynrrl-\o,s;H)= / I " W I H ^ + / \Au{t)\2
Hdt.

JO JO

Also, for any 0 < a < 1/2 and 0 < p < 1/2 - a,

(2.20) /H(.)eC((0,oo);i/) .

Moreover, if x e 2f{Aa+p) n F , r/ie«

(2.21) ^aM(-)eC([0,oo);/f).
(ii) /n addition to (Al) a«rf (A2), suppose there exists a function

such that for all v(-), v{-) & L^-r, oo; 2 {A)), j g [ 0 , r ] and to>O,

(2.22) / '0 + J |G(M;,(.))-^,«,(-))li^<^)2 1'°^ \A{v{t)-v{t))\2
Hdt.

Let «(•) and «(•) fte //ie »«'W solutions of (2.7) corresponding to the initial
data (x, <p{-)), (Jc, p(-)) &FxL2(-r, 0;9f(A)), respectively. Then, for any
s >0, there exists a constant C — C{s) > 0, such that

(2 23) ' " ^ ~ "^^(o.
<C(\
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[8] Quasi-linear parabolic partial differential equations 181

PROOF, (i) First of all, from (2.3) and the proof of Theorem 2.3, we see
that (2.18) holds. Now, let s € (0, r] be such that (2.13) holds. Then, let
v%) = 0 and

(2.24)

where T is denned as in (2.15). From (2.13) and (2.17), we see that

(2.25) Urn !

On the other hand, we have

n-\

(=0

- a>{3)

t i L

Thus,

( f 2 V'2 1 f
(2.26) ^ \Au(t)\2

Hdt) < t _ a ( f ) ^ |

1/2-1

)

1/2-

Then, by noting (2.6) and the fact that «(•) satisfies the equation (2.7) in
/ / , we can find a constant a = a(s), such that

(rs 2 \l/2 (rs 2 \
(2.27) ^ \u(t)\Hdtj +{jo \Au(t)\2

Hdtj

<a

1/2'

\x\F+
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By applying the same argument, we have (note (2.3))

/ i* \ 1/2 / -1*

[9]

1/2

l + l«(

1+C

1/2

I
(f_\A<p{t)\2

Hdt\ + (£\Au(t)\2
Hdt^ 1.

Thus, by induction, we obtain (2.19). Next, from the above, we see that the
map

(2.28) t ~ g(t) = G(t, «,(•))

is in £^(0 , oo;H). Thus, for any 0 < a < 1/2, 0 < p < 1/2 - a and

t,h>0,vfe have (note 2(a + p) < 1)

«(f+ A ) - ^ «(r)|ff < |(e - / ) ^ e x|w

(e - Ae 'g{x)dx f , .
+J \A

e g(r)\Hdx

l/2 1/2

rt+h 1/2

Thus, (2.20) follows. Here, we have used the following estimates [16]:

(2.29)
\\APe~At\\#(H) <Mfie~Stt~fi, Vt>0, fi>0, for some 8 > 0,

(2.30) \(e~At -I)x\H<Cfi\A
fix\H, V x e ^ ( / ) , p > 0.

Now, if x e &(Aa+p)r\F, we can take t = 0 in the above and (2.21) follows.

(ii) Let «(•) and «(•) be the mild solutions of (2.7) corresponding to
initial conditions (x, <p(-)), (x, ^(-)) G ^ x ^ 2 ( - r , 0 ; ^ ( ^ ) ) , re-
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spectively. Let S € (0, r] satisfy (2.13). By (2.5), we have
1/2

1/2

f* \A j f e^('"r)[G(T, MT(0) - C?(T , flt

f \A(<p(t)-0(t))\2
Hdt

J-r

1/2

<\x-x\F + K(s)

Thus, by (2.13), we obtain (similar to (2.26))

(2-32)

y^
Then, applying similar arguments used in proving (2.19), we can prove (2.23)
(here, we need (2.22)).

We should note that none of conditions (2.5) or (2.22) implies the other.
Next, similar to [16], let us introduce the following notion.

DEFINITION 2.5. A function «(•) € Lf^i-r, oo; 3r(A)) is called a strong
solution of (2.7), if «(•) G ^ 2 ( 0 , oo; H) and (2.7) holds.

PROPOSITION 2.6. Let (Al) and (A2) hold. Then, for any x e F and
q>{') e tf^i-r, oo; 3{A)), there exists a unique strong solution of (2.7).

PROOF. From Theorem 2.4, we see that the mild solution «(•) of (2.7)
uniquely exists and (2.18) holds. Thus by Theorem 2.9 of [16], we know that
«(•) is a strong solution of (2.7). The uniqueness also follows easily.

Next, we study some asymptotic behavior of the mild solutions of (2.7)
under some further assumptions.

THEOREM 2.7. Let (Al) and (A2) hold. Let there exist a nondecreasing
function KQ{-): [0, oo) -* [0, oo), such that for any v(-) e L^-r, oo;
3t(A)), there exists sQ > 0 and Kl>0, whenever s > s0,

(2.33) [jTW,t;((.))£</«] <K0(s)y*\Av(t)\2
Hdt\ +Klt
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and

(2.34) KQ=ljm K0(s) < -r±-r,

where M is determined by (2.2). Then, the mild solution «(•) of (2.7)
satisfies

(2.35) «(•) € L2(0, oo; &(A))n Wl'2{0, oo; H),

and for any a e [0, 1/2),

(2.36) Um|4oK(0lj/ = 0.

PROOF. From Theorem 2.3, we obtain the unique mild solution «(•) of
(2.7) for any x e F and <p{-) € L2(-r, 0; 2{A)). Then, by our assumption,
there exist s0, K{ > 0, such that for all s>s0, (2.33) holds for «(•). Thus,
for s > s0, one has (note Lemma 2.2)
(2.37)

[jf |^M(0I^<] < klf + (M+1)[£ \G(t, ut(.))\
2

Hdt\

Hence, by (2.34), we have

(2.38)

Then, «(•) e L2(0, oo;H). Thus by (2.33), we have

(2.39) [ H &] ^ ]
Therefore, by the equation (2.7), we see (2.35) holds. Now, we again let
g(t) = G(t, «,(•)) • Then, g(-) e L2(0, oo; H). Thus, for any a e [0, 1/2),

- 2a)1/2 Qf ^ ^ ^ ^ j
- » 0 (as / - • oo).

Thus, (2.36) follows.
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3. A class of delay differential equations

In this section, we apply the results of the previous section to a class of
delay differential equations. Again, we let H be a Hilbert space, r > 0 be a
given constant and A: 2){A) c H ^ H satisfy (Al) stated in Section 2. We
consider the following equation:

u{t) + Au(t) = j g(t,d, u{t), u(t + 6))n{dd), a.e. t € (0, oo),

u(0) = x,

u{t) = <p{t), a.e. / e [ - r , 0 ) .

We let J ? and 38 be the Lebesgue cr-field and the Borel a -field, respectively,
on possibly different subintervals of (—oo, +oo) (which can be identified
from the context). Now, let us make the following further assumption:

(A3) Let //(•) be a finite regular measure defined on ( [ - r , 0], 38), and
g: [0, oo) x [-r, 0] x 2{A) x 3(A) —> H be a given mapping satisfying the
following:

(i) For any JC , y e ^ ( . 4 ) , the map g(',-,x,y) is strongly 2C y.38-
measurable;

(ii) There exist nonnegative constants L(., / = 0, 1, . . . , 4 with

(3.2) Um(A/+ l ) /z ( [ - r , 0])i/2[L^([-r, 0})i/2 + L2fi([-s, 0])1/2] < 1,

such that for all {t, 6) € [0, o o ) x [ - r , 0] and x, x,y,y € ^ ( 4 ) , we have

|*(f, 0, x, y) - ^(/, 0, x, y)\H < Lx\A{x-x)\H + L2\A{y-y)\H

+ L3\x-x\H + L4\y-y\H,

(3.4) \g(t,6,0,0)\H<L0.

REMARK 3.1. If in (A3), one has L{ = 0 (that is, the map g(t, 6, x, y) =
g(f, 0, y)) and ^(-) is non-atomic at 0 (that is, l i in^ / j ( [ - s , 0]) = 0, or
equivalently, n({0}) = 0), then, (3.2) is automatically true. Also, if instead
of (3.3), we have

(3_5) \g(t,e,x,y)-g(t,e,x,y)\H<Ll\A
fi(x-x)\H + L2\A

p{y -y)\H

+ L3\x - x\H + L4\y - y\H,
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for some /? € [0, 1), i.e., the delays do not appear in the highest order spatial
derivative terms, then, by [16] (see [20] also), one has that for any e > 0,

\l-
( 3

\Ax\'H\Afix\H < C\x\l-

< e\Ax\H + Ce\x\H,

Thus, we also see that for suitably chosen constants Li 's, one has (3.2).
It is not hard to see that condition (3.2) essentially means that the parabol-

icity of the equation is not ruined by the (delay) perturbation terms. Since n
can be a very general regular measure, (3.1) includes equations with count-
ably many discrete delays and finitely many distributed delays in the "highest
order spatial derivative" and "lower order spatial derivative" terms. At this
stage, we note that equation (3.1) contains a very wide class of delay equa-
tions. We will make some comments on the constant Li a little later.

In the following, we will assume L3 = L4 = 0 for notational simplicity.
It is not hard to see that these terms cause no difficulty in the proofs. Also,
the statement of the results is not changed after setting L3 = L4 = 0. The
following lemma is basic for the integrals in (3.1) to have meaning.

LEMMA 3.2. Let (A3) hold. Let v(-) e L^-r, ao;&(A)) with Av(-)
Borel measurable. Then, the integral

(3.7) / g(.,d, «(•),«(• + 0))/£(</0)ez£c(O,oo; H),
J

and for any 0 < f0 < f, < oo,

1'2

\Av(t)\2
Hdt

t \ 1 / 2 1
\Av{t)\2

Hdt\ \ .

PROOF. Since Av(') is Borel measurable, we can find a sequence of Borel
measurable simple functions wk(') = 51,-*"**£<(0 with wl e H a n d E'k e

38 (the Borel cr-field on [—r, oo)), such that

(3.9) lim |wi t (0-^t ; (0 | f f = 0, W e [ - r , o o ) .

~lWe define vk(-) = A~lwk('). Then, we see that the map (t,d)i->g(t,d,vk(t),
vk{t + d)) is 5? x ^"-measurable. Thus, from (3.3), we know that (t, 6) •->
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g(t, 0, v{t), v(t + 0)) is 5? x ^"-measurable. To complete the proof, it
suffices to prove (3.8). By (3.3) and (3.4), one can obtain

/ / g(t,e,v(t),v{
A. \J-r

1/2

dt
H

I ' 1
\-d)\H)n{d6)\ dt)

!
iM[-r,0])Utl\Av{t)\2

Hdt\

1/2

L2ti{[-r, 1/2 U'1 £ 2 \

, 0]) |

1/2

L0(t fl\Av(t)\2
Hdt)

'o )

ft \ 1/2)
+L2 / M«(OI»rfH .̂

Hence, (3.8) follows.
Next, let us make some observations. We note that for any v(-) e £2

3C(-'',
oo; 3>'(A)), Au(') is Lebesgue measurable, in general. However, we can find
a Borel measurable function w(-) e L^-r, oo; H), such that

Av(t)-w(t), a.e. t€ [-r, oo).

(Here, a.e. is with respect to the Lebesgue measure.) Let

V(t) = A~lw(t), t€[-r, oo).

Then, Av(') is Borel measurable and

v{t) = V{t), a.e. te[-r, oo).

We call ©(•) a Borel correction of v(-). Now, if #(•) is another Borel
measurable correction of v(•), then

v(t) = V(t), a.e. re [ - r ,oo) .

Hence, for all given 6 &[-r,0],

g{t, 6, v(t),v(t + d)) = g(t, 6, v(t),v(t + 0)), a.e. t e [-r, oo).
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Thus, we have

f e~A{'-T) f g(x,d,v(x),v(x + 6))n(dO)dx
JO J-r

= I f e'A{'~T)g(x ,e,v(x),v(x + 6)) dxn(dd)

= [ f e~A{'~r)g(x, 6, O(T) , O(T + d)) dxn(dd)
J-r JO

= f e~A(t-x) f g(x,d,V(x),v(x
Jo J-r

= I f
(3.10) J

In the sequel, only the integrals of the above type will be involved. Hence,
hereafter, without loss of generality, we may assume that for any w(-) G
Lioci-r, oo; 3{A)), Av(') is Borel measurable. Then, the following defini-
tion makes sense.

DEFINITION 3.3. Let x e H and </>{•) e L2(-r, 0;3f(A)). A function
«(•) e Lfoci-r, oo; 3r(A)) is called a mild solution of (3.1), if it satisfies
(3.11)

() a.e. te[-r,O);

r) \fg{x, 6,e~Atx + £e~A{t-r) \fg{x, 6, u(x + d))n{dd)\ dx, t>0.

A function M(«) G ̂ toC(-''. °°; 2(A)) is called a strong solution of (3.1) if

•) e WL2(°> °°>H) and C3-1) holds-
Now, let us prove the following

THEOREM 3.4. Let (Al) and (A3) hold. Then, for any x e F and (p{-) e
2(-r, 0; !2l{A)), there exists a unique m

over, this solution is also a strong solution.
L2(-r,0;&{A)), there exists a unique mild solution «(•) o/(3.1). More-

PROOF. For any (p{-) € C([-r, 0 ] ; &(A)), we define

(3.12) G(t,9(-))= [ g(t,e,<p(O),<p(d))n(dd).
J

We will show that G satisfies (A2). By Lemma 3.2 and our convention,

we see that (i) of (A2) hold. Now, let v(-), «(•) G L^-r, oo;3f(A)),
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s€[0,r], to>O. Noting Lemma 2.2 (with co = 0 ) , we have

[J'o J'o
[G(T,Vx(.))-G(T,*x(.))]dT

1/2

dt
H

rtn+s
{Lx\A{v{t)-v{t))\H

1/2

(3.13)
+L2\A(v(t + 0) - v(t + d))\H)n{d0)}2 dt

[p 2 1 1 / 2

u([-r,O])\ |,4(i;(0-<>(0)M

L2n([-r,0])
1/2 lCf-rlAiVi

d))\2
Hfi(d6)dt ] • • • }

Now, let us set

w(t) = \A(v(t)-0(t))\2
H,

and estimate the following (noting j e [ 0 , r ] ) :

/
l0 J-r

+ d)fi(dd)dt

t0+r rt0-t rt0+s ,0

/ w{t + d)fi(dd)dt+ / w(t + d)n(d6)dt

fo ft0-e fo ft0+s
= w{t + d)dtn{dd)+ / w(t + d)dtfi(dd)

J-r Jtn J-s Jln-e

<K[~r,0]) f°
Jtn-r

" S w{t)dt.

Hence, by (3.13), we have

/ < <o(s)

(3.15)

n+S
1/2

\A{v{t)-v{t)fHdt\

(M+l)L2n([-r,0}) \ \A(v(t)-v(t))\Hdt\
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with

(3.16) (o(s) = (M + l)/i([-r, 0]) [Llfi{[-r, 0])!/ + L2fi([-s,

Then, by (3.2), we see that (2.4) holds. From (3.8) we have

[17]

rtn+s
I 1/2

\G{t,vt(.))\
2

Hdt\

(3.17) 1/2'

1 + \Av(t)\2
Hdt

Hence, we may choose K(') suitably, such that (2.5) and (2.6) hold. Then,
Theorem 2.3 and Proposition 2.6 apply.

If L3 and Z,4 are not zero, then, instead of co(s) in (3.15), we have
(o(s) + d>(s), with the function &(•): [—r, 0] —> [0, oo) having the property
that

(3.18) lim cb(s) = 0.

Thus, the appearance of L3 and L4 does not affect the result of Theorem
3.4. It is not hard for us to realize that the constants Li actually can be
replaced by some functions of t and 8. More precisely, (ii) of (A3) can be
replaced by the following:

(ii') There exist -2" x ̂ "-measurable functions ai: [0, oo) -»[0, oo) and
constants a, > 0 (i = 0, 1, 2, 3, 4), with the following properties:

(3.19)
r'o+r ( r°

dt

1/2

<aQ, w0>0,

(3.20)

/ al(t,d)fi(de)<al, / a3{t,
J—r J—r

(3.21)

a.e. t € [0, oo),

1/2

a.e. r e [0, oo),

(3.22) +a2ti([-s, 0])"*]

s u c h t h a t f o r a l l (t,6)€[0, o o ) x [ - r , 0 ] a n d x,x,y,y 6 91 { A ) , w e h a v e

\g(t, 6,x,y)-g(t, 0,x,y)\H < a{(t, d)\A{x-x)\H

(3.23) +a2(t,8)\A(y-y)\H

+ a3(t,d)\x-x\H + a4(t,d)\y-y\H,
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(3.24) \g(t,e,0,0)\H<a0(t,d).

Due to the above theorem, hereafter we will not distinguish the mild and
the strong solutions and simply call them solutions.

As in the previous section, we can also obtain a result about the asymptotic
behavior of the solution u(') of (3.1). We omit the details here.

4. Linear Case

In this section, we consider linear delay equations with delays appear in
the "highest order spatial derivative" terms, namely, we are interested in
studying the following type of equation:

{ u(t) + Au{t) = L{ut{-)) + f{t), a.e. t > 0 ,

u(0) = x,

u{t) = <p{i), a.e. t€[-r,O],

where we assume that A satisfies (Al) and L: C([-r, 0]; 2{A)) —* H is a
linear operator satisfying the following:

(LI) There exist a nondecreasing function (o{-)\ [0, r] —> [0, oo), with

(4.2) limco(s)<l,

and a constant K, such that for any v(-) e £jj)C(-'\ oo; 2{A)), the function
t •-» L(vt(-)) is in - ^ ( O , oo; H) and

2

dt
(4.3) Jo H

<co(s)2 [S\Av(t)\2
Hdt + K2 [ \Av(t)\2

Hdt, V s e [ 0 , r ] .
Jo J-r

Let us look at an important case in which (LI) holds. Suppose {A(d) :
6 e [-r, 0]} is a family of closed linear operators satisfying

(4.4) 3t{A{6))D2l{A), V0e[-r,O],

and there exist a finite regular measure /i defined on the Borel cr-field
38\r, 0] and a function

a(.) e Ll([-r, 0]) = {*(.): [-r, 0] - R / ° a{6)2 dfi{dd) < ool ,

with the property that

( to \ l'2

(4.5) lim(Af + 1) / a(d)2/i(d0) I fi([-s, 0])1/2 < 1,
*1° \J-r i
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(the constant M is determined by (Al)) such that

(4.6) \A(d)x\H<a(G)\Ax\H, Vxe&(A).

Then, for any q>{-) G C([-r, 0]; 2{A)), we set

(4.7) L{q>{')) = f A{d)<p{6)n(dd).

J-r

We can check that such an operator L satisfies (LI) for

\ l / 2

co(s) = (M + 1) [ / a{dfn{dd) n{[-s, 0])1/2,(£•
and

ff° 2 Y/2 1/2
K = (M+l) / a{6) n{dd)\ n{[-r, 0]) ' (= (o(r)).

\J-r J
A similar observation to that made in Section 3 shows that (4.6) can be

replaced by
(4.6') \A{d)x\H<a{d)\Ax\H + a(d)\x\H, Vx&&(A),

with the function a(-) being the same as that in (4.6), and some function
a(-) G L^l-r, 0]) (without condition (4.5)).

It is not hard to see that the above case covers many interesting cases
such as finitely many or countably many discrete delays and/or finitely many
distributed delays appearing at all possible orders (no more than the order of
the main operator A) of spatial derivative terms. Thus, this is a very wide
class of linear delay differential equations. In particular, (4.1) contains the
cases discussed in [3, 10, 22].

By the result of Section 2, we have the following

PROPOSITION 4.1. Let (Al) and (LI) hold. Let /(•) e ^ ( 0 , oo; H).
Then, for any (x, q>{-)) G FxL2(-r, 0; 3! {A)), there exists a unique solution

"(•)e LL(-r > °°; •®r(^))n WL 2(°' °°; H) ^ c ( [ ° . °°); F )
of (4.1) satisfying the following estimate.

f\u{t)\2
Hdt+f\Au{t)\2

Hdt
Jo Jo

(4-8) f 2 r° 2 r 2 1
<C(s)Ux\2

F + JJA<p(t)\2
Hdt + jo \f{t)\2

Hdt\, V5>0,
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with some nondecreasing function C{s) independent of the data (x,<p(-),

/(•))•

We note that since the problem is linear, an assumption similar to (2.22)
does not have to be made, and the condition (4.3) is enough to obtain the
estimate (4.8). The first purpose of this section is to derive the variation of
constant formula for system (4.1). To this end, let us make the following
assumption

(L2) The operator L satisfies

(4.9) L:C([-r,0];&{A2))-+&(A),

and the operator

L = ALA~l: C([-r, 0]; 3f(A)) -» H

satisfies (LI) with some &>(•) and K. Moreover, for all v(-) e L^^-r, oo;
3f{A)),

(4.10) [S\L(vt(.))\
2

Hdt<K2 f \Av(t)\2
Hdt, V * € [ 0 , r ] ,

JO J-r

(4.11) J\(vT(.))dr = L^J\r(.)drY V5€[0,oo).

Again, for the operator L defined by (4.7), we see that (4.10) and (4.11)
are automatically true and in order the other conditions of (L2) hold, it
suffices to assume that

(4.12) \AA(d)A'ix\H<a(d)\Ax\H, Vx e&{A), 6 e[-r,0],

that is,

(4.13) \\AA(d)A-%{H)<a(6), V0e[-r,O],

for some «(•) satisfying (4.5).
We notice that in (LI), (4.6) means

(4.14) \\A{6)A-x\y(H) < a{6), V0 6 [-r, 0].

It is not hard to understand that (4.13) implies (in the case of delay partial
differential equations) that the coefficients of the spatial differential operator
A(8) have certain regularity in the spatial variables.

With the aid of (L2), we have a strengthened version of Proposition 4.1.

PROPOSITION 4.2. Let (Al) and (L2) hold. Let /(•) e L2
Xoc{Q, oo; 3{A)).

Then, for any (x, §»(•)) € A~lF x L2(-r, Q;3i(A2)), there exists a unique
solution «(•) o/(4.1) satisfying

L 2) D W^2(0, oo; 3f(A)) -> C([0, oo); A~lF),
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and the estimate (4.8) also holds {with a possibly different function C(«))-

PROOF. Consider the following problem

( v(t) + Av(t) = L(v(t(.)) + Af(t), a.e. t> 0,

v(0) = Ax,

v{t) = Aq>{t), a.e. t G[-r,0].

By Proposition 4.1, there exists a unique solution w(-) of (4.15) with

«(•) G 4 c ( - ' - ' oo ; i i ^ ) )n < ; 2 ( 0 , oo; ff) - C([0, oo); F).

Thus, by setting
u(t) = A'lv(t), We[-r,oo),

and the uniqueness of the solution of (4.1), which is ensured by (4.10), we
obtain our results. •

At this moment, let us make the following simple observation: Condi-
tion (4.11) will play an important role in deriving the variation of constant
formula and it is not needed in Proposition 4.2.

Now, let us consider the following homogeneous problem

{ io(0 + Aw(t) = L{wt{-)), a.e. t > 0,

w(0) = x,

w(t) = 0, a.e. t e[-r,O].
Let us assume (Al) and (L2). Then, from the proof of Proposition 4.2, we
know that (4.16) has a unique solution «;(•), provided x e F. Thus, we
can define a family of linear operators as follows: For any x € F,

(4.17) <&(t)x = w(t), WG[-r,oo).

Then, it is clear that

(4.18) <D(.): F -tljj-r, oo; 3(A)) n < ; 2 ( 0 , oo; H) - C([0, oo); F),

and

(4.19)

From the definition, we also see that <£>(•) satisfies the following

{ 0, f < 0 ,

At /"' -A(l T)

e~AtIF+ e " ( ' - T ) L ( < D T ( . ) ) < / T , t>0,
Jo
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where

Equivalently, we have

r O(0 + A<S>(t) = L(O,(-)), a.e. <> 0 ,

(4.21) Jo(0) = / f ,
I 0 ( 0 - 0 , te[-r,O),

The main result of this section is the following

THEOREM 4.3. Let (Al) and (L2) hold. Then,

(i) For any h{-) e LJ^O ,oo;H),the map

[
Jo

is in 1^.(0, oo; 3f(A)) n ^ 2 ( 0 , oo; H)«-» C([0, oo); F ) , awrf
a nondecreasing function C(-): R+ -> R+, 5MCA <Aaf VA(>) G - ^ ( 0 , oo;H),
T>0,

(4.22) <S>{t-x)dx dt<C{T) f \h(t)\2
Hdt.

H Jo

(ii) (TAe Variation of Constants Formula) For any x e i 7 , <p(-) e
L2(-r, 0;3>(A)) and /(•) e ^ ( 0 , oo; / / ) , f/ie corresponding solution of
(4.1) is given by
(4.23)

(
«(0 = < /•' /•'

I <D(OJC + / * ( / - T)L(pt(.)) rfT + / O(< - T)/(T) </T , r > 0 ,
Jo Jo

where (/>{•) is extended to be zero in (0 , oo).

PROOF. Let us first prove (ii) for the following case:
(4.24)

xeA~lF, <p(.)€C([-r,0];2?(A2)), /(•) € C([0, oo); 3{A1)).

By (L2) and Proposition 4.2, we know that the maps

t

f
Jo
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are all in £ ^ ( 0 , oo; 2>{A)). Thus, the operator L is applicable to them.
Next, by (4.23) and (4.20), for t > 0 , we have

u(t) = 4>(t)x + f O(* - T)L(9T{.)) dx + f &{t - x)f(x) dx
Jo Jo

f e-A('-r)[L(®x(.)x) + L{<px{>)) + f(x)] dx
Jo

f f Xe-A{'-T-s)[L(<t>s
Jo Jo

(4.25) = e~Atx

Observe that

(4.26)
= joe-A^L(u(x + .)Xl_x^)dx + jo

while, by noting that O(?) = 0, for t < 0, we have
(4.27)

\ dx..)) + f(s))ds

On the other hand, for g(s) = L(vs(-))+f(s), which is in 1^.(0, oo; 3(A)),
by some direct computation, in which the condition (4.11) has to be used,
we have

f [ ( ) g ( ) ] dx
(4.28) Jo y°

f e~A(t~x)L[ f + *(T

= f r\-A(t-x-
Jo Jo

Thus, combining (4.25-4.28), we obtain

f e-A(t-x)[L{^x{.)x) + L{(px{-))]
Jo

+ f f Te-A{t-x-s)[L(<I>s
Jo Jo

= u(t) - e~Atx - f e~A(t~x)f{x) dx, t>0.
Jo
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Thus, by the uniqueness, we see that (ii) is proved for the case (4.24).
Now, for any h(-) 6 ^ . ( 0 , oo;H), we can find a sequence hn(') e

C([0, oo); 2{A2)), such that

(4.29) Jirr^ f \hn(t) - h(t)\2
Hdt = O, V r > 0.

Then, using the above, we see that

r ( 0 , t€[-r,O);
u (t)= I r'

" w I O(t-r)hn(T)dz, * e [ 0 , o o )
v
 JO

is the unique solution of (4.1) corresponding to the data

x = 0, <p{-) = 0, / ( • ) = *„(•)•

By Proposition 4.2, we see that (since our problem is linear)

f KW - MOli dt + f \A(un(t) - ujt))\2
H dt

(4.30) Jo
 T

 Jo

<C(T) f \hn(t)-hm(t)\2
Hdt, v r > o .

Jo
Thus, we see that (i) follows. Finally, for any

xeF, <p(-)eL2(-r,0;g!(A)), /(.) e L2J0, oo; H),

we can find a sequence {xn, <pn(-), fn(-)) satisfying (4.24), with the property

Urn \xn -x\F = 0 , Um f \A{<pn(t) - (p{t))\2
Hdt = 0 ,

um £\fn(t) - f(t)\2
Hdt = 0, vr > o.

Then we let «„(•) and «(•) be the solution of (4.1) corresponding to (xn,<pn(-),
/„(•)) and (x, (p{'), /(•))» respectively. By Proposition 4.1, we see

fT 16,(0 - u(t)\2
Hdt + f \A{un{t) - u{t))\2

Hdt
Jo Jo

(4.31) < C(T) I \xn - x\\ + £ \A{<pn{t) - <p(t))\2
Hdt

+ [\fn{t)-f{t)\2
Hdt\, v r > o .

Hence, our conclusion follows from the proved (i) and the uniqueness of the
solutions.
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Next, we would like to study some properties of the operator O(-). To
this end, we let S be denned as follows: For any (x, ${•)) e F x Lf^-r, 0;
3f{A)), let the corresponding solution of (4.1) be M(«) . Then,

We have the following proposition, the proof of which is obvious.

PROPOSITION 4.4. The operator S(t) is a C0-semigroup on Z = F x

L2(-r,0;&{A)).

From the above proposition, we have

PROPOSITION 4.5. The operator O(>) satisfies

(4.33) O(r + s) = <S>(t)<t>(s) + Jl *(« - T)L(G,+t(-)*[_r>t)(0) rfr,

(4.34) m [ r > t ) , r i T )

PROOF. Since 5(0 is a C0-semigroup on Z , we see that for any x € F
and r, s > 0, by (4.23),

- S{ t+s)[o)
(4.35) = (j)

V
Thus, (4.33) follows.

From the above proposition, we see that in general the evolution operator
O(») is not a semigroup in the underline space H.

The rest of this section is devoted to a study of the generator of the semi-
group S(t).

THEOREM 4.6. Let (LI) and (L2) hold. Let the operator L be continuous
from Wx'2{[-r, 0]; 2r(A)) to H. Then, the generator A of the semigroup
S(t) is characterized by

(4.36) #(A) = {(x,
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and

( 4 3 7 )

The proof is almost the same as that given in [3].
Next, we define an operator

(4.38) Axx = Xx + Ax - L{eX'x), Vx e 3f{A), A e C.

Then, we see that Ax: 2{A) —> H. In the finite-dimensional case, the equa-
tion

detAA = 0

serves as the characteristic equation ([8]). Thus, we can use the operator Ax

to characterize the spectrum of the operator A. For the infinite dimensional
case with

L(f(.)) = £ A(<p(0 - rt) + f A(d)<p{6) dd,
,=o J-r

where At € 2?{H), 0<i<k and 0 = ro < • • • < rk = r < oo, the operator
Ax was also used to characterize the spectrum of A (see [22]). In [4], the
case with

a(s)A2(s)<p(s) ds,

where At e &{3f{A),H), i = 1 , 2 ; a(-) e L2(~r, 0) was studied. A set
of technical conditions were assumed to obtain the characterization of the
spectrum of the operator A via Ax. In our case, we take a direct approach
to the problem, which is a little different from [4]. Before stating the result,
let us introduce the following space:

W*-\[-r, 0];3f(A)) = {v e Wu\[-r, 0]; 3{A))\v(O) = 0}.

We assume the following further hypothesis:

(4.39) L{WJ'2([-r, 0]; 31 {A))) + F = H.

We see, in particular, that if L maps WQ ' 2 ( [ - r , 0]; 3f(A)) onto H, then
(4.39) holds. More concretely, let us observe the following case:

(4.40) L(<p(-))= f a(d)A<p(>)n(dd), Vp(.) € L2(-r, 0; Sf(A)),
J—r

with a(-) being Borel measurable and bounded, satisfying the property that

(4.41) co= f a(9)b(6)n(dd)?0,
J-r
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for some scalar function b(-) € Wx'2([-r, 0]) satisfying b(0) = 0. Then,
we claim that condition (4.39) holds. In fact, for any h e H, we let

co

Hence we see <p{-) e W^'2{[-r, 0]; 2{A)) and

We see that (4.41) is very general.
Next, we let p(A), ap(A), <rc(A) and or(A) be the resolvent, the point,

the continuous and the residual spectrum of the operator A, respectively
([21]). We denote the null space and the range of the operator Ax by
and ^ (A A ) , respectively. Then, we have the following result.

LEMMA 4.7. Let (4.39) hold. Then, for any A e C ,

(4.42)

(4.43)

(4.44) ^ ^HxL2{-r,O;S(A))

PROOF. Let

such that

This implies that
<p(') = e x.

Thus x / 0 and

Conversely, let x € 9f{A), x^O, such that

Then, it is easy to see that

and

Axx = kx + Ax- L(eX'x) = 0.
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This proves (4.42). Now, we let

3S(X - A) = Z.

Then, for any h e H, by condition (4.39), we can find y e F and w(-) e
Wv'2([-r, 0]; 31 (A)), such that

h = y-L(w(.)).

Let
y/{-) = tb(-) + Aw(.) e L 2 ( - ' , 0; 3f(A)).

Then, we let (x, q>{-)) G ^ (A) , such that

(A-A)f * W ^V
This gives

Axx = h.
Conversely, let &(AX) = H. Then, for any (y, y/(-)) e Z , there exists an
x e ^ ( , 4 ) , such that

Then we let

<p(-) = ex'x- f eX{'~x)

Jo
It is easy to show that

and

Thus, (4.43) follows. Finally, let

Then, for any /i e / r , there exist ayeF and tu(-) e H ,̂1 > 2 ( [ - r , 0 ] ;
such that

Let

Then, one can find a sequence (xn, ?>„(•)) ^ ^ ( A ) , such that

e L 2 ( - r , 0 ;
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This implies
Axxn-*y-L(w{')) = h, in//.

Conversely, let

X(Axf = H.
Then, for any (y, y/{-)) € Z , there exists a sequence xn e 2!{A), such that

xxn -> y - L f j f e
M'~r)

xn j r) dx) , in //.

Let

?»(•) = * X « - / * >(T)£/T.
JO

Then, we see that (xn , <pn(-)) € ̂ ( A ) and

This completes the proof.

From the above lemma, we can easily obtain the following

THEOREM 4.8. Let (4.39) holds. Then,

(4.45) X e p(A) <*Ax:2f{A)->H is bijective;

(4.46) X e o-p(A) & J^(AX) # 0;

(4.48)
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