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QUANTISED AFFINE ALGEBRAS AND
PARAMETER-DEPENDENT ^-MATRICES

ANTHONY J. BRACKEN, MARK D. GOULD AND YAO-ZHONG ZHANG

Let Uq(Q^} be a quantised non-twisted affine Lie algebra with Ug(Q) the cor-
responding quantised simple Lie algebra. Using the previously obtained univer-
sal .R-matrices for Uq(A^') and Uq(Aj), explicitly spectral-dependent universal
R-matrices for Uq{Ai) and Uq(Aj) are determined. These spectral-dependent
universal it-matrices are evaluated in some concrete representations; well-known
results for the fundamental representations are reproduced, and an explicit for-
mula for the spectral-dependent iZ-matrix associated with the V(3) ® V(6) module
is derived, where V̂ 3) and V(fl) carry the 3- and 6-dimensional representations of
Ug(Aj), respectively.

1. INTRODUCTION

Quantum deformations of universal enveloping algebras, or for short, quantum
algebras, are perhaps amongst the most important discoveries in recent years in math-
ematics and theoretical physics [8, 10]. The novelty of these algebras is that they
have a quasitriangular Hopf algebra structure, that is to say each contains a canoni-
cal element R, called the universal .R-matrix, which satisfies the spectral-independent
quantum Yang-Baxter equation (QYBE). This equation plays a key role in applications
to conformal field theories [1, 2] and knot theory [20, 23, 24]. Integrable models [9,
4, 22], on the other hand, involve spectral-dependent .R-matrices which satisfy the
spectral-dependent QYBE.

Since the works of Jimbo and Jones [11, 13], a central problem has been the con-
struction of spectral parameter-dependent .R-matrices using quantum group techniques
[25, 7, 5]. There are two commonly used procedures to this end in the literature: one
is the so-called "Yang-Baxterisation" process, the other is the "fusion" method. By
"Yang-Baxterisation" we mean two seemingly different but essentially related meth-
ods: (i) one starts from a quantum simple Lie algebra, makes it affine, thus giving
rise to Jimbo's equations [11, 25], and then solves them; (ii) one begins with a braid
group representation associated with a quantum simple Lie algebra and then tries to
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introduce a spectral parameter in such a way that the spectral-dependent QYBE is
satisfied [13]. In practice, it is usually more convenient to use (i) combined with some
features of (ii), as shown in [24, 7, 5]. Abelian Yang-Baxterisation, for cases where the
decomposition of the tensor product of a representation with itself is multiplicity-free,
has been extensively studied by many authors for small representations. The "fusion"
method was invented to cope with larger representations, but it is not easy to apply in
practice. Very few attempts have been made in the non-Abelian case, where the tensor
product decomposition has finite multiplicities, because of the associated complexities.
For these reasons, it is highly desirable to develop more effective and general methods
of constructing solutions of the spectral-dependent QYBE.

We have presented recently a new way [26] of obtaining spectral-dependent R-

matrices associated with simple quantum Lie algebras. The idea is essentially to reverse
the above process. More precisely, we start from the universal .R-matrix of a quantum
affine algebra Uq (G^) and then evaluate it in the finite-dimensional loop representation
V{z) of Uq(Q^) which is known to define also the representation V®C(z,z~1) of the
corresponding simple quantum Lie algebra Uq{Q). In this way, we introduce a spectral
parameter z automatically and obtain a spectral parameter-dependent solution of the
QYBE. Our approach is an extension of that initiated by Khoroshkin and Tolstoy [15],
who considered the simplest case of the fundamental representation of Uq(Ai) which
has a classical analogue [3, 21]. A remarkable advantage of this approach is that it is
totally irrelevant whether or not the tensor product decomposition is multiplicity-free,
and whether or not the representations being tensored are the same or different.

Moreover, considering different gradations of the quantum affine Lie algebras, our
approach leads to quantum .R-matrices which obey the QYBE but not the intertwiner
property and thus cannot be directly obtained by the Yang-Baxterisation and fusion
methods. These results will be published elsewhere [6].

The present paper continues the investigation in the authors' previous papers [26,
6] to other interesting cases. It is hoped that the explicit .R-matrix formulae derived in
this paper will turn out to be useful in physical applications.

The paper is structured in the following fashion. In Sections 1 and 2 we give an
account of the necessary background. In Section 3, we present the universal .R-matrix
with explicit spectral dependence for Uq{A{) and Uq(A2). In Section 4, we evaluate the
spectral-dependent universal .R-matrix in some concrete representations and reproduce
some well-known results. We also obtain a quite explicit formula for the spectral-
dependent .R-matrix on the module F(3) x V(6) of Uq(A2). Some concluding remarks
are made in Section 5, while some technical details are relegated to the Appendix.
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2. QUANTUM A F F I N E LIE ALGEBRAS

We start with the definition of the non-twisted quantum affine Lie algebra Uq {G^1') •

Let A0 — (a,-J-)1<j -< r be a symmetrisable Cartan matrix. Let Q stand for the finite-

dimensional simple Lie algebra associated with the symmetric Cartan matrix A^ym —

( a i j m ) = ( a » ' a i ) ' *,j = l , 2 , . . . , r , where r i s the rankof £?. Let A = ( a i j ) O s j i i K r b e a

symmetrisable, generalised Cartan matrix in the sense of Kac [14]. Let Q^1' denote the

non-twisted affine Lie algebra associated with the corresponding symmetric Cartan ma-

trix Asym = (a"Jm) = (ai,aj), i,j = 0 , 1 , . . . , r . Then the quantum algebra Uq(G
{1))

is defined to be a Hopf algebra with generators: {Ei, Fi, qh* (t = 0 , 1 , . . . , r ) , qd} and

relations,

(h, h'= h{(i = 0,1,...,r), d)

qhEiq~h = q(h<a^Ei, qhFiq-
h - q-^'^Fi

(1) (^Eif-^E^O, (vi^Ftf-'tF^O (i?j)

where

(2) (eidqxa)xf} = [xa , Xf))q = xaxf) - q^a 'P)

The algebra Uq(G^) is a Hopf algebra with coproduct, counit and antipode, much

as in the case of Uq(Q): explicitly, the coproduct is defined by

, h = ht, d

A(Ei) = Ei®l + q~hi ® Ei

(3) A{Fi) = 1 ® Fi + Fi ® qhi , i = 0,l,...,T.

Formulae for the co-unit and antipode may also be given, but are not required below.

Let A' be the opposite coproduct: A' = TA, T(x ®y) = y ® x for all x,y £

. Then A and A' are related by the universal ii-matrix R in Uq(G
W) ®

satisfying

A'(x)R = RA(x),

(4) (A®id)R=R13R23,

We define an anti-involution 0 on Uq(jQ ) by

(5) 0{qh) = q~h , 8(Ei) = Fi, 0(Fi) = Ei, 6{q) = q~l ,
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which extends uniquely to an algebra anti-involution on all of Uq{Q^) so that 0(ab) =

6{b)6(a) for all a,b G Uq(Q^) • Throughout the paper, we use the notations:

M. -

• H ! = (")«<" -

3. UNIVERSAL .R-MATRICES FOR U,(A^J AND

This section is devoted to a brief review of the construction of the universal R-
matrix for Uq(A[1)S\ and Uq(A^ [16, 27, 28]. We start with the rank 2 case. Fix

a normal ordering in the positive root system A+ of A\ ' :

( 7 ) a, a + 6, ...,a + n6, ...,6,26, ..., m6, . . . , . . . , (6 - a) + 16, ... ,6 - a ,

where a and 6—a are simple roots; 6 is the minimal positive imaginary root. Construct

Cartan-Weyl generators Ey, F7 - O(E^), 7 G A+ of Uq (A[XA as follows: define

E6 = [(a,a)}-1[Ea,Es.a}q

Ea+ns = (-1)" ( ad i^ ) " Ea

\ n

a.dEsj ES-a,...

(8) Eni = [(a,a))-1
 [JBO+(B_I)J, E6-a]q

where [Ens, Ems] = 0 for any n, m > 0. Then

(i) for any n > 0, there exists a unique element Eng [16] satisfying
[Ens, Ems] — 0 for any n, m > 0 and the relation

(9) £„*= 2 -—rr—Ti &?*%•••*%•
Pl P

(ii) the vectors £^ and Fy — 6{E^), 7 G A.), axe the Cartan-Weyl generators

for Uq (A^1)). The universal il-matrix for I/9f A\ 'j may be written as

[16]

(10)

R =
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where c = ha + hg-a. The order in the product (10) concides with the
chosen normal order (7).

Now consider the rank 3 case. Let A°ym = (a'}™) > i,j = 1,2 and A+ respec-
tively be the symmetrical Cartan matrix and positive root system of the rank 2 finite-
dimensional simple Lie algebra A2. In what follows we use A°ym in the form

(11) A0 - f c * » ) - / > ° > i*f>)\(2

( i i ) Asym - K , ) -
The simple roots are a , /? and 8 — ip with tj> = a + /? the highest root of

One fixes the following order in A+ of A± :

a, a + (3, a + 8, a + 0 + 8, ... ,... , a + mrf, a + /3

/ 3 , /3 + 8,..., p + m2S, ..., 8, 28, ..., kS, ...,...,(8- /3) + hS, ... , 8 - 0, ...,

(12) . . . , ( « - o ) + 126, {8 - a - /3) + 126, . . . . . . . , 8 - a , 6 - a - / 3 ,

where TTXJ, A:, /» ^ 0 , t = 1,2. We set

Ea+P = [Ea , Ep]q ', Es-a = [Ep , Es-a-p]q

(13) Es-p = [Ea , Es-a-p]q

and use the formula for E^+ns and 25(j_7)+n4, 7 G A^., given by

E? = [(<*, a^];1 [Ea., Es.ai]q , at = a, /3, a + fi

Eai+nS = (-l)n (idE^y Eai .

Es.ai+nS =

(14) E$ =

where [E^, E^] = 0 for any n, m > 0. One has the following statment similar to the

case of ^

(i) there exists a unique element E^ , n > 0 satisfying [E^g , E^s] = 0 for
any n, m > 0 and the relation (a< = a, 0)

(15)

g 3 _

(ii) the vectors £)7 and Fy — B{E^), 7 G A+ are the Cartan-Weyl generators

https://doi.org/10.1017/S0004972700014040 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700014040


182 A.J. Bracken, M.D. Gould and Y-Z. Zhang [6]

One can show [16, 27] (see, in particular, [27]) that the universal iZ-matrix for

Uq ( A\ ') takes the explicit form

•exp ̂
i n>0 »',; = 1

II
(16) - , ^ y = i ^"°>> *"

where c = ho+h^, the order in the product of (16) is defined by (12), and the constants
C£(g) are given by

TV 1^1 I 0 ~\~ Q \ "~* 1 i i

4. UNIVERSAL ^-MATRICES WITH SPECTRAL PARAMETERS

We turn now to the main object of the paper. We shall determine explicitly
spectral-dependent universal iZ-matrices for Uq(Ai) and Uq(A2) by using the universal
il-matrices (10) and (16) for UqfA^A and Uq(A2

l)\ , respectively.

From the Appendix it follows that for any z £ C x , there is a homomorphism of

algebras evz: Uq(A\ J —» Uq(Ai) given by

evz(£a) = Ea , evz(Fa) = Fa , evz{ha) = ha , evz(c) = 0

(18) evz{ES-a) = zFa , evz(FS-a) = z-1Ea, ewz(h6.a) =-ha.

Then suppressing "evz" for notational convenience, and through straightforward cal-
culations and induction in n, using (18) and the defining relations (8), we obtain

Ea+nS - (-l)nznq

Fa+nS = (-l)nz-n

Ens = [2],-1(-l)"-1^g-("-1)"- {EaFa - q-2nFaEa)

(19) Fn6 = [2],-1(-l)n-1z-n
g("-1)fc- (FaEa - q2nEaFa) .
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We introduce the primed and z-independent quantities, E'nS and F'nS which are ob-
tained from the corresponding unprimed quantities in (19) by removing the parameter
z, and determine E'n6 and F'nS using the following equalities of formal power series:

'u>1 + (fa " 1Z1) £ Ksv-" = exp («. - 9"1) £ E'lsu
k=i \

(20) 1 - (qa - g-1) Y,F'k6u-k = exp (-(qa - g"1

which are variants of (9). Then from (10) we deduce the universal H-matrix of Ug(Ai)
with the explicit dependence of spectral parameter, R(x,y) ~ (evx (g) evy)R,

R(x,y) = H exp,a ((« - «fX) fe

• exp
\n>0

(21)

We now consider the case of UqlA^j. We have (see Appendix) that for any

G C* , there is a homomorphism of algebras evz: Uq (A\' J —* Uq^Az) given by

evz{Ea) = Ea , evz{Fa) = Fa , evz{ha) = ha

(22) evz(h6-a-f)) = -ha+fi , ev2(c) = 0.

Again suppressing "evz" and using (22) and the denning relations of the generators,
equations (14) and (15), we obtain

Ea+n6 = {-l)nznq

Fa+nS = (-l)nz-n

Ea+f)+nS = {-\)nznq

Fa+f}+nS = {-l)nz-n

E0+nS = (-1)B[2]7
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« = ( - l ) " - 1 ^ ] ^ 1 * " ^ ^ - q-2nFaEa)

(FaEa - q2nEaFa)

(23) p , ,

where (ad'Q^) • B = AB - QBA, and

£ = (ad'q-iEfi) (ad'q-,Ea)Fa+(,, 7 = (ad',(ad'?J£;a+/3)FQ) Fp

(24) £' = Ea+0Fa - q2FaEa+f}, P = EaFa+0 - q~2Fa+pEa .

We introduce the primed and ^-independent quantities E^f , F^ , E^ , F^p ,
Eh+n6 > Fp+nS E'(6-p)+n6 a n d F(6-0)+ni > w h i c h a r e obtained from the corresponding

unprimed quantities in (23) by suppressing the parameter z, and determine -BnJ , F^g

by the following equalities of formal series: (aj = a, /3)

which are variants of (15). Then from (16) we may deduce the universal -R-matrix of
Uqi-A.2) with the explicit dependence on a spectral parameter, R(x,y) = (evx ® ev y ) i i ,
given by

R(X,y) =
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(25)

5. APPLICATIONS

To illustrate the general theory developed in the previous section, we present a
detailed study of the spectral-dependent i2-matrix for some concrete and interesting
representations.

First consider the Uq(A\ 1 case. Let Vj/2 > I G Z+ denote the (I + l)-dimensional

module of Uq(Ai) (spin 1/2 representation) with basis {vU | 0 ^ m ^ I}. We have for
this representation,

K*® = PI,-1 L ^ — inm {Hi - m)]f - ,

(26) F > « = [2],"1 ^ ^ 9 - n n l ([n(/ - m)]q -

where it is understood that »L is identically zero if m > / or m < 0. These results

https://doi.org/10.1017/S0004972700014040 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700014040


186 A.J. Bracken, M.D. Gould and Y-Z. Zhang [10]

are obtained by straightforward computation plus induction in n.

(i) for the spin 1/2 representation, we have from (26)

oj' F- = (i oj
(27)

sn-1
)

We apply (21) to V1/2 <g> Vx/2, where Vi/2 carries the spin-1/2 representation of
Ai). Using (27), it follows from (21) that

(28) y-q~2x

\

where

(29)

and use has been made of the notation:

(30)

9n - «— (x/y)n

\n>0 + g n

A12B

AM2B

A1NB

AMNB ,

Equation (28) reproduces a well-known result [12], up to the scalar factor fq(x,y).
Khoroshkin and Tolstoy [16] obtained (29) directly from (10).

(ii) for the spin 1 representation, (26) gives

fc«=

(31) F'n6 =

'2 0 0
0 0 0

,0 0 - 2 ,

n

'0 [2], 0>

£ a =

0
0

0
0

1
0

( 0 0 01

1 0 0

0 [2], 0,

0

0

-q2n(qn+q~n),
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We now apply (21) to Vi/2 ® V\ with V\ carrying the spin-1 representation of
Ug^At). Using (31), we obtain from (21)

( 3 2 )
y-q

where (and below) e -̂ is the matrix satisfying (eij)kl = Sik&ji and e{j€ki — Sjkeu-

We now turn to the UgfA^'j case. Hence we find that the explicit form of the

generators on the fundamental representation of {7g(^42) is given by

' 0 0 0>

TTII _—2n—n/3 I n n 1 I E1' _2n+n/3 I n n n
Ef}+ns = 9 ' \ 0 0 1 j , Fp+nS = q [ 0 0 0

1 0,

n

<(f} = PI,-1 ^ « — " / 3 diag (0, - 1 , g"2")

(33) F<? = [2]t"» IJ 9 "+«/ s diag (0,-1, g2") .

We apply the results in Section 4 to derive the spectral-dependent iZ-matrix associ-
ated with F(S) <g> F(3), where V(3) stands for the fundamental representation of Uq{Ai).
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e77 + e88)

Using

Rt

(34)

where

(33) we get

y(l -q~2)
y-q~2x

q-1

~ 655 + egg +

y-

(y-x
- g~2a;

y-

) ( e +
22

- 9 ~ 2 )
- g~2a;

Again this reproduces a well-known result [12], up to a scalar factor fq(x,y).
We now consider a very interesting case: to extract the spectral depedendent R-

matrix associated with the module V(3) ® V(g) of Ug(A2). As indicated in the in-
troduction, this case could not be treated by means of the usual Yang-Baxterisation
procedures, simply because the representations being tensored are different.

We introduce the so-called Gelfand-Tsetlin basis vector \(m)) given by

It can be shown that the action of the generators on these basis vectors is

ha\(m)) = (2TOH - TO12 - m22)|(m))

hp\(m)} - (2mi2 + 2m22 - mn - m13 - m2S - m33)|(m)>

»7ll3 77123 "133

— Tn22]q[mi2 — mil + l]q} | ( r n 1 2 77122

mu - 1
'77113
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[m.22 — — l]g[mi3 — m22 + 2],[77123 — m22 + l]t[Tn33 — ra.22], 1

[m.12 — vn.22 + 2],[mi2 - m.22 +

(37)

" 1 1 1

The matrices of Ea and Ep are given by the transposes of Fa and Fp, respectively.

For the 6-dimensional representation, we have the following basis vectors:

'4/3 - 2 /3 - 2 / 3 '
4 / 3 - 2 / 3

4/3

'4/3 - 2 /3 -
4 / 3 - 2 / 3

-2/3
, 04 =

'4/3 -2 /3 -2 /3
4/3 - 2/3

1/3

'4/3 -2 /3 -2 /3
1/3 -2 /3

1/3

) >

(38)
'4/3 -2 /3 - 2 / 3 \ . | /4/3 -2 /3 - 2 / 3 '

1/3 -2 /3 \ , 06= -2/3 -2 /3
-2/3 / ' ' \ -2/3

Then long computations show that the matrix form of the generators in the 6-

dimensional representation of Uq(A2) is given by

/ia = diag(2,0,-2,1,-1,0), ^ = diag(0,l,2,-l,0,-2)
E1 Col 1 / 2 i f o l 1 / 2 . r i fo l 1 / 2

H/ct ^ MJo 12 *T t^Jo ^23 i ^45 j -Fa = = l*Jo 21 "

Ep = e24

Ea+0 = J
E'p+n6 = q-2

E[s.p)+nS =

[2]J/2e56 , - e 4 2 [2]J/2
eS3

qe25 + [2]J/2e46 , Fa+0 = [2]J/2e41 + qe52 + [2]J/2e64

ne2* + [2]\l2q-Zneis + [2]J/2
g-"e56}

2 + mi'Wesz + [2]J/2g"e65}
3 - 1 e 5 3 + [2

\<> ^ 1 eS6}

*? = [2];\-ir-A^q-^ {(,» + ,-)eu
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e44

/ = _ [ 2 ] H

(39) +<72"(g2n - 9- 2 n )e S 5 + <?3"(gn + <Tn)e6 6} .

We have the following properties for the generators in (39),

{Eaf = [2],e13 , (Ea)
3 = 0 , (Fa)

2 = [2],e31, (Fa)
3 = 0

(Ea+0)
2 = - 2 ] , e 1 6 , ( E Q + ^ ) 3 = 0, (F Q + ^) 2 - -[2] ,e6 1 ) (Fa+0)

3 - 0

) 3 = 0

= 0

(40) {FlS-fi)+nS)2 = [2],<?
5"+3+("+1>/3e36, ( ^ _ ^ ) + n , ) 3 = 0

as can easily be checked.

Now we are in the position to derive the quantum iZ-matrix, R^3-)t^(x,y), on the

tensor product module V(3) <g> V(g). With the help of (33) and (39) and through long

calculations similar to those that led to (34), we find

(41) #(3),(6)(s,2/) = f'q{x,y) • R+ Ro R- ,

where

=I+ I,, {[2] , / 2 (ei2 ® e2i + e13 <g> e4i + e23 <g> e5 3) + e2 3 (8) e4 2}
y — Q ' x

+ ~ {e_ ! & ^54 4" [2]« (^12 0 632 4" Cj3 0 C84) ""h 9 C13 ® 652
5/ "

2 /

ees} + 7 TTTTT 27TT e i 3 ® e s 2

" 0 — TJi \ e H 09 e H T"
 e22 59 C33 + e33

(y-qlo/3*)(y-g-2/3*)
e 2 2 + e n <g> e 4 4 + e 2 2 <8> e S 5 }
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y - « / * ,
H TiT~\e™ ® e33 + e u ® e55 + en ® e68 + e22 ® e66}

y-q*l3x

" <T2 / 3

y-q

2/ " < T 2 / 3 * r
H TM~{e2 2 ® en + e33 ® en + e33 ® e22 + e33 <g> e33}

y-q-s/3x

e4 4

R- = q{e\\ ® en + e22 ® e33 + e33 ® e66} + en ® e22 + en ® e44

+ e22 ® e22 + e22 (gi e55 + e33 ® e44 + e33 ® ess + g~1{e11 ® e33

+ en ® e55 + e n ® e66 + e22 (8) en + e22 ® e44

+ e22 <g) e6s + e33 <g) e n + e33 (gi e22 + e33 ® e33}

3 j / 3 { [ ] J (c2i ® ei2 + e31 ® e14 + e32 ® e35) + e32 ® e24}

+
y — q

(42)

e46) + e21 ® e45 + e31

e56} + -, 4 / 3 w 2 / 3 Ne3i ® e25

(y - g4/3a;) (y - q-2'3x)
It is understood that / in R+ is the 18 x 18 unit matrix.

6. CONCLUDING REMARKS

To summarise: we have obtained explicit and compact formulae for the quantum
-R-matrices (or the inter-twiners) associated with some interesting representations of
J7?(J42) . For the case of V(3) ® V(6), it is interesting to note in particular the appearance
of fractional powers of q. It is hoped that these explicit formulae may be useful in
physical applications, with associated interesting new features.

Up to now, we have been working in the homogeneous gradation of Uq ( A[ J and

Uq (A2 J . Similar calculations can be carried out for other gradations, in particular for

the principal gradation. In this way, we could get a host of -R-matrices with different

spectral parameter-dependences. The simplest cases corresponding to the fundamental

representation of Uq(Ai) and Z7g(j42) have been worked out very recently [6].

7. APPENDIX

We consider here finite-dimensional irreducible representations of Uq(gl(ny'j
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with the Chevalley generators {Ei, F{, qh*, 0 ^ i < n; qd} in which

(43) Ei = Eii+1, Fi = Et+i i, qhi , hi = En - Ei+1 i+1, 1 < i < n, qB™

are the usual Chevalley generators of Uq(gl(n)). We define

E i j = E i k E k j - q - 1 E k i E i k , i < k < j

(44) E ^ = E i k E k j - q E k j E i k , i > k > j

and put

F, i = nBll+Enn E-, F, = F, .n~
Ell~Enn h,.— F-,-, — F,

Then we have

PROPOSITION . For any given z E C X , there is a homomorphism of edgebras

ev2 : Uq(gl(ny ') —> Uq(gl(n)) where, in terms of the Chevalley generators,

evz(Ei) = E{, evz(Fi) = F{, evz(/i.) = ht

(46) evz(E0) = zF+ , evZ(FO) = z'1 E^,, evz(h0) = -h^, evz(c) = 0.

PROOF: TO show that a homomorphism Uq(gl(ny ') —» Uq(gl(n)) is defined, one

needs to check that the relations in (1) are satisfied. This is immediate except for the

last two, which reduce to

(47) [a.dq-i Fi) Fo = {a.dq-i Fi) L^ = 0

(48) ^ad^-ii'o; ri — [a.dq-i£,^,) ti = U,

a n d t w o s imi la r r e l a t i ons w i t h t h e in te rchanges Fi <-» Ei, Fo <-> EQ , q-1 <-» q. W e now
p r o v e t h e r e su l t ( 4 7 ) . F i r s t we cons ider t he case: l < i < i + l < n . In th is case
(•0,a,-) = 0 , a n d t h e left h a n d s ide of (47) b e c o m e s

(49) (ad,- i#)£* = [FuE*] = qE"+E™[Ei+li,Eln},

which can easily be seen to vanish. We then consider the i = 1 case. Then the left

hand side of (47) reads

(50) (adg_! Ft)2 E+ = (ad,-i£2 1)(adg-i£2 1)£^.

One can easily show that (adq-iE2i)E^ = qE"+EnnE2n. Inserting this into (50), one
sees that this equation reduces to

(51) {*dq-iE31)<l
B»+B""E2n = qE»+E™-1{E21, E2n] = 0
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as required. Finally for i = n , we see that the left hand side of (47) reduces to

(52) (adq-iFn)*E+ = ( a d , - i £ n n _ 1 ) ( a d , _ 1 £ ; n n _ 1 ) ^ .

Direct computations show that the right hand side of this equation reduces to

(53) qBll+Enn-i {q-^Enn-1[Enn-1,Eln]-q[Enn-1,ElnEnn-1}

which, using the formula

(54) [Enn-l7Eln] = - 9 * - i — i - * » • £ ! „ _ ! ,

is easily seen to vanish. We may prove (48) similarly. U

n

REMARK. Since N = ^3 En commutes with all generators, it follows that if we set,

instead of (45),

(55) E^ = qB"+E™-*NEln , *V = Enl r
s " - ^ + ^ £ l n ,

then the proposition of this Appendix still holds. It turns out that it is more convenient

to use (55) as we did in the previous sections.

REFERENCES

[l] L. Alvarez-Gaume, C. Gomez and G. Sierra, 'Quantum group interpretation of some
conformal field theories', Phys. Lett. B 220 (1989), 142-152.

[2] L. Alvarex-Gaume, C. Gomez and G. Sierra, 'Hidden quantum symmetries in rational
conformal field theories', Nuclear Phys. B 319 (1989), 155-186.

[3] O. Babelon and L. Bonora, 'Conformal affine sl2 Toda field theory', Phys. Lett. B 244
(1990), 220-226.

[4] R.J. Baxter, Exactly solved models in statistical mechanics (Academic Press, New York,
1982).

[5] A.J. Bracken, G.W. Delius, M.D. Gould and Y.-Z. Zhang, 'Solutions to the (graded)
Yang-Baxter equation with extra non-additive parameterst', J. Phys. A. (to appear).

[6] A.J. Bracken, G.W. Delius, M.D. Gould and Y.-Z. Zhang, 'Infinite families of gauge-
equivalent R-matrices and gradations of quantized affine algebras', Internat. J. Modern
Phys. (to appear).

[7] G.W. Delius, M.D. Gould and Y.-Z. Zhang, 'On the construction of trigonometric solu-
tions of the Yang-Baxter equation', Nuclear Phys. B (to appear).

[8] V.G. Drinfeld, 'Quantum groups', Proc. ICM, Berkeley 1 (1986), 798-820.

[9] L.D. Faddeev, 'Integrable models in (l+l)-dimensional quantum field theory', in Recent
advances in field theory and statistical mechanics (North-Holland, New York, 1984), pp.
563-608.

https://doi.org/10.1017/S0004972700014040 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700014040


194 A.J. Bracken, M.D. Gould and Y-Z. Zhang [18]

[10] M. Jimbo, ' .Ag-difference analogue of U(g) and the Yang-Baxter equation', Lett. Math.
Phys. 10 (1985), 63-69.

[11] M. Jimbo, 'A qr-analogue of U(gl(N + 1)) Hecke algebra and the Yang-Baxter equation',

Lett. Math. Phys. 11 (1986), 247-252.

[12] M. Jimbo, 'Quantum R matrix for the generalized Toda system', Comm. Math. Phys.
102 (1986), 537-542.

[13] V.F.R. Jones, 'Baxterization', Internal. J. Modern Phys. B 4 (1990), 701-713.
[14] V.G. Kac, Infinite dimensional Lie algebras: An introduction (Birkhauser, Boston, 1983).
[15] S.M. Khoroshkin and V.N. Tolstoy, 'The uniqueness theorem for the universal ii-matrix',

Lett. Math. Phys. 24 (1992), 231-244.

[16] S.M. Khoroshkin and V.N. Tolstoy, 'The universal iZ-matrix for quantum non-twisted
affine Lie algebras', Funktsional. Anal, i Prilozhen 26 (1992), 85-88.

[17] A.N. Kirillov and N. Reshetikhin, 'Representations of the algebra Uq(sl(2)), g-orthogonal
polynomials and invariants of links', preprint LOMI E-9-88.

[18] J.R. Links, M.D. Gould and R.B. Zhang, 'Quantum supergroups, link polynomials and
representations of the braid generator', Rev. Math. Phys. 5 (1993), 345-361.

[19] G. Moore and N.Yu. Reshetikhin, 'A comment on quantum group symmetry in conformal

field theory', Nuclear Phys. B 328 (1989), 557-574.

[20] N. Reshetikhin, 'Quantized universal enveloping algebras, the Yang-Baxter equation and
inveriants of links: I, II', preprints LOMI E-4-87, E-17-87.

[21] F. Toppan and Y.-Z. Zhang, 'Superconformal affine Lionville theory', Phys. Lett. B 292
(1992), 67-76.

[22] M. Wadati, T. Deguchi and Y. Akutsu, 'Exactly solvable models and knot theory', Phys.

Rep. 180 (1989), 247-332.

[23] E. Witten, 'Quantum field theory and the Jones polynomial', Commun. Math. Phys. 121
(1989), 351-399.

[24] R.B.Zhang, M.D.Gould and A.J.Bracken, 'Quantum group invariants and link polynomi-
als', Commun. Math. Phys. 137 (1991), 13-27.

[25] R.B. Zhang, M.D. Gould and A.J. Bracken, 'From representations of the braid group to
solutions of the Yang-Baxter equation', Nuclear Phys. B 354 (1991), 625-652.

[26] Y.-Z. Zhang and M.D. Gould, 'Quantum affine algebras and universal iZ-matrix with
spectral parameter', Lett Math. Phys. 31 (1994), 101-110.

[27] Y.-Z. Zhang and M.D. Gould, 'On universal iZ-matrix for quantized nontwisted rank 3

affine KM algebras', Lett. Math. Phys. 29 (1993), 19-31.

[28] Y.Z. Zhang and M.D. Gould, 'Unitarity and complete reducibility of certain modules over
quantized affine Lie algebras', J. Math. Phys. 34 (1993), 6045-6059.

Department of Mathematics
University of Queensland
Queensland 4072
Australia

https://doi.org/10.1017/S0004972700014040 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700014040

