
A user model to directly compare two
unmodified interfaces: a study of including
errors and error corrections in a cognitive user
model

Farnaz Tehranchi1 , Amirreza Bagherzadeh2 and Frank E. Ritter3

1School of Engineering Design and Innovation, The Pennsylvania State University, University Park, PA, USA;
2Department of Industrial and Manufacturing Engineering, The Pennsylvania State University, University Park, PA,
USA and 3College of IST, The Pennsylvania State University, University Park, PA, USA

Abstract

User models that can directly use and learn how to do tasks with unmodified interfaces would
be helpful in system design to compare task knowledge and times between interfaces.
Including user errors can be helpful because users will always make mistakes and generate
errors. We compare three user models: an existing validated model that simulates users’
behavior in the Dismal spreadsheet in Emacs, a newly developed model that interacts with an
Excel spreadsheet, and a new model that generates and fixes user errors. These models are
implemented using a set of simulated eyes and hands extensions. All the models completed a
14-step task without modifying the system that participants used. These models predict that
the task in Excel is approximately 20% faster than in Dismal, including suggesting why,
where, and how much Excel is a better design. The Excel model predictions were compared to
newly collected human data (N = 23). The model’s predictions of subtask times correlate well
with the human data (r2 = .71). We also present a preliminary model of human error and
correction based on user keypress errors, including 25 slips. The predictions to data com-
parison suggest that this interactive model that includes errors moves us closer to having a
complete user model that can directly test interface design by predicting human behavior and
performing the task on the same interface as users. The errors from the model’s hands also
allow further exploration of error detection, error correction, and different knowledge types in
user models.

Introduction

Computational models that simulate human intelligence and behavior are not yet always
complete and not always capable of interacting with the environment. Newell (1990), in his
Unified Theories of Cognition, explains his dream of developing reusable mechanisms for
cognitive and computational architectures to complete a task. Cognitive architectures are
designed explicitly for modeling reusable mechanisms, such as Soar (Newell, 1990; Laird,
2012), ACT-R (Anderson, 2007; Ritter et al., 2018), EPIC (Kieras and Meyer, 1997), and PyIBL
(Gonzalez et al., 2003). A user model combines task knowledge and a cognitive architecture with
its fixed mechanisms to apply the knowledge and generate behavior.

Developing a user model at each design step supports the risk-driven spiral system develop-
ment approach that includes human factors concerns (Pew andMavor, 2007). Also, user models
can be used to discuss types of users, types of tasks, and the number or complexity of the tasks in
the system while keeping track of the design requirements (Ritter, 2019), and has been long
desired (e.g., Card et al., 1983; Byrne et al., 1994; Elkind et al., 1989).

Different approaches investigate adding interaction to a cognitive architecture to develop
cognitive models. Developing human-like models that perform users’ behavior has been envi-
sioned before (e.g., Byrne et al., 1994; Lohse, 1997; Pew andMavor, 2007) but has not been widely
applied. Some practical approaches that modelers use to have models interact with a simulated
world are ESegMan (Tehranchi and Ritter, 2017), ACT-R/PM (Byrne and Anderson, 1998),
Cognitive code (Salvucci, 2009, 2013), JSONACT-R (Hope et al., 2014), SegMan (St. Amant et al.,
2005), and ACT-CV (Halbrügge, 2013). In these approaches, it will be difficult to reuse these
models (their task knowledge) because of the domain-specific nature of the models – these
models can only interact with the interfaces that are modified or created for these tools – the
interfaces have been modified to provide the models’ access to information on the display in that
application using mark-up languages or other APIs. Also, the interfaces have been adjusted to
accept input commands directly from models.

Artificial Intelligence for
Engineering Design, Analysis
and Manufacturing

www.cambridge.org/aie

Research Article

Cite this article: Tehranchi F, Bagherzadeh A
and Ritter FE (2023). A user model to directly
compare two unmodified interfaces: a study of
including errors and error corrections in a
cognitive user model. Artificial Intelligence for
Engineering Design, Analysis and
Manufacturing, 37, e27, 1–11
https://doi.org/10.1017/S089006042300015X

Received: 13 June 2022
Revised: 12 May 2023
Accepted: 26 June 2023

Keywords:
cognitive models; user experience and
usability; design; vision and motor knowledge;
errors

Corresponding author:
Farnaz Tehranchi;
Email: farnaz.tehranchi@psu.edu

© The Author(s), 2023. Published by Cambridge
University Press. This is an Open Access article,
distributed under the terms of the Creative
Commons Attribution-NonCommercial licence
(http://creativecommons.org/licenses/by-nc/
4.0), which permits non-commercial re-use,
distribution, and reproduction in any medium,
provided the original article is properly cited.
Thewritten permission of CambridgeUniversity
Press must be obtained prior to any
commercial use.

https://doi.org/10.1017/S089006042300015X Published online by Cambridge University Press

https://orcid.org/0000-0003-0482-1079
https://doi.org/10.1017/S089006042300015X
mailto:farnaz.tehranchi@psu.edu
http://creativecommons.org/licenses/by-nc/4.0
http://creativecommons.org/licenses/by-nc/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S089006042300015X&domain=pdf
https://doi.org/10.1017/S089006042300015X


In contrast, we use the Java Segmentation and Manipulation
(JSegMan) tool (Tehranchi and Ritter, 2018a,b), which works inde-
pendently of interface design. This tool allows cognitive models to
see objects on the screen using pattern recognition and execute
actions such as clicking and typing using the operating system’s
event queue. With JSegMan, cognitive user models include a simu-
lated eye that can see what is on an interface and a simulated hand
that allows models to move the mouse, click, and type. Models
developed with JSegMan and ACT-R are called Eyes and Hands
models. This approach allows models to interact with any unmodi-
fied interfaces.

The Kim spreadsheet task (KST; Kim, 2008), unlike previous
research on text-editing tasks, can give a balanced set of knowledge
and skills, including procedural, declarative, and perceptual-motor
knowledge. It also duplicates some common work tasks, such as
manipulating spreadsheets. It is explained further below.

Using interactive cognitive models with reliable predictions
can be cost-effective in designing decision-making processes
involving human–computer interaction (Ritter et al., 2000) and
developing cognitive assistance models (Klaproth et al., 2019).
Interactive cognitive models, such as Eyes and Hands models
(Tehranchi and Ritter, 2018a), will reduce the discrepancy
between model and user capabilities, better predict human per-
formance in interactive designs, provide more realistic input,
simulate error correction, and be useful for AI interface agents.
Recent models that interact with the Space Fortress video game
(Anderson et al., 2019; Fincham et al., 2022) both interact with a
representation of the game state placed directly into working
memory by the task simulation. A recent model of driving
(Held et al., 2022) interacted directly with a simulation of the
car, receiving the ground truth as symbols into visual memory,
although it did move its visual attention around a simulation of a
visual field.

Interface design can benefit from user models that can predict
and compare task times on interfaces without modifying the inter-
faces. It would also be useful to include errors and error corrections
because users will always make mistakes and generate errors. We
present several usermodels that interact directly with interfaces and
are able to make errors and correct them.

The growth of technologies has led tomore complex and reliable
systems and user interfaces (Philippart, 2018; Zhan et al., 2019).
This complexity has resulted in human factors errors, such as
erroneous behavior, poor judgment, failure to properly follow the
standard procedures, and has become a primary cause of accidents
(Chen et al., 2019, 2020).

Different studies have explored the role of human error in
reliability analysis and focused on various aspects of human per-
formance and cognition but have not been used to extend cognitive
architectures. For example, Di Pasquale et al. (2020) conducted a
scoping review on aging and human–system errors in manufactur-
ing, and Nor et al. (2021) provided a 20-year review of reliability
engineering applications in various industries. In addition, recent
research has started to acknowledge the importance of understand-
ing human factors and their influence on system reliability (Pan
et al., 2017; Alvarenga and e Melo, 2019; Tao et al., 2020). Yet there
is a notable gap regarding using cognitive architecture to model the
cognitive process of human error in reliability analysis literature.

A few studies have begun to explore cognitive modeling in
reliability analysis, such as Shahab et al.’s (2022a,b) two-part series
on Hidden Markov Model (HMM) based models of control room
operator’s cognition during process abnormalities, which focused
on formalism and model identification (Part 1), and application to

operator training (Part 2). Furthermore, Zhao and Smidts (2021a,b)
developed a cognitive modeling and simulation environment for
human performance assessment (CMS-BN). These studies demon-
strate the potential of incorporating cognitive architectures in
reliability analysis; however, their explicit integration remains
limited.

We present three Eyes and Hands models: a Dismal model, an
Excel model, and an Error model. These models perform a non-
iterative spreadsheet task containing 14 subtasks in two spreadsheet
tools. The Excel model’s predictions are compared to human data
(N = 23) on the same interfaces. The Dismal model performs the
same task in the Dismal spreadsheet (Ritter and Wood, 2005; Paik
et al., 2015; Tehranchi and Ritter, 2018a,b). The Error model is
developed to investigate errors and error correction behaviors in
the Microsoft Excel environment. With a model that can make
predictions of usability and correlate with human data very well, we
then develop an Error model to move closer to having a complete
user model that can predict more human behavior while complet-
ing a task, including the initial error generation, as well as the
restorative steps of detection and error correction.

We conducted a study asking participants to perform the Kim
(2008) spreadsheet task in Excel. The Excel version has identical
subtasks but with different keystrokes and interpretations of the
visual display (Kim, 2008; Paik et al., 2015). Our study explores
visual attention and errors in developing a user model. The mean
task completion time of 23 users performing the KST in Excel is
presented and compared with the model’s predictions. The results
compared to published data show that the Excel model is faster,
which matches the models’ predictions that users will take less time
to complete the task in Excel than in the Dismal spreadsheet.

We also present further analysis of input errors. While the time
predictions correlate very well between the model and data, errors
are seen in the data but not in themodel. Landauer’s (1987) analysis
suggests that perhaps 35% of the users’ task time can be attributable
to error generation and recovery. This suggests that analysis of the
source of errors and their correction is important, and that error
generation and recovery need to be included in user models.

Spreadsheet errors can have costly, even detrimental, conse-
quences (Fisher et al., 2006). Powell et al. (2008) provide a com-
prehensive review of different types of errors, their frequency, and
strategies to avoid errors through proper spreadsheet design. Panko
and Aurigemma (2010) further refine the understanding of spread-
sheet errors by revising the Panko–Halverson taxonomy, which
classifies errors based on their nature and severity. Panko (2016)
explores the cognitive analysis approach to understand spreadsheet
errors which include focusing on how users think, make decisions,
and process information while working with spreadsheets. All these
processes can lead to error generation in spreadsheet tasks.

Furthermore, Kankuzi and Sajaniemi (2013, 2014) have shown
that experts employ unique mental models when interpreting
spreadsheet data, identifying errors, and rectifying them. Cunha
et al. (2018) leveraged these findings by incorporating different
types of error proposed by Bishop and McDaid (2008) to create a
user-friendly interface aimed at facilitating spreadsheet authors in
comprehending errors and correcting them in spreadsheets created
by other authors. Recent research, such as Huang et al. (2020), has
focused on developing new techniques like WARDER for effective
spreadsheet defect detection by utilizing validity-based cell cluster
refinements. Chalhoub and Sarkar (2022) investigate the user
experience of structuring data in spreadsheets and provide insights
into how users think about data organization, which can help
inform future spreadsheet design improvements.

2 Farnaz Tehranchi et al.

https://doi.org/10.1017/S089006042300015X Published online by Cambridge University Press

https://doi.org/10.1017/S089006042300015X


Despite the extensive body of research available on spreadsheet
errors, once again, the literature on utilizing cognitive architecture
to model the cognitive process of human error in spreadsheet tasks
remains inadequate.

To start to account for errors in cognitive architectures, a simple
Error model is developed to demonstrate how a model could
generate errors. This model starts to show how time can be allo-
cated to error detection, error correction, and different types of
knowledge.

JSegMan

If cognitive models interact with user interfaces, then the models
will be easier to develop and apply. This approach was called a
Cognitive Model Interface Management System (CMIMS; Ritter
et al., 2001), which is an extension of the concept of a User Interface
Management System (Myers, 1995). The CMIMS’s research area
can be exploited to help develop cognitive models and agents and
support the users who interact with interfaces. It will also help
elevate testing user interfaces, making this process more approach-
able and easier to do so that the testing can be successfully com-
pleted. Using the model to test interfaces and even systems as they
are built has been called for by the National Research Council in a
report about how to build large systems (Pew, 2007).

Multi-disciplinary aspects of artificial intelligence, computer
vision, cognitive science, and psychology can be utilized to better
shape human-like agents by incorporating newcapabilities. JSegMan
explores how the phenomenon of vision and motor knowledge can
be incorporated into a novel, improved user modeling approach.

JSegMan was developed for cognitive models to provide them
with access to the world. This is an important component for nearly
all models of science so that they are completer, and for all appli-
cations where it would be useful for a user model to interact with an
existing, but the unmodifiable interface (Ritter, 2019;Wallach et al.,
2019). JSegMan takes some ideas from SegMan (Ritter et al., 2007;
St. Amant et al., 2007), extends them, and moves the system into
Java. The only other software that can interact with interfaces, like
JSegMan, requires the interfaces to be built within specific tools
(Ritter et al., 2000; Byrne, 2001; Wallach et al., 2019).

We start by describing the eyes and hands in more detail. JSeg-
Man is a simulated eyes and hands tool that allows an ACT-R user
model to receive input by reading the screen and produce output by
passing commands to the operating system to execute actions such
as amouse click. JSegMan has been used to interact with the Dismal
spreadsheet (Kim, 2008; Paik et al., 2015). Using JSegMan, we
found missing knowledge that needed to be included and adjusted
hand positions that were not considered. The revised model could
complete the task (Tehranchi and Ritter, 2018a,b). JSegMan was
recently revised to see objects on the screen in amore powerful way.
The new vision simulation is based on the Pyramid Template-
Matching algorithm (Bradski, 2004) that reduces visual pattern
resolution and size sensitivity (i.e., templates).

JSegMan thus helps realize a long-held desire to use human
performance models more directly in computer-aided engineering.
The models are either used to test an existing system or are
developed with the system as it is developed as a way to represent
users as an important system component.

Research objectives

The research objectives of this work are to provide a novel approach
to improve and integrate cognitive models by facilitating how

cognitive models interact with the world and, in this regard, quan-
titatively include the perception and actions of cognitive models.

First, interaction with an executive platform of models will be
investigated with the ACT-R architecture. Second, a new type of
knowledge and skills with respect to interaction will be modeled to
explore the necessity of new knowledge for interaction. Third, we
will examine if including the new knowledge leads to better pre-
diction of the performance time. There are three goals to achieve
these objectives.

Evaluating user interfaces: A complete model of a spreadsheet
task in two environments (Dismal and Excel) will be developed to
illustrate the applicability of this approach in the real-world task of
evaluating two interfaces. We will examine if and how cognitive
models can help design and evaluate two spreadsheet applications.
Which interface is faster to use and why? Which requires less
knowledge? How many keystrokes/mental operators are needed?
What could be done to speed up either interface? To answer these
questions, we will develop a complete model to interact with two
unmodified interfaces to compare them.

Modeling error detection and correction: We will also examine
how adding the capability of making errors improves cognitive
models. What are some of the mechanisms and user knowledge
needed for modeling errors, and how do they contribute to human
performance modeling? To answer these questions, we will develop
an error model to simulate a user’s errors.

Where does the time go?We will investigate and break down the
time allocations among vision andmotor knowledge to understand
the differences between model predictions and human data.

In summary, our research questions (RQs) are:

RQ1: Could a user model be demonstrated on two different interfaces and
make useful predictions about performance on these two systems?
RQ2: Could cognitive user models be extended to include error detection
and correction?
RQ3: How can the differences between model predictions and human data
be improved?

Method

We gathered data to test the model’s predictions for Excel. We used
existing data (Kim, 2008; Kim and Ritter, 2015) to test the model’s
predictions for the task using the Dismal spreadsheet.

Kim spreadsheet task

Figure 1 shows the Excel task environment and the final state of the
KST. The KST was created to study learning and retention (Kim,
2008). Participants start with the initial file for the KST and
complete the 14-subtasks of the KST. Table 1 lists the 14 subtasks
of the KST. These subtasks are similar to regular computer tasks in
spreadsheet tools. They are more complex than common text-
typing tasks because of the included logic and patterns. In the
2008 study, participants returned in four consecutive days to repeat
the task and then came back in 6, 12, or 18 days.

The Dismal spreadsheet of Emacs was carefully chosen because
no participants had prior knowledge of the task environment. Both
that task and task environment have been good candidates for
investigating learning and retention. The published data contain
participants’ subtask completion times.

Kim’s (2008) data indicated the existence of errors. But, errors
were not recorded and considered for analysis. KST is a good
candidate for model development and further analysis, because

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 3

https://doi.org/10.1017/S089006042300015X Published online by Cambridge University Press

https://doi.org/10.1017/S089006042300015X


the resulting models based on KST support investigations of dif-
ferent types of skills and can be run with the two spreadsheet tools
(i.e., Dismal andExcel). Their predictions for each of the 14 subtasks
could be computed for each of the two interfaces.

Participants

Twenty-three undergraduate and graduate students at The Penn-
sylvania State University (Penn State) were recruited to participate
in this experiment. Participants were paid 12 dollars for a study
session, and all successfully completed the study. Table 2 summar-
izes the demographic information of the participants.

In addition, six Penn State students participated in a pilot
study. Their results are used to update the instruction and deter-
mine the doability of the instruction. Pilot study results suggested
that we needed to modify the task instructions and initial file to be
performed in Excel. Also, we learned to disable formula auto-
complete, background error checking, auto-complete for cell

values, and disable the formula bar to limit participants’ options
and make Excel more similar to Dismal.

Materials

An initial file was created in Excel for participants to complete the
14 subtasks of the KST, similar to data gathered in a previous study of
the task (Kim, 2008). A regular mouse and keyboard were used to
input commands. Excel was used because of its popularity. Students
are more familiar with Excel than Dismal. Excel is also an example of
an application showing our approach’s possibility (i.e., eyes andhands
models). Using Excel also allows us to illustrate the use of JSegMan to
compare the usability of two interfaces and show how JSegMan
interactswith a commercial interface.Users in our studywere familiar
with the Excel environment, but users in Kim’s (2008) study did not
know the Dismal spreadsheet. In both environments, users had to
study the task, the initial file, and, to a slight extent, the interface.

To make the Excel environment more similar to the Dismal
environment and to reduce interaction with previous files, these
features were turned off in Excel: formula autocompletes, formula
bar, cell values autocomplete, and background error checking. Also,
the Excel environment is more visually cluttered than Dismal.
Therefore, the Excel ribbon was collapsed to make it simpler.
Figure 2 shows the study environment with two Excel windows;
the left window is the task environment, and the right window is the
instruction window.

As shown in Figures 1 and 2, the initial Excel file consists of five
columns (A–E). Column B has frequencies of each command listed
from rows 2 to 6. Column C has normalized frequencies listed in
rows 7–11. Five blank cells are filled in by participants in the B and
C columns (e.g., B7–B11 and C2–C6). Columns D and E had
10 blank cells that are filled in by participants. The total of the
frequency column (rows 2–11) and the normalization column
(rows 2–11) are provided to the participants. The total frequency
is used to calculate normalization and frequency.

None of the participants had prior knowledge of the details of
the KST. An eye tracker recorded keystrokes, mouse clicks, mouse
movements, and task completion time (Lankford, 2000).

Design

In thiswithin-participants study, the subtask times are the dependent
measure. All participants usedmenu-based commandswith amouse
and keyboard. Participants were not allowed to use key-based com-
mands (e.g., keystroke accelerators such as CTRL+C for copying

Table 2. Participants’ demographic information, including the self-reported
level of competency in using Microsoft Excel, gender, and age

Demographic information

Level of competency in using
Microsoft Excel (self-reported)

Basic 4

Intermediate 17

Advanced 1

Never use Excel 1

Gender Female 5

Male 18

Age Average 25.13

Standard deviation 5.87

Table 1. The 14 subtasks of the Kim spreadsheet task. These steps are
performed in both interfaces, the Dismal spreadsheet and Excel

Subtasks

(1) Open File

(2) Save As

(3) Calculate Frequency (B7 to B11)

(4) Calculate Total Frequency (B14)

(5) Calculate Normalization (C2 to C6)

(6) Calculate Total Normalization (C14)

(7) Calculate Length (D2 to D11)

(8) Calculate Total Length (D14)

(9) Calculate Typed Characters (E2 to E11)

(10) Calculate Total Typed Char. (E14)

(11) Insert Two Rows

(12) Type in Name (A1)

(13) Insert Current Date (A2)

(14) Save As…

Figure 1. The final task state for the Excel version of the Kim spreadsheet task.
Participants open a file, save it with a new name, add new rows, and calculate the
value of 36 cells.

4 Farnaz Tehranchi et al.

https://doi.org/10.1017/S089006042300015X Published online by Cambridge University Press

https://doi.org/10.1017/S089006042300015X


text). Also, we limited some Excel features, such as autocomplete to
make the Excel environment similar to the Dismal environment.

Procedure

Participants were seated at their comfortable reading distance. They
were welcomed, and the welcoming script was presented. They first
went through eye-tracker calibration. Participants were instructed to
use the two Excel windows (Fig. 2): one for completing the task and
the other containing the instruction. Participants then started to
complete the 14 subtasks using the instruction while being eye-
tracked. They opened the initial state spreadsheet and saved the file
as another name. They then completed the 14-step task by calculating
and filling in blank cells using equations, including 5 data normal-
ization calculations, 5 data frequency calculations, 10 calculations of
length, 10 calculations of total typed characters, 4 summations of each
column, and finally an insertion of the current date using an Excel
command, (“=today()”). Finally, participants were asked to complete
a questionnaire that included their demographic information and
Excel literacy level.

Results

In this section, we report our results. We start with the evaluation of
the two spreadsheet tools. We then look at the error data and the
errormodel. Finally, we investigated time inmodels and humandata.

Evaluating user interfaces

All 23 participants completed their session. As a dependent vari-
able, the task completion time was recorded in milliseconds by the
GazeTracker eye-tracking system (Lankford, 2000).

The average task complication time was 717.85 s [standard
deviation (SD) = 177.89]. The GazeTracker data for each trial have
approximately 10,100 records (data points). Pupil data were
recorded in .25 s periods. All data points recorded within the given
time period must change by at least the minimum change amount
(5 hits, a measure in the eye tracker) and cannot change by more
than the maximum change amount (50 hits).

The Excel model was developed using the ACT-R architecture
with updated JSegMan. This model uses 48 unique visual objects
(VO), 29 production rules (PR), and 732 declarative memory
chunks (DM). The model that makes predictions for this task on
the Dismal interface (Tehranchi and Ritter, 2018a) has the same
number of PRs but larger, VO = 52 and DM = 1,159, sets of
knowledge of the interface elements than the Excel model. The
Excel model interacts with the same KST initial Excel file that the
participants used (Fig. 2).

Figure 3 shows a comparison of the Excel model subtask time
predictions and participants’ data, resulting in a correlation
(Pearson correlation coefficient) of r = .84 (r2 = .71) and mean
square error (MSE) = 792.6 (N = 10, Average SD < 2). Pearson’s r
indicates that there is a strong linear relationship between the
model predictions and the 1–14 subtasks of human data. Thus,
the ACT-R model’s time predictions correlate fairly well with the
performance of all subtasks in Excel. The Excel model predicts
noticeably more response time for subtasks containing typing
formulas. The Excel model has to exactly follow the instructions
because it is built based on the knowledge of the task. However,
participants can understand the pattern in the formula and perform
without following the instructions directly.

In contrast, the Excel model predicts less performance time for
the first two subtasks. For instance, the second subtask is “save as”
and contains: go to and select file, go to and select save as, go to and

Figure 2. Screenshot of the study environment containing two Excel windows. The initial state (for Excel) is on the left side of the screen, and the KST instructions for Excel are on the
right side.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 5

https://doi.org/10.1017/S089006042300015X Published online by Cambridge University Press

https://doi.org/10.1017/S089006042300015X


select file name area, type subject, and enter. Modeling visual
behavior and visual search is straightforward with the help of
pre-defined visual patterns in JSegMan. Although most partici-
pants have intermediate knowledge of Excel, they still find it quite
challenging to complete this subtask.

The visual elements needed to perform that task are different
between the models for the different spreadsheet tools. The Excel
model needed knowledge of 48 visual objects. The Dismal model
needed 52 visual objects. The Excel model has to know less visually,
and presumably, so do users.

A paired-samples t-test is used because each row in the dataset
corresponds to one subtask. The t-test reveals that we do not have
enough evidence to conclude the means of the Excel model
and participants’ data are significantly different from each other,
t(13) = �0.2, p >> .05.

The boxplots in Figure 4 show task performance for subtasks
1–14 for the 23 participants. The spread around themean is higher
in subtasks that combine motor and vision skills. Some partici-
pants understand the formula’s pattern of these subtasks; there-
fore, they complete them faster than others who constantly check
the instructions.

Figure 5 shows a comparison of the two models (run 10 times)
and the Excel data. The models predict that it takes more time to
perform the subtasks using the Dismal environment. Inspection of
the models shows that this difference is because performing the
same task requires more actions in the Dismal environment.

This comparison suggests that the KST can be used to evalu-
ate the two interfaces and that performing this task in Excel is
faster than in Dismal and, thus, may be seen as more user-
friendly. This different response time is more noticeable in the
subtasks that require inserting a cell formula. In Dismal, these
subtasks require additional steps that do not exist or are not
necessary for Excel.

Predicted times between the two interfaces can be tested to see
how different they are. A paired-samples t-test is used because
each row in the dataset corresponds to one subtask and is done by
the same participant. The t-test reveals that the means of the
Dismal model and Excel model datasets are significantly different
from each other, t(13) = �2.9, p < .05. Therefore, a cognitive user
model could perform a complex task two different interfaces and
made useful predictions about performance on these two user
interfaces (RQ1).

Understanding human errors

We next examine the detail of human behavior not initially seen in
the models’ predictions to answer the second RQ (RQ2). The Excel
model correlates very well with the participants’ data but has a
high RMSE. These results raise questions on how the quality of
cognitive models for human behavior can be increased, how key-
stroke errors can change models’ performance, and what type of
knowledge needs to be added to models when developing inter-
active cognitive models. We have suspicions that it will be worth
investigating, including keystroke errors in the models, because
typists make errors (Salthouse, 1986; Landauer, 1987), although
the prediction-data fit in Figure 5 does not visually support this
approach completely clearly.

Both the Dismal model and the Excel model do not predict
human errors. Human errors can be defined as actions that are
not suitable for achieving the desired goal (Reason, 1990; Ritter
et al., 2014, Chapter 10). Building robustness to human errors in
a system requires acknowledging human behavior, including
errors in system design. We designed this study in a way to
minimize the effect of errors. However, participants still made
several types of errors.

Figure 4. Boxplots showing participants’ (N = 23) task completion time (in seconds) per
subtask.

Figure 5. The models’ performances on the two interfaces (Dismal and Excel) are
compared by subtask. The Dismal model predicts that the Dismal interface (light gray,
dotted line) is slower.

Figure 3. Average time per subtask for participants (N = 23) versus Excel model (N = 10)
with error bars (SD). SD on the Excel model is smaller than the participants.

6 Farnaz Tehranchi et al.

https://doi.org/10.1017/S089006042300015X Published online by Cambridge University Press

https://doi.org/10.1017/S089006042300015X


Errors are mainly grouped into three categories: skilled-based,
rule-based, and knowledge-based (Brown, 2004; Ritter et al., 2014;
May et al., 2019). The most common errors that are observed in
participants’ behavior for the KST in the Excel study are slips that
are part of skilled-based errors. The KST is self-explanatory, and
participants are aware of planned actions, but they execute incor-
rect actions such as missing keypresses. Besides, repetitive actions
cause lapse errors that are due to the inability to correctly remember
the stage of planned actions, such as skipping a step in the instruc-
tion and also entering the wrong key.

Violations are intentional mistakes that can be grouped into
three sets of routing, situational, and exceptional. It is important to
note in some studies, violations are also considered as a type of error
(Lawton, 1998).

ACT-Rmodels generally simulate error-free expert behavior. In
the Dismal model, the number of mouse clicks during correct task
performance is known (125 clicks). Any clicks more than 125 rep-
resent mistakes. However, Kim’s (2008) analysis showed that this
definition of mistake (number of clicks) did not correlate with
performance time, meaning that the fastest performers also made
more mistakes (clicks more than 125).

We evaluated participants’ performance by comparing their
final output with a correctly completed spreadsheet (as shown in
Fig. 1). The score of a cell is 1 if the cell values in two documents
are equal. Therefore, the perfect score is 80 when all the cells’
values are equal in the two documents because 80 cells exist in the
KST table. Figure 6 presents the participants’ scores on a scale of
1–80. Eighty-three percent of the participants have a score higher
than 70. But, Figure 6 shows that errors remain in the majority of
the results.

In the Excel study, participants made two types of errors:
(a) multiple unintentional actions in the form of slips and lapses
such as typos and (b) multiple intentional actions in the form of
violations (deliberately doing the wrong thing), such as using CTRL
+Z (undo) when asked not to use Excel shortcut keys in the study
instructions and which was not taught.

Error detection and correction

There have been limited attempts to understand and simulate error
detection and correction in cognitive models and architectures. A
sample study investigates error recovery in touch screen environ-
ments (Goodwin et al., 2016). Their work suggests identifying
strategies that occur naturally during error recovery and evaluates
their occurrences in low-, medium-, and high-error environments.
Also, this work proposed that errorsmainly happenwhile searching
for a target, shifting attention away from the target, and choosing
the following action.

In the Excel study, we observed that participants used the
primary detection mechanism, which is self-monitoring. We chose
to explore participant 19’s behavior as an example in detail to
investigate error detection and correction. This participant’s score
is near 80, and this participant made skill-based errors in some
subtasks that affected the final score but did not make any rule-
based or knowledge-based errors. This choice is arbitrary, and we
believe that other participants could have been chosen and led to
similar results.

Participant 19 made 25 slips. Twenty-four slips were detected
and corrected using backspaces. Only one slip, typing “*” instead of
“:”, was not detected and therefore was never corrected by the
participant. This participant spent 17.6 s on detecting and correct-
ing errors, which is about 3% of the time spent on completing
the task.

The Excel environment assisted participants in detecting errors
by highlighting the selected cells in formulas, pop-up error notifi-
cations, and formula format notifications. We disabled the auto-
correction and filling in Excel, so participants needed to correct
their errors manually.

Modeling error detection and correction

We developed an Error model that produces errors. The Error
model is an Eyes and Hands model that generates errors and error
corrections. The Error model injects participant 19’s errors and

Figure 6. Number of cells (out of 80) correctly filled in. The average score is 67.39, and the SD is 24.39. Participants 6, 13, and 14, respectively, completed the task in 595.61, 581.66,
and 1,075.14 s. Participant 14 skipped subtask 8.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 7

https://doi.org/10.1017/S089006042300015X Published online by Cambridge University Press

https://doi.org/10.1017/S089006042300015X


corrects them in the same locations and order the participant did.
But this built-in error-generating and error-correcting model also
can be extended to inject errors randomly. New declarative chunks
are added for new pressing key actions in the Error model. The
Error model has 777 declarative knowledge chunks, which is
45 chunks more than the Excel model, including extra chunks
(memory items) to implement backspaces as a correction strategy.

The Error model’s predictions are compared with both partici-
pant 19’s behavior and the Excel model’s predictions. Figure 7
shows this comparison. The Error model and Excel model’s per-
formances are summarized in Table 3. Both models correlate very
well but have a very highMSE andRMSE. The Errormodel does not
correlate well with the time predictions, but it includes an import-
ant aspect of behavior. Further refinements are required that will be
likely to make it better besides including errors and correcting
errors and can make more accurate time predictions.

Where does the time go?

These results raise a new RQ (RQ3) because themodel’s correlation
with performance time has not been improved despite adding
errors. The Error model does not better fit the timing data but
now predicts errors and their correction. In some subtasks, the
Error model predicts more time than the Excel model, such as in
subtask 6 that the Error model detects and corrects seven slips.
Thus, just adding users’ errors will not improve the model’s time
predictions. Investigating the proportion of time spent and pre-
dicted can answer where the time goes.

Figure 8 shows the model’s prediction time and participant 19.
Each subtask time is divided into three main categories: vision
knowledge, motor knowledge of mouse movements, and motor
knowledge of keypress. Subtasks 1, 2, 7, and 9 in Figure 8 illustrate
the noticeable differences between the Error model predictions and
participant 19.

The recorded video and eye movement data of participant
19 show that for subtasks 1 and 2 (as shown in Table 1), more time

was spent searching for visual objects. Therefore, the Error model
underestimates the needed time for these two subtasks. In contrast,
for subtasks 7 and 9, participant 19 could estimate the location of
the following visual object (e.g., the cell below) without searching.
The ACT-R visual module shifts attention at a constant rate for all
objects. To include the additional search time, the retrieval time of
visual objects for subtasks 1 and 2 are increased from the default
.05 s to 5, 42, and 43 s for the three difficult-finding visual objects to
fit the human data. The retrieval time remains the same for other
subtasks. The adjusted Error model reflects the new retrieval time.
Table 4 demonstrates the adjusted Error model improves perform-
ance (correlation and error rate).

ACT-R estimates more time for subtasks 3–9 and 12–14’s
completion time than the time participant 19 spent on these sub-
tasks. There is a noticeable difference between ACT-R estimated
times and the time spent by the user for actions within each subtask.
Actions are movements that their aggregation completes the whole
subtask, such as shifting attention, moving a mouse, click, and
pressing a keystroke. The time spent by participant 19 to switch
among actions is significantly shorter than what ACT-R predicts
(i.e., the retrieval time of chunks needs to be adjusted). The retrieval
time in ACT-R is calculated by the following formula:

RT = Fe� f ∗Aið Þ, (1)

Where parameter F is the latency factor parameter (represented by :
lf in ACT-R). In the original KST experiment (Kim et al., 2007,
2008), this parameter was set to .31. The latency factor in the
modified Error model is set to .2, which significantly improves
the estimated time for subtasks 5, 12, and, 14. There is a minor
decrease in the accuracy of the estimated time for subtasks 10 and
11. However, the improvement in MSE and r2 suggests an overall
improvement in the model.

Discussion and conclusions

We have demonstrated how to test interfaces without modifying
them using a model that interacts with them.We used an artificial
eye and a simulated hand to develop Eyes and Hands models.
JSegMan was used to develop Eyes and Hands models (Tehranchi
and Ritter, 2018a). It performs a sample task, KST, in two spread-
sheet tools: Dismal and Excel. The KST contains 14 non-iterative
subtasks, each of which has multisteps and is complicated and
long enough to be modified to support investigations of different
skills.

The revised KST task allowed us to examine two sets of
knowledge and skills: procedural/ declarative and cognitive/
perceptual-motor skills. We used published data on the Dismal
interface and conducted a new study with Excel. The Excel model
was compared with the previous Dismal model. The Excel model
predicted human performance well, r = .84 and MSE = 792.6. The
predictions were supported with human data from performing
the KST with an uninstrumented spreadsheet (Excel). Both the-
oretically and experimentally, performing the KST in the Dismal
environment takes more time than performing the KST in the
Excel environment.

This result represents scientific and engineering contributions.
The scientific contribution is that performance on a whole task on
two interfaces was modeled without modifying the interfaces.
Nearly, all models of interaction use scaffolding to see the task
and to interact with the task environment. These models use a task
modified for them, and interaction is based on a function call from

Figure 7. The Error model predicts more time for performing subtasks than the Excel
model (without errors). This can be expected, given the new additional steps of error
correction.

Table 3. Error model (N = 5) and Excel model (N = 10) compared with
participant 19’s performance by subtask

Correlation MSE RMSE

Error model .678 1,877.734 43.33

Excel model .689 1,482.701 40.25

8 Farnaz Tehranchi et al.

https://doi.org/10.1017/S089006042300015X Published online by Cambridge University Press

https://doi.org/10.1017/S089006042300015X


them to themodified interface. The presentedmodels did the whole
task without modifying the task environment. The engineering
contribution is that performance on interfaces doing a nontrivial
14 subtasks can be predicted. The predictions can be used to test
and validate interfaces. Pew andMavor’s (2007) National Research
Council report called for such user models to be created to develop,
test, and design interfaces. Future work could extend the interface
design in this way.

Next, the existence and impact of errors on and in performance
have often been forgotten and not included in nearly all user
models. In this study, we also collected new data on errors for
forgetting keystrokes and missing keys to investigate errors, error
type, error detection, and error correction strategies. The new error
knowledge was added to the model to improve predictions and
show that it is possible to start to model errors.

Participant 19 spent 3% of the task time correcting errors. This
can be contrasted with Landauer’s (1987) 35% of keystrokes.
Clearly, there will be differences between tasks and individuals.
Further work can be performed using this approach to examine
errors in interface usage. Also, the Error model overestimates the
typing time. For instance, participant 19 spent less time pressing a
keystroke than the next keypress object that the Error model
estimates to retrieve. Finger movements are included in ACT-R
that are unnecessary or do not represent the user’s keypress behav-
ior. We presented an analysis of the types of errors that occurred in
one participant and presented one of the first models that can
generate errors.

Finally, we then adjust that model to understand where the time
goes. Further analysis showed that visual skills such as visual search

take longer than cognitive models currently predict. Our analysis
suggests that visual search and shifting attention need to be separ-
ated and have different retrieval times. The model introduced
different aspects of the relationship between time and knowledge
and raised other RQs.

There are limitations to this work. The number of errors ana-
lyzed is not large; it is mostly a proof of concept. The types of errors
are not very large and should be expanded by analyzing further data
and expanding the mechanism for error generation and correction.
Also, the demographics of the participants used to test this
approach are somewhat narrow, particularly in age and gender.
Future work should include a wider range of participants.

Future work will involve applying this approach to a more
extensive set of interfaces. The application can serve science with
more accurate models of interaction, learning, and memory
because the models can use the same interface. This work provides
an engineering advantage (lessmodel to implement) and a scientific
advantage (the model sees more like what humans see). The model
of vision individually can be reused and supports science and
engineering in this regard. This model of vision can also be
extended to include the ability to learn to recognize more visual
patterns.

Including interactionwith uninstrumented interfaces and errors
opens up a new world for predicting human behavior and applica-
tions to improve interactive design and apply intelligent agents as
models of humans. In the future, we may be able to test interfaces
automatically. Also, error generation and correction need not be
excluded as an aspect of behavior and predictions for design. Eyes
and Hands models will also help support generating automatic
quantitative, qualitative, and subjective predictions of interface
use. A model that interacts with an interface can start to model
the time and time course of use. The time course can be compared
with expectations and also moderated by the stress and novelty of
the interface or task. The generation of errors provides another way
to measure design performance.

Data availability statement. Models are available at https://github.com/
HCAI-Lab.

Figure 8. The response time breakdown of the Kim spreadsheet task for participant 19 (left bars) and the Error model (right bars) into three main categories: Vision, Motor Mouse
(includes moving the cursor and clicking), and Motor Keypress (typing).

Table 4. Error model (N = 5) and adjusted Error model (N = 5) compared with
participant 19

Correlation MSE RMSE

Error model .678 1,877.734 43.33

Adjusted error model .840 343.377 18.53

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 9

https://doi.org/10.1017/S089006042300015X Published online by Cambridge University Press

https://github.com/HCAI-Lab
https://github.com/HCAI-Lab
https://doi.org/10.1017/S089006042300015X


Funding statement. This work was supported by ONR (Grant No. N00014-
15-1-2275) and The Pennsylvania State University.

Competing interest. The authors donot have any competing interests to report.

References

AlvarengaMAB and Frutuoso eMelo PF (2019) A review of the cognitive basis
for human reliability analysis. Progress in Nuclear Energy 117, 103050.

Anderson JR (2007) How Can the Human Mind Exist in the Physical Universe?
New York: Oxford University Press.

Anderson JR,Betts S,Bothell D,Hope R, and Lebiere C (2019) Learning rapid
and precise skills. Psychological Review, 126(5), 727–760.

Bishop B and McDaid K (2008) An empirical study of end-user behaviour in
spreadsheet error detection & correction. arXiv preprint arXiv:0802.3479.

Bradski GB (2004) The OpenCV Library. Dr. Dobb’s Journal of Software Tools
120, 122–125.

Brown AB (2004) Oops! Coping with human error in IT systems. Queue 2(8),
34–41.

Byrne MD (2001) ACT-R/PM and menu selection: applying a cognitive archi-
tecture to HCI. International Journal of Human–Computer Interaction 55(1),
41–84.

ByrneMD andAnderson JR (1998) Perception and action. In Anderson JR and
Lebiere C (eds.), The Atomic Components of Thought. Mahwah, NJ: Erlbaum,
pp. 167–200.

Byrne MD, Wood SD, Sukaviriya P, Foley JD and Kieras DE (1994) Auto-
mating interface evaluation. In Proceedings of the CHI’94Conference on
Human Factors in Computer Systems, 232–237. New York, NY: ACM.

Card SK,Moran T and Newell A (1983) The Psychology of Human–Computer
Interaction. Hillsdale, NJ: Erlbaum.

Chalhoub G and Sarkar A (2022) “It’s freedom to put things where my mind
wants”: understanding and improving the user experience of structuring data
in spreadsheets. Paper presented at the Proceedings of the 2022 CHI Con-
ference on Human Factors in Computing Systems.

Chen C, Reniers G and Khakzad N (2019) Integrating safety and security
resources to protect chemical industrial parks from man-made domino
effects: a dynamic graph approach. Reliability Engineering & System Safety
191, 106470.

Chen C, Reniers G and Khakzad N (2020) A thorough classification and
discussion of approaches for modeling and managing domino effects in the
process industries. Safety Science 125, 104618.

Cunha J, Dan M, Erwig M, Fedorin D and Grejuc A (2018) Explaining
spreadsheets with spreadsheets (short paper). ACM SIGPLAN Notices 53
(9), 161–167.

Di Pasquale V, Miranda S and Neumann WP (2020) Ageing and human-
system errors in manufacturing: a scoping review. International Journal of
Production Research 58(15), 4716–4740.

Elkind JI, Card SK, Hochberg J and Huey BM (1989) Human Performance
Models for Computer-Aided Engineering. Washington, DC: National Acad-
emy Press.

Fincham JM, Tenison CS, and Anderson JR (2022). Combining EEG and a
cognitive model to infer the time course of game play. In Proceedings
of ICCM, The 20th International Conference on Cognitive Modeling
(pp. 88–93).

Fisher M, Rothermel G, Brown D, Cao M, Cook C and Burnett M (2006)
Integrating automated test generation into the WYSIWYT spreadsheet test-
ing methodology. ACM Transactions on Software Engineering and Method-
ology (TOSEM) 15(2), 150–194.

Gonzalez C, Lerch JF and Lebiere C (2003) Instance-based learning in dynamic
decision making. Cognitive Science 27(4), 591–635.

Goodwin PR, St. Amant R and Rohit A (2016) Towards error recovery
microstrategies in a touch screen environment. Paper presented at the
Proceedings of the 14th International Conference on Cognitive Modeling
(ICCM 2016), Penn State, University Park, PA.

Halbrügge M (2013) ACT-CV: bridging the gap between cognitive models and
the outer world.Grundlagen und Anwendungen derMensch-Maschine-Inter-
aktion 10, 205–210.

Hope RM, Schoelles MJ and Gray WD (2014) Simplifying the interaction
between cognitive models and task environments with the JSON Network
Interface. Behavior Research Methods 46(4), 1007–1012.

Huang Y,XuC, Jiang Y,WangH and Li D (2020)WARDER: towards effective
spreadsheet defect detection by validity-based cell cluster refinements.
Journal of Systems and Software 167, 110615.

Kankuzi B and Sajaniemi J (2013) An empirical study of spreadsheet authors’
mental models in explaining and debugging tasks. Paper presented at
the 2013 IEEE Symposium on Visual Languages and Human Centric
Computing.

Kankuzi B and Sajaniemi J (2014) Visualizing the problem domain for spread-
sheet users: a mental model perspective. Paper presented at the 2014 IEEE
Symposium on Visual Languages and Human-Centric Computing
(VL/HCC).

Kieras DE and Meyer DE (1997) An overview of the EPIC architecture for
cognition and performance with application to human–computer inter-
action. Human–Computer Interaction 12, 391–438.

Kim JW (2008) Procedural Skills: From Learning to Forgetting. Department of
Industrial and Manufacturing Engineering. University Park, PA: The Penn-
sylvania State University.

Kim JW, Koubek RJ and Ritter FE (2007) Investigation of procedural skills
degradation from different modalities. In Proceedings of the 8th International
Conference on Cognitive Modeling, 2552013;260. Oxford, UK: Taylor &
Francis/Psychology Press.

Kim JW and Ritter FE (2015) Learning, forgetting, and relearning for
keystroke- and mouse-driven tasks: relearning is important. Human–
Computer Interaction 30(1), 1–33.

Klaproth O, Halbrügge M and Russwinkel N (2019) ACT-R model for
cognitive assistance in handling flight deck alerts. Paper presented at the
Proceedings of the 17th International Conference on Cognitive Modeling
(ICCM 2019), Montreal, Canada.

Laird JE (2012) The Soar cognitive architecture. Cambridge, MA: MIT Press.
Landauer TK (1987) Relations between cognitive psychology and computer

systems design. In Preece J and Keller L (eds.), Human–Computer Inter-
action. Englewood Cliffs, NJ: Prentice-Hall, pp. 141–159.

Lankford C (2000) Gazetracker: software designed to facilitate eye movement
analysis. Paper presented at the Proceedings of the 2000 Symposium on Eye
Tracking Research & Applications.

Lawton R (1998) Not working to rule: understanding procedural violations at
work. Safety Science 28(2), 77–95.

Lohse GL (1997) Models of graphical perception. In Helander M, Landauer TK
and Prabhu P (eds.), Handbook of Human–Computer Interaction.
Amsterdam: Elsevier Science B. V., pp. 107–135.

MayNC,Batiz EC andMartinez RM (2019) Assessment of leadership behavior
in occupational health and safety. Work 63(3), 405–413.

Myers BA (1995) User interface software tools. ACM Transactions on Com-
puter–Human Interaction 2(1), 64–103.

Newell A (1990) Unified Theories of Cognition. Cambridge, MA: Harvard
University Press.

Nor AKM, Pedapati SR and Muhammad M (2021) Reliability engineering
applications in electronic, software, nuclear and aerospace industries: a
20-year review (2000–2020). Ain Shams Engineering Journal 12(3),
3009–3019.

Paik J, Kim JW, Ritter FE and Reitter D (2015) Predicting user performance
and learning in human–computer interaction with the Herbal compiler.
ACM Transactions on Computer–Human Interaction 22(5), 25.

Pan X, Lin Y and He C (2017) A review of cognitive models in human
reliability analysis. Quality and Reliability Engineering International 33(7),
1299–1316.

PankoR (2016) “Whatwe don’t know about spreadsheet errors today: The facts,
whywe don’t believe them, andwhat we need to do”, pp. 1–15, Proceedings of
the EuSpRIG 2015 Conference “Spreadsheet Risk Management” ISBN: 978-
1-905404-52-0, arXiv preprintarXiv:1602.02601.

Panko RR and Aurigemma S (2010) Revising the Panko–Halverson taxonomy
of spreadsheet errors. Decision Support Systems 49(2), 235–244.

Pew RW (2007) Some history of human performance modeling. In Gray W
(ed.), Integrated Models of Cognitive Systems. New York: Oxford University
Press, pp. 29–44.

10 Farnaz Tehranchi et al.

https://doi.org/10.1017/S089006042300015X Published online by Cambridge University Press

https://arxiv.org/abs/0802.3479
https://doi.org/10.1017/S089006042300015X


Pew RW andMavor AS (eds.) (2007)Human–System Integration in the System
Development Process: A New Look. Washington, DC: National Academy
Press.

Philippart M (2018) Human reliability analysis methods and tools. In Space
Safety and Human Performance. Amsterdam: Elsevier, pp. 501–568.

Powell SG,Baker KR and Lawson B (2008) A critical review of the literature on
spreadsheet errors. Decision Support Systems 46(1), 128–138.

Reason J (1990) Human Error. Cambridge: Cambridge University Press.
Ritter FE (2019) Modeling human cognitive behavior for system design. In

Scataglini S and Paul G (eds.), DHM and Posturography. London: Academic
Press, pp. 517–525, Chapter 537.

Ritter FE,Baxter GD andChurchill EF (2014) Foundations for Designing User-
Centered Systems: What System Designers Need to Know about People.
London: Springer.

Ritter FE, Baxter GD, Jones G and Young RM (2000) Supporting cognitive
models as users. ACM Transactions on Computer–Human Interaction 7(2),
141–173.

Ritter FE, Baxter GD, Jones G and Young RM (2001) User interface evalu-
ation: how cognitive models can help. In Carroll J (ed.), Human–Computer
Interaction in the New Millenium. Reading, MA: Addison-Wesley,
pp. 125–147.

Ritter FE, Kukreja U and St. Amant R (2007) Including a model of visual
processing with a cognitive architecture to model a simple teleoperation task.
Journal of Cognitive Engineering and Decision Making 1(2), 121–147.

Ritter FE,Tehranchi F andOury JD (2018) ACT-R: a cognitive architecture for
modeling cognition.Wiley Interdisciplinary Reviews: Cognitive Science 10(3),
e1488.

Ritter FE and Wood AB (2005) Dismal: a spreadsheet for sequential data
analysis and HCI experimentation. Behavior Research Methods 37(1), 71–81.

Salthouse TA (1986) Perceptual, cognitive, andmotoric aspects of transcription
typing. Psychological Bulletin 3(3), 303–319.

Salvucci DD (2009) Rapid prototyping and evaluation of in-vehicle interfaces.
ACM Transactions on Computer–Human Interaction 16(2), 9.

Salvucci DD (2013) Integration and reuse in cognitive skill acquisition. Cogni-
tive Science 37(5), 829–860.

Shahab MA, Iqbal MU, Srinivasan B and Srinivasan R (2022a) HMM-based
models of control room operator’s cognition during process abnormalities.
1. Formalism and model identification. Journal of Loss Prevention in the
Process Industries 76, 104748.

Shahab MA, Iqbal MU, Srinivasan B and Srinivasan R (2022b) HMM-based
models of control room operator’s cognition during process abnormalities.
2. Application to operator training. Journal of Loss Prevention in the Process
Industries 76, 104749.

St Amant R, Riedl MO, Ritter FE and Reifers A (2005). Image processing in
cognitive models with SegMan. In Proceedings of HCI International ’05,
Volume 4 - Theories Models and Processes in HCI. Paper # 1869.
Mahwah, NJ: Erlbaum.

St. Amant R, Horton TE and Ritter FE (2007) Model-based evaluation of
expert cell phone menu interaction. ACM Transactions on Computer–
Human Interaction 14(1), Article no. 1, 24 pp.

Tao J, Qiu D, Yang F and Duan Z (2020) A bibliometric analysis of human
reliability research. Journal of Cleaner Production 260, 121041.

Tehranchi F and Ritter FE (2017) An eyes and hands model forcognitive
architectures to interact with user interfaces. In MAICS, The 28th Modern
Artificial Intelligence and Cognitive Science Conference, 15–20. Fort Wayne,
IN: Purdue University.

Tehranchi F and Ritter FE (2018a) Modeling visual search in interactive
graphic interfaces: Adding visual pattern matching algorithms to ACT-R.
In Proceedings of the 16th International Conference on Cognitive Modeling
(ICCM 2018). 162–167. Madison, WI.

Tehranchi F andRitter FE (2018b) Using Java to provide cognitivemodels with
a universal way to interact with graphic interfaces. Paper presented at the
Proceedings of the International Conference on Social Computing, Behav-
ioral–Cultural Modeling and Prediction and Behavior Representation in
Modeling and Simulation, Washington DC (paper 50).

Wallach DP, Fackert S and Albach V (2019) Predictive prototyping for real-
world applications: Amodel-based evaluation approach based on the ACT-R
cognitive architecture. In DIS ’19: Proceedings of the 2019 on Designing
Interactive Systems Conference, 1495–1502.

Zhan Y, Tadikamalla PR,Craft JA, Lu J, Yuan J, Pei Z and Li S (2019) Human
reliability study on the door operation from the view of deep machine
learning. Future Generation Computer Systems 99, 143–153.

Zhao Y and Smidts C (2021a) CMS-BN: a cognitive modeling and simulation
environment for human performance assessment, Part 1 – methodology.
Reliability Engineering & System Safety 213, 107776.

Zhao Y and Smidts C (2021b) CMS-BN: a cognitive modeling and simulation
environment for human performance assessment, Part 2 – application.
Reliability Engineering & System Safety 213, 107775.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 11

https://doi.org/10.1017/S089006042300015X Published online by Cambridge University Press

https://doi.org/10.1017/S089006042300015X

	A user model to directly compare two unmodified interfaces: a study of including errors and error corrections in a cognitive user model
	Introduction
	JSegMan
	Research objectives

	Method
	Kim spreadsheet task
	Participants
	Materials
	Design
	Procedure

	Results
	Evaluating user interfaces
	Understanding human errors
	Error detection and correction
	Modeling error detection and correction
	Where does the time go?

	Discussion and conclusions
	Data availability statement
	Funding statement
	Competing interest
	References


