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Abstract

We establish the first moment bound
∑

i

! (i ⊗ i ⊗ Ψ, 1
2 ) ≪Y ?

5/4+Y

for triple product L-functions, where Ψ is a fixed Hecke–Maass form on SL2 (Z) and i runs over the Hecke–Maass
newforms on Γ0 (?) of bounded eigenvalue. The proof is via the theta correspondence and analysis of periods
of half-integral weight modular forms. This estimate is not expected to be optimal, but the exponent 5/4 is the
strongest obtained to date for a moment problem of this shape. We show that the expected upper bound follows if
one assumes the Ramanujan conjecture in both the integral and half-integral weight cases.

Under the triple product formula, our result may be understood as a strong level aspect form of quantum
ergodicity: for a large prime p, all but very few Hecke–Maass newforms on Γ0 (?)\H of bounded eigenvalue have
very uniformly distributed mass after pushforward to SL2 (Z)\H.

Our main result turns out to be closely related to estimates such as

∑

|= |<?

! (Ψ ⊗ j=? ,
1
2 ) ≪ ?,

where the sum is over those n for which =? is a fundamental discriminant and j=? denotes the corresponding
quadratic character. Such estimates improve upon bounds of Duke–Iwaniec.
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1. Introduction

1.1. Overview

The quantum ergodicity theorem [35, 4, 44] says that on a compact Riemannian manifold with ergodic
geodesic flow, almost all eigenfunctions have equidistributed mass in the large eigenvalue limit. When
the manifold is arithmetic, additional tools become available by which one can prove quantitative
strengthenings of this conclusion, to the effect that all but very few eigenfunctions (satisfying additional
symmetries) have very equidistributed mass (see Section 1.2 below, or [21, 22, 17]). A standard way to
quantify such strengthenings is through upper bounds for !2-mass variance over families. Le Masson and
Sahlsten [19] recently introduced a level aspect variant of the quantum ergodicity theorem concerning
almost all eigenfunctions in a fixed spectral window on a sequence of hyperbolic surfaces Benjamini–
Schramm-converging to the hyperbolic plane. The main results of this article may be understood as
quantitative strengthenings of that result, for specific classes of eigenfunctions and observables, in the
arithmetic congruence case.

Well-developed techniques for analyzing averages of triple product !-values and/or shifted convolu-
tion sums apply in our setting, giving nontrivial estimates in the intended direction. We do not apply
such techniques here. We instead introduce techniques involving the theta correspondence and periods
of half-integral weight modular forms, which seem to give stronger results in our setting.

1.2. Context

Let F traverse a sequence of finite families of cusp forms defined on congruence covers of the modular
surface SL2(Z)\H (examples will follow shortly). For each i ∈ F, we may define a probability measure
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`i on SL2(Z)\H by pushforward of !2-mass: for Ψ ∈ �2 (SL2(Z)\H),

`i (Ψ) :=
〈Ψi, i〉
〈i, i〉 ,

with 〈, 〉 the Petersson inner product. For the sequences of families considered in this article, one either
knows or can show readily that the mean of the `i tends to the uniform measure as F varies: for fixed Ψ,

1

|F |
∑

i∈F
`i (Ψ) = 〈Ψ, 1〉

〈1, 1〉 + >(1).

We consider here the problem of bounding or estimating the variance sums

+F (Ψ) :=
∑

i∈F
|`i (Ψ) |2 (1.1)

for nice enough fixed Ψ : SL2(Z)\H → C of mean zero. For concreteness and simplicity, we suppose
throughout this article that Ψ is a fixed even Hecke–Maass cusp form, noting that some results quoted
below apply to more general observables than this.

The problem of estimating +F (Ψ) becomes more difficult the smaller the family F is relative to the
parameters of its typical elements. To illustrate, let 1 ≤ � ≤ ) . Let F([),) + �]) denote the set of
normalized cuspidal Hecke–Maass forms on SL2(Z)\H of eigenvalue 1/4 + C2 for some C ∈ [), ) + �].
Here,� varies with) as) → ∞. One knows that #F([), )+�]) ≍ )�. The general quantum ergodicity
theorem implies (for the analogous problem on much more general manifolds) that

+F ( [) ,) +� ]) ≪
)2

log)
,

but one expects the much stronger upper bound

+F ( [) ,) +� ]) (Ψ) ≪Y �)
Y , (1.2)

which should moreover be essentially sharp (that is, up to the factor ) Y). This expectation is a conse-
quence of the Lindelöf hypothesis combined with the triple product formula in the form

|`i (Ψ) |2 = )−1+> (1)!(i ⊗ i ⊗ Ψ, 1
2 ) (1.3)

for i ∈ F([), ) + �]), where >(1) denotes a quantity tending to zero with ) . In the ‘long family’ case
� = ) , an asymptotic formula for +F ( [) ,2) ]) (Ψ) (confirming a more precise version of (1.2)) follows
from work of P. Zhao [45]. Jung [17] has confirmed the expectation (1.2) for � ≥ )1/3+Y , which appears
to be the limit of current technology. The upper bound

+F ( [) ,) +1]) (Ψ) ≪Y )
1/3+Y (1.4)

obtained from the case � = )1/3+Y′ of (1.2) by positivity likewise appears to be the best to hope for in
the near future. Results concerning holomorphic forms entirely analogous to those quoted above had
been obtained earlier in a series of papers by Luo–Sarnak [21, 22, 23].

1.3. Main result

We pursue here level aspect analogues of the estimate (1.4): instead of working with increasing eigen-
values on a fixed surface, we consider bounded eigenvalues on a tower of congruence covers of the
modular surface. To that end, fix Λ > 1/4. Let ? denote a large prime, regarded as tending to ∞.
Let F(?) denote the set of normalized Hecke–Maass cuspidal newforms i on Γ0(?) whose Laplace
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eigenvalue is at most Λ. One knows that #F(?) ≍ ? (see [16, Section 15.5]), so the trivial estimate is
+F (?) (Ψ) ≪ ?. The triple product formula, as specialized in [25, Section 4], gives the identity

|`i (Ψ) |2 = ?−1+> (1)!(i ⊗ i ⊗ Ψ, 1
2 ), (1.5)

where >(1) denotes a quantity tending to zero with ?. The Lindelöf hypothesis thus suggests that

`i (Ψ) ≪ ?−1/2+> (1) (1.6)

for individual i ∈ F(?), and hence that

+F (?) (Ψ) ≪Y ?
Y . (1.7)

The nontrivial estimate +F (?) (Ψ) ≪ ?/log(?) likely follows, in a more general setting, from the
methods of [19] (generalized to non-compact quotients, and using [33] to verify the hypothesis of
Benjamini–Schramm convergence). We establish the following further strengthening:

Theorem 1. Fix an even Hecke–Maass cusp form Ψ on SL2 (Z) and Λ > 1/4. Let F(?) be as above,
and +F (?) as in (1.1). Then

+F (?) (Ψ) ≪Y ?
1/4+Y . (1.8)

By Chebyshev’s inequality, we deduce the following approximation to (1.6):

Theorem 2. Fix positive reals U, V, for which 2U + V < 3/4. Then

#{i ∈ F(?) : |`i (Ψ) | > ?−U} ≪ ?−V#F(?).

1.4. Conditional sharp bounds

While the Lindelöf-consistent conjecture (1.7) appears to be out of reach, we give a conditional proof
that appears to be the first of its kind. Here and henceforth, let j3 denote the quadratic Dirichlet character
attached to a fundamental discriminant 3.

Theorem 3. Assume that

1. The Lindelöf hypothesis !(Ψ ⊗ j3 , 1
2 ) ≪Y 3

Y holds for the family of quadratic twists of Ψ, and that
2. The Ramanujan conjecture holds for the Hecke eigenvalues of Ψ.

Then (1.7) holds.

1.5. Application to moments of triple product !-functions

Under (1.5), Theorems 1 and 3 translate to moment bounds for the (non-negative) central values of some
triple product !-functions:

Theorem 4. Unconditionally,
∑

i∈F (?)
!(i ⊗ i ⊗ Ψ, 1

2 ) ≪ ?5/4+> (1) . (1.9)

Under the assumptions of Theorem 3,
∑

i∈F (?)
!(i ⊗ i ⊗ Ψ, 1

2 ) ≪ ?1+> (1) . (1.10)
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By comparison, Jung’s estimate (1.4) translates to
∑

i∈F ( [) ,) +1])
!(i ⊗ i ⊗ Ψ, 1

2 ) ≪Y )
4/3+Y . (1.11)

The first moments on the LHS of (1.9) and (1.11) are analogous in that in each, the analytic conductor
(≍ ?4 and ≍ )4) is roughly the fourth power of the family cardinality (≍ ? and ≍ )). We note also that
Iwaniec–Michel [13] established (the analogue for holomorphic forms of) the estimate

∑

i∈F (?)
!(i ⊗ i, 1

2 )
2 ≪ ?1+> (1) , (1.12)

which may be understood as a variant of (1.10), in which Ψ is an Eisenstein series.

Remark 1. A general rule of thumb in the literature on moment bounds for families of !-functions is
that one should be able to establish Lindelöf-consistent bounds when the family size is at least the fourth
root of the analytic conductor. This rule does not seem to apply when one considers ‘sparse’ moments,
such as (1.9); one may understand sparsity here as coming from the coincidence of two of the three
factors in the triple product !-parameter coincide. By comparison, it is not difficult to prove that

∑

i∈F (?)
!(i ⊗ Ψ1 ⊗ Ψ2,

1
2 ) ≪ ?1+> (1)

for fixed Ψ1,Ψ2 (see [9] for exact formulas of a similar spirit).

Remark 2. We were unable to obtain a ‘classical’ proof of (1.9) using the approximate functional
equation and familiar transformations thereafter.

1.6. Application to sparse moments of quadratic twists

The following curious bound is a byproduct of our method:

Theorem 5. For � ≥ 1, one has

∑

=: |= | ≤�?

!(Ψ ⊗ j?=,
1
2 )

(
1 + log

(
�?

|=|

))
≪ �? (1.13)

uniformly in �, ?, where the sum is over integers = for which ?= is a fundamental discriminant. In
particular,

∑

=: |= |<?

!(Ψ ⊗ j?=,
1
2 ) ≪ ?. (1.14)

In fact, the methods of this paper reveal a surprising relationship between the moments
∑

= !(Ψ ⊗
j?=,

1
2 ) (possibly over shorter intervals than those above) and

∑
i∈F (?) !(i⊗i⊗Ψ, 1

2 ). This relationship
demonstrates the difficulty underlying an unconditional proof of (1.7). We refer to Section 2 for a detailed
discussion of this relationship but record here one consequence:

Theorem 6. Assume (1.7), or equivalently, (1.10). Assume also that !(Ψ, 1
2 ) ≠ 0. Then

∑

=: |= |<?

!(Ψ ⊗ j?=,
1
2 )

|=|1/2
≪ ?1/2+> (1) . (1.15)

The Lindelöf hypothesis implies that the conclusion of Theorem 1.15 holds without the assumption
that !(Ψ, 1

2 ) ≠ 0, but this assumption is necessary for our proof. The issue is that if !(Ψ, 1
2 ) = 0, then
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!(i ⊗ i ⊗ Ψ, 1
2 ) = !(ad i ⊗ Ψ, 1

2 )!(Ψ,
1
2 ) = 0, so our hypotheses (1.7) and (1.10) hold trivially; hence

their assumption is not helpful.
We note that the family size in (1.14) is ≍ ?, while the analytic conductor in the largest dyadic range

of the sum is ≍ ?4, so one might expect the difficulty of the moment problem addressed by (1.14) to be
comparable to that for ∑

=: |= |<?

!(Ψ ⊗ j=,
1
2 )

2, (1.16)

∑

=: |= |<?

!(j?=, 1
2 )

2, (1.17)

or ∑

=: |= |<?

!(j=, 1
2 )

4. (1.18)

One may understand (1.17) as the variant of (1.14) obtained by taking for Ψ an Eisenstein series.
Heath–Brown [10] proved an upper bound ?1+> (1) for (1.18), and it seems likely that the same proof
works also for (1.17) and (1.16); a closely related argument appears implicitly in [13]. We note also
that Soundararajan–Young [39] have established an asymptotic formula, conditional on GRH, for a mild
variant of (1.16).

The unconditional estimate (1.14) established here seems beyond the limits the methods indicated in
the preceding paragraph: after applying an approximate functional equation, one faces (smooth) sums
roughly of the shape

( :=
∑

<∼?2 ,=∼?

_(<)j?= (<)√
<

, (1.19)

where _(<) denotes the <th normalized Fourier coefficient of Ψ. To establish (1.14) in this way, one
must show that ( ≪ ?1+> (1) , which seems hopeless.

We note that the proof of (1.14) is specific to the central point B = 1/2, while the proofs indicated
above of analogous estimates for (1.16), (1.17), or (1.18) apply more generally to B = 1/2 + 8C for any
fixed C.

We prove Theorem 5 at the end of Section 4. The proof goes by the connection between the values
!(Ψ⊗ j?=, 1

2 ) and the squared magnitudes |1(?=) |2 of the Fourier coefficients of a half-integral weight
lift of Ψ; what we really show is (for instance)

∑

=: |= |<?

|1(?=) |2 ≪ ?. (1.20)

Such estimates improve in the indicated range on the diagonal case of those of Duke–Iwaniec [8, (4)],
which specialize to (the analogue for holomorphic forms of)

∑

=: |= |<?

|1(?=) |2 ≪ ?3/2+Y . (1.21)

1.7. Method

The basic idea behind the proof is to write

`i (Ψ) = 〈i, �〉 (1.22)

for some automorphic function � and then to estimate the !2-norm 〈�,�〉. The method also applies
to cocompact arithmetic hyperbolic surfaces. A high-level overview is given in Section 2. The overall
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strategy is related to that employed in our work on the quantum variance [27, 29, 30] and subconvexity
[31] problems, and also to recent work of Raphael Steiner [40] on the sup norm problem.

2. Division of the proof

The purpose of this section is to reduce the proof of our main results to that of some independent claims
to be verified in the body of the paper.

2.1. Jacobi theta function

For I = G + 8H ∈ H, set \ (I) := H1/4 ∑
=∈Z 4(=2I), where 4(I) := 42c8I . By considering Fourier

expansions at the cusps of Γ0(4), we obtain the crude upper bound

\ (I) ≪ ht(I)1/4, (2.1)

where ht(I) := maxW∈SL2 (Z) Im (WI).

2.2. Theta multiplier

For W ∈ Γ0(4), set � (W, I) := \ (WI)/\ (I). We recall from [37, Proposition 2.2] that if W =

(
0 1

2 3

)
, then

� (W, I) = Y(W)
√
2I + 3

|2I + 3 |1/2
, Y(W) = Y−1

3

( 2
3

)
. (2.2)

Here we define the square root by
√
I := |I |1/248 arg(I)/2 if I = |I |48 arg(I) with arg(I) ∈ (−c, c], Y3 = 1

or 8 according as 3 ≡ 1 or −1 modulo 4, and
(
2
3

)
as the ‘quadratic residue symbol’ characterized in [37,

page 442].

2.3. Petersson inner product

For a congruence subgroup Γ ≤ Γ0(4) and ^ ∈ Z, we call � : H → C modular of weight ^/2 on Γ if
� (WI) = � (W, I)^� (I) for W ∈ Γ. If �1, �2 are modular of weight ^/2 on Γ, then the function �1�2 is Γ-
invariant; if it induces a function on Γ\H that is integrable with respect to the measure 3`(I) := 3G 3H

H2 ,

then we define the normalized Petersson inner product

〈�1, �2〉 :=
1

[PSL2(Z) : Γ]

∫

I∈Γ\H
�1 (I)�2(I) 3`(I)

and associated norm ‖�‖ := 〈�, �〉1/2; here, Γ ≤ PSL2 (Z) denotes the image of Γ. Note that the
definition of 〈, 〉 is invariant under shrinking Γ.

2.4. The half-integral weight lift and its Fourier expansion

We recall in Section 3.3.2 the construction via theta lifting of a Maass/inverse-Shimura/Shintani lift ℎ
of Ψ. It is nonzero precisely when !(Ψ, 1

2 ) ≠ 0. It is modular of weight 1/2 on Γ0(4) and belongs to an
analogue of the Kohnen plus space. It admits a Fourier expansion

ℎ(I) =
∑

=∈Z≠0

1(=)
|=|1/2

, (=H)4(=G)
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where , is a Whittaker function (see Section 3.3.3) and 1(=) = 0 unless = ≡ 0, 1 (4). When 3 is a
fundamental discriminant, we have by [7, (5.17)]

|1(3) |2 = 2!(Ψ ⊗ j3 ,
1
2 ). (2.3)

Here 2 depends only upon Ψ, and 2 ≠ 0 whenever ℎ ≠ 0. More generally, any = ≡ 0, 1 (4) may be
written uniquely as = = 3X2, where 3 is a fundamental discriminant and X is a natural number; we may
then deduce via the Shimura relation the estimate (see [20, Proposition 6.1])

|1(=) | ≪Y |1(3) |Xo+Y ,

where o ∈ [0, 7/64] quantifies the known bounds towards the Ramanujan conjecture for the Hecke
eigenvalues of Ψ. Conrey–Iwaniec [5] have shown that !(Ψ ⊗ j3 ,

1
2 ) ≪Y 3

1/3+Y . Since o ≤ 1/3, it
follows in general that

|1(=) |2 ≪Y |=|1/3+Y . (2.4)

On the other hand, it is expected (by the Lindelöf hypothesis for !(Ψ ⊗ j3 ,
1
2 ) and the Ramanujan

conjecture for Ψ) that

|1(=) |2 ≪Y |=|Y . (2.5)

2.5. Application of an incomplete Hecke operator

We denote by ℎ♯ the (normalized) application to ℎ of a variant of the classical ‘*?’ operator:

ℎ♯ (I) :=
1

?1/2

∑

9∈Z/?Z
ℎ

(
I + ? 9
?2

)
=

∑

=∈Z≠0

1(?=)
|=|1/2

,

(
=H

?

)
4

(
=G

?

)
. (2.6)

We record in Section 3.4.5 the level of ℎ♯. We show in Section 4 that

〈ℎ♯, ℎ♯〉 = 〈ℎ, ℎ〉, (2.7)

which reflects a special feature of 1/2-integral weight forms.

2.6. Properties of the varying forms

We assume that each i ∈ F(?) is arithmetically normalized, so that

i(I) =
∑

=∈Z≠0

_i (|=|)
|=|1/2

,i (=H)4(=G),

where _i (1) = 1 and,i (H) = 2H1/2 8Ci (2cH) for H > 0, where 1/4 + C2i is the Laplace eigenvalue of
i. Each i ∈ F(?) is an eigenfunction of the Atkin–Lehner/Fricke involution with eigenvalue ±1; that
is to say, i(−1/(?I)) = ±i(I), or equivalently,

i(−1/I) = ±i(I/?), (2.8)

and it is known [11] that

?−Y ≪Y 〈i, i〉 ≪Y ?
Y . (2.9)
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2.7. An explicit seesaw identity

We show in Section 5 that for i ∈ F(?),

`i (Ψ) = ±4〈i( 4I
? )o(I), ℎ

♯ (I)〉, (2.10)

where ± is as in (2.8). Here we abuse notation mildly by writing simply (for example) i( 4I
? ) for the

function I ↦→ i( 4I
? ). A notable feature of the RHS of (2.10) is that it depends linearly upon i.

Remark. Related identities involving forms of level 1 have been given by Biro [2]; the proof given here
is different and applies more generally (for example, also to compact arithmetic quotients Γ\H). See
also Ichino [12, Section 11]. Similar identities are also implicit in our work [27, 29, 30] on the quantum
variance problem.

2.8. Reduction to period bounds

By (2.9), (2.10) and Bessel’s inequality, we have

∑

i∈F (?)
|`i (Ψ) |2 = 16

∑

i∈F (?)

|〈i( 4I
? ), \ (I)ℎ♯ (I)〉|2

〈i, i〉 ≪ ?> (1) 〈\ℎ♯, \ℎ♯〉, (2.11)

so the proof of Theorem 1 reduces to that of the estimate

‖\ℎ♯‖2 ≪ ?1/4+> (1) . (2.12)

Remark. This part of the argument is reminiscent of arguments in [3, 34, 1] and (implicitly) in [42, 24],
among other places. A more general (but less elementary) approach to identities like (2.11) is given in
[31], following [32].

2.9. The basic inequality

We show in Section 6 that for any ) ≥ 1,

‖\ℎ♯‖2 ≪ )1/2 + ?−1/2', (2.13)

where

' :=
∑

=

|1(?=) |2
|=|1/2

(
1 + |=|

?/)

)−100

.

This is a key step in the argument, so we sketch here the basic idea behind the proof. We estimate
separately the contributions to ‖\ℎ♯‖2 from the ranges {I : ht(I) ≤ )} and {I : ht(I) > )}, where ht is
as in Section 2.1. In both ranges, we apply the pointwise bound (2.1) for \. For the range where ht(I) ≤ ) ,
we apply the !2-bound (2.7) for ℎ♯ to obtain the estimate ≪ )1/2. For the range where ht(I) > ) , we
apply Parseval to the Fourier expansion of ℎ♯ and appeal to the rapid decay of the Whittaker function
, to establish estimates such as

1

?

∫ ∞

H=)
H1/2

∫ ?

G=0
|ℎ♯ (G + 8H) |2 3G 3H

H2
≪ ?−1/2'. (2.14)

Remark. It would be possible to refine the present analysis by employing the spectral expansion of |\ |2
as in [28] in place of the upper bound (2.1), but doing so does not seem to lead to stronger unconditional
results.
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2.10. Completion of the proof

By taking ) = ?1/2 in (2.13) and appealing to the Conrey–Iwaniec bound (2.4), we readily obtain (2.12),
hence Theorem 1. For the proof of Theorem 3, we note that its hypotheses imply (2.5), which gives the
required bound upon taking ) = 1 in (2.13).

The proof of Theorem 6 is recorded in Section 7.

Remark 1. Taking ) = ?1+Y in (2.13) and appealing to any convexity bound of the form 1(?=) ≪
(?=)$ (1) already gives the nontrivial estimate

∑
i∈F (?) |`i (Ψ) |2 ≪ ?1/2+> (1) .

Remark 2. It is natural to ask the questions:

1. Is the Conrey–Iwanec bound an essential input to the method?
2. Can one do better by exploiting the average over = in '?

To address these, let '♭ denote the subsum over ' obtained by restricting to summation indices = for
which ?= is a fundamental discriminant. Then

'♭
= 2

∑

=:
?= is fundamental

!(Ψ ⊗ j?=,
1
2 )

|=|1/2

(
1 + |=|

?/)

)−100

for some 2 depending only upon Ψ. It seems likely that

1. One can show directly using an approximate functional equation [16, Section 5.2] and Heath–Brown’s
large sieve for quadratic characters [10] that for 1 ≤ ) ≤ ?, one has '♭ ≪ )−1/2?1+> (1) , and that

2. one can establish the same bound for ' by using the Rankin–Selberg upper bound
∑

=≤G |_Ψ (=) |2 ≪ G

to control the contribution from non-fundamental discriminants.

If so, then by taking ) = ?1/2, one obtains a proof of Theorem 1 that does not rely upon the Conrey–
Iwaniec bound. Conversely, we do not know how to do better by exploiting the average over = in '.

3. Preliminaries

3.1. Generalities

3.1.1.

Let �,� be coprime natural numbers. Set

Γ0(�/�) :=

{(
0 1

2 3

)
∈ SL2 (Z) : � | 1, � | 2

}
.

When � = 1, this is the standard definition of Γ0(�) = Γ0(�/1). In general, Γ0(�/�) is a congruence
subgroup of SL2(Z) that is conjugate to Γ0(��).

As motivation for the notation, note that if � : H → C is SL2(Z)-invariant, then the function
I ↦→ � (I�/�) is Γ0(�/�)-invariant.

3.1.2.

Let ' := "2 (Z) denote the ring of 2× 2 integral matrices. Set ( := Z + 2'. We use a superscripted 0 to
denote ‘traceless’ elements, so that, for instance,

"2 (R)0
=

{(
0 1

2 −0

)
: 0, 1, 2 ∈ R

}
,

(0
=

{(
0 21
22 −0

)
: 0, 1, 2 ∈ Z

}
.
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Note that

( = Z ⊕ (0 (3.1)

3.1.3.

For natural numbers �,�, set

'(�/�) :=

{(
0 1

2 3

)
∈ "2 (Q) : 0, 3 ∈ Z; 1 ∈ �−1Z, 2 ∈ �Z

}
.

It is a lattice in "2 (Q). We abbreviate '(�/1) := '(�). We note that '(�/�) is not directly related to
Γ0(�/�) except when � = 1, in which case Γ0(�) = SL2(Z) ∩ '(�). The significance of the notation
is that '(�/�) and '(�/�) are dual lattices with respect to the quadratic form on "2 (Q) defined by
the determinant.

When �,� are odd, we set ((�/�) := ( ∩ '(�/�) = Z + 2'(�/�) and (0(�/�) := (0 ∩ ((�/�).

3.1.4.

For F = D + 8E ∈ H, define fF ∈ SL2 (R) by the formula

fF :=

(
E1/2 DE−1/2

E−1/2

)
,

so that fF 8 = F.

3.2. Theta kernels

We recall the definitions and basic properties of some theta kernels. We refer to [38], [43, Section 2],
and [26, Appendix B] for details.

In what follows, take F, F1, F2, I = G + 8H ∈ H.

3.2.1.

Define % : "2 (R) → R by

%

((
0 1

2 3

))
:=
02 + 12 + 22 + 32

2
,

q0
F,I : "2 (R)0 → C by

q0
F,I (U) :=

1

2c
H3/4 exp(−2cH%(f−1

F UfF ))4(G det(U)),

and qF1 ,F2 ,I : "2 (R) → C by

qF1 ,F2 ,I (U) :=
1

2c
H exp(−2cH%(f−1

F1
UfF2))4(G det(U)).

Note that for U = < + V with < ∈ R, V ∈ "2 (R)0,

qF,F,I (U) = H1/44(<2I)q0
F,I (V). (3.2)

3.2.2.

Set

\ (F, I) :=
∑

U∈(0

q0
F,I (U).

Then \ defines a theta kernel (à la Maass–Shintani–Waldspurger), of weight −1/2 on Γ0(4) in the
variable F and of weight 0 on SL2(Z) in the variable I (see also [38], [18, Section 2]).
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3.2.3.

For a lattice ! ⊆ "2 (Q), set

\ (!;F1, F2, I) :=
∑

U∈!
qF1 ,F2 ,I (U).

This defines a modular function of weight 0 in each variable with respect to suitable congruence
subgroups (see [38]).

3.2.4.

The lattice '(?) has discriminant ?2 and dual '(1/?). The quadratic form ('(?), det) has signature
(2, 2). Thus (see [38])

\ ('(?);F1, F2,−1/I) = ?−1\ ('(1/?);F1, F2, I). (3.3)

3.3. Ternary theta lifts

3.3.1.

We assume that Ψ : SL2 (Z)\H→ C is arithmetically normalized, so that its Fourier expansion reads

Ψ(F) =
∑

=∈Z≠0

_Ψ (=)
|=|1/2

,Ψ (=H)4(=G)

where _Ψ (=) = _Ψ (|=|) satisfies _Ψ (1) = 1 and so that the Ramanujan conjecture reads |_Ψ (=) | ≤∑
3 |= 1, while,Ψ (H) = 2|H |1/2 8CΨ (2c |H |), with 1/4 + C2

Ψ
the Laplace eigenvalue of Ψ.

3.3.2.

Define ℎ : H→ C by requiring that

ℎ(I) :=

∫

F ∈SL2 (Z)\H
\ (F, I)Ψ(F) 3`(F).

Then ℎ is a constant multiple of the form constructed in [18, Proposition 2.3] and has the properties
indicated in Section 2.4 (compare with [7, Section 5] and [20, Section 6]).

3.3.3.

The Whittaker function, of ℎ is given by, (H) = ,sgn(H)/4,8CΨ/2(4c |H |). Since Ψ is non-constant, we
have CΨ ∈ R or 8CΨ ∈ (−1/2, 0) ∪ (0, 1/2). (The second possibility does not actually occur, thanks to the
known Selberg eigenvalue conjecture for PGL2 (Z), but we do not need to exclude it.) We require the
estimate (see [41, Section 7.3], [18, (0.11)], [6, 13.14.21])

, (H) ≪ min(|H |1/2−o/2, |H |1/44−2c |H |). (3.4)

Here the implied constant and o ∈ (|Im (Ck) |, 1/2) depend upon CΨ, which is fixed for us. In particular,
, (H) ≪ |H |1/4+X for some fixed X > 0.

3.3.4.

A set of inequivalent cusps for Γ0(4) is given by {∞, 0, 1/2}. It is shown in [20, Section 11] that

4c8/4(I/|I |)−1/2ℎ(−1/4I) =
√

2
∑

=≡0(4)

1(=)
|=|1/2

,
(=H

4

)
4
(=G

4

)
(3.5)
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and

4c8/4(I/|I |)−1/2ℎ

(
1

2
− 1

4I

)
=
√

2
∑

=≡1(4)

1(=)
|=|1/2

,
(=H

4

)
4
(=G

4

)
. (3.6)

Thus the expansion of ℎ at any cusp of Γ0(4) is obtained from that at the cusp∞, essentially by restricting
the summation index to some congruence class modulo 4. (Strictly speaking, since ℎ has half-integral
weight, ‘the’ expansion of ℎ at a cusp depends upon the choice of matrix to represent the cusp. We hope
this abuse of terminology introduces no confusion.)

For ℓ = 1, 2, set

ℎℓ (I) :=

(
ℓI + 1

|ℓI + 1|

)−1/2
ℎ

((
1
ℓ 1

)
I

)
.

Using the readily verified identities

ℎ

((
1
1 1

)
I

)
= ℎ

(
−1

I + 1

)
, ℎ

((
1
2 1

)
I

)
= ℎ

(
1

2
− 1/2

2I + 1

)
,

we may read off the Fourier expansions of ℎ1 and ℎ2 at the cusp ∞ from (3.5) and (3.6).

3.4. Cusps of Γ0(4/?)

For general background on cusps and fundamental domains, we refer to [36, 14, 15].

3.4.1.

For the remainder of Section 3.4, we set Γ := Γ0(4/?). We note that −1 ∈ Γ.

3.4.2.

SetΔ :=

{
±
(
1 =

1

)
: = ∈ Z

}
≤ SL2(Z). Then any setC := {W1, . . . , W6} ⊆ SL2 (Z) consisting of elements

of the form

W1 :=

(
1

1

)
, W2 :=

(
1
2 1

)
, W3 :=

(
1
1 1

)
,

W4 :=

(
? ∗
4 ∗

)
, W5 :=

(
? ∗
2 ∗

)
, W6 :=

(
? ∗
1 ∗

)

gives representatives for the double coset space Γ\SL2 (Z)/Δ , and {W 9∞ : 9 = 1, . . . , 6} =

{∞, 1/2, 1, ?/4, ?/2, ?} is a maximal set of inequivalent cusps for Γ\H.

3.4.3.

For W ∈ SL2(Z), the width of the cusp W∞ for Γ\H is the cardinality F(W) of the preimage in Γ\SL2(Z)
of ΓWΔ . We have

F(W 9 ) = ?, ?, 4?, 1, 1, 4 for 9 = 1, . . . , 6, respectively.

3.4.4.

Recall that ht : Γ\H→ C is defined by ht(I) := maxW∈SL2 (Z) Im (WI). By tiling Γ\H by translates of the

standard fundamental domain for SL2 (Z), we see that ht(I) ≥
√

3/2 for all I. Moreover, for any ) > 1,
the union

∪W∈C {W(G + 8H) : 0 ≤ G ≤ F(W), H ≥ )} (3.7)
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is essentially disjoint and gives a fundamental domain for {I ∈ Γ\H : ht(I) ≥ )}. Finally, for given
H0 ∈ (0, 1), the fibers of the natural map

{G + 8H : 0 ≤ G ≤ ?, H ≥ H0} → Γ\H

have cardinality $ (1/H0), uniformly in ? [15, Lemma 2.10].

3.4.5.

Using [37, Propositions 1.3, 1.5] (or, more precisely, their analogue for Maass forms), we verify that
ℎ♯ is modular (of weight 1/2) on Γ. Using §3.3.4, we see that the Fourier expansion of ℎ♯ at the cusps
1/2, 1 of Γ is obtained from its expansion (2.6) at ∞, essentially by restricting the summation index to

a congruence class modulo 4. More precisely, for ℓ = 1, 2, define ℎ♯
ℓ

in terms of ℎℓ analogously to how

ℎ♯ was defined in terms of ℎ.

Lemma 1. We have
(
ℓI + 1

|ℓI + 1|

)−1/2
ℎ♯

((
1
ℓ 1

)
I

)
= ℎ

♯
ℓ
(I). (3.8)

Proof. Set F :=

(
1
ℓ 1

)
I. It suffices to show for each 9 ∈ Z/?Z that

(
ℓI + 1

|ℓI + 1|

)−1/2
ℎ

(
F + ? 9
?2

)
= ℎℓ

(
I + ? 9
?2

)
.

We may assume that 9 is represented by a negative integer divisible by 4. The conclusion follows then in a
straightforward manner from the second assertion of [37, Lemma 3.4] with # := 4, " := 1,  := 4, and

(
0 1

2 3

)
:=

(
?−1 9

?

) (
1
ℓ 1

) (
?−1 9

?

)−1

=

(
1 + 9 ?ℓ − 92ℓ
?2ℓ 1 − 9 ?ℓ

)
.

�

3.5. Explicit Shimizu lifts

We make use of the following explicit form of the Shimizu correspondence.

Lemma 2. Let i ∈ F(?). Then for F1, F2, I ∈ H,

i(F1)i(F2) =
∫

I∈Γ0 (?)\H
\ ('(?);F1, F2, I)i(I) 3`(I). (3.9)

Proof. [26, Theorem 5.2] implies an analogous assertion for holomorphic forms. Running through the
proof of that theorem with ‘: := 0’, we obtain the identity stated here. �

4. The !2-norm of ℎ♯

In this section, we establish (2.7). We open 〈ℎ♯, ℎ♯〉 as a double sum over 91, 92. The diagonal 91 = 92
contributes 〈ℎ, ℎ〉; our task is thus to show that

∑

91 , 92∈Z/?:
91≠ 92

〈
ℎ

(
I + ? 91
?2

)
, ℎ

(
I + ? 92
?2

)〉
= 0, (4.1)
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where here and henceforth we mildly abuse notation by writing (for example) ℎ
(
I+? 98
?2

)
for the function

I ↦→ ℎ
(
I+? 98
?2

)
. By a simple change of variables, our task (4.1) reduces to verifying that

?−1∑

9=1

〈ℎ(I), ℎ(I + 9/?)〉 = 0. (4.2)

To that end, temporarily fix 9 ∈ {1, . . . , ? − 1}. Choose W =

(
0 ∗
?2 3

)
∈ Γ0(4) with 2 9 ≡ −1 (?),

2 > 0 and 3 ≡ 1 (4?), so that also 0 ≡ 1 (4?). Set

=( 9/?) :=

(
1 9/?

1

)
, C (?−1) :=

(
?−1

?

)

and X := =( 9/?)WC (?−1). By direct calculation, we see that X belongs to Γ0 (4) and has the form

(
∗ ∗
2 ?3

)
.

By the invariance of the Petersson inner product and the modularity of ℎ, we deduce that

〈ℎ(I), ℎ(I + 9/?)〉 = 〈ℎ(I), ℎ(=( 9/?)I)〉
= 〈ℎ(WI), ℎ(=( 9/?)WI)〉
= 〈ℎ(WI), ℎ(X?2I)〉
= [( 9)〈ℎ(I), ℎ(?2I)〉

where

[( 9) : = exp( 82 (arg(?2I + 3) − arg(2?2I + ?3)
︸                                   ︷︷                                   ︸

=0

))Y(W)Y(X)

= Y−1
3 Y?3

( ?2
3

) ( 2
?3

)
= Y?

(
− 9
?

)
.

In the final step, we invoked our assumptions on 2, 3 and the rules of [37, page 442]. Thus (Z/?Z)× ∋
9 ↦→ [( 9) defines a constant multiple of the nontrivial quadratic character, and hence its sum over
9 = 1, . . . , ? − 1 vanishes. This completes the proof of (4.2) and hence of (4.1), and hence of (2.7).

Remark. The ‘trivial bound’ for 〈ℎ♯, ℎ♯〉, ignoring the cancellation derived above from the oscillation
of the half-integral weight automorphy factor, is $ (?o).

To illustrate the surprising power of (2.7), we now prove Theorem 5. Define +0 : R>0 → R≥0 by

+0(D) :=

∫ ∞

H=D
|, (H) |2 3H

H2
.

By the asymptotic expansion of, near 0, there is D0 ∈ (0, 1/4) so that +0(D) ≍ log(1/D) for |D | < D0.
Let� ≥ 1. By (2.7), the final assertion of Section 3.4.4, Parseval, and the change of variables H ↦→ ?H/=,
we obtain

1 ≫ ‖ℎ♯‖2

≫ 1

�?

∫ ?

G=0

∫ ∞

H=D0/�
|ℎ♯ (G + 8H) |2 3G 3H

H2
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=
1

�

∑

=

|1(?=) |2
|=|

∫ ∞

H=D0/�

����,
(
=H

?

)����
2
3H

H2

=
1

�?

∑

=

|1(?=) |2+0

(
D0

=

�?

)

≫ 1

�?

∑

=: |= | ≤�?

|1(?=) |2 log

(
D−1

0

�?

=

)

≥ 1

�?

∑

=: |= | ≤�?

|1(?=) |2
(
1 + log

(
�?

=

))
.

We conclude by the !-value formula (2.3) for |1(3) |2.

5. A triple product identity

In this section, we prove (2.10) after developing some preliminaries.

5.1. Linear algebra lemma

In this subsection, we employ the temporary notation� := SL2 (F?), " = "2 (F?). The group� acts on

the F?-vector space " by conjugation. Let ! :=

{(
0 ∗
0 0

)}
denote the strictly upper-triangular subspace

of " . Let � denote the upper-triangular subgroup of �. Intrinsically, � is the normalizer in � of !. We
note, for future reference, that �, �, and ! are the images under reduction modulo ? of SL2(Z), Γ0(?),
and ?((1/?), respectively. We require the following calculation:

Lemma 3. For G ∈ " , we have

#{6 ∈ �/� : G ∈ 6!6−1} =




? + 1 if G = 0,

1 if G ≠ 0, tr(G) = det(G) = 0

0 otherwise.

(5.1)

Proof. Let 41 =

(
1
0

)
and 42 =

(
0
1

)
denote the standard basis elements for the two-dimensional F?-vector

space F2
? . The subspace ! of " consists of those nilpotent elements G ∈ " that annihilate the line

ℓ := F?41 spanned by 41. The conjugate subspace 6!6−1 thus consists of the nilpotent elements of "
that annihilate the translated line 6ℓ. As 6 traverses �/�, the translated line 6ℓ traverses the set of all
lines in F2

? . Thus the LHS of (5.1) vanishes unless G is nilpotent, in which case it is the number of lines
that G annihilates.

In verifying (5.1), we may and shall assume that G is nilpotent, since otherwise both sides vanish.
The claimed identity is then an immediate consequence of the following observations:

• The zero element annihilates all ? + 1 lines in F2
? .

• Any nilpotent element has a nontrivial kernel and hence annihilates some line.
• No nonzero nilpotent element annihilates two distinct lines.

�
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5.2. Pushforward of the theta kernel

For F, I ∈ H, set

\♯ (F, I) :=
∑

W∈Γ0 (?)\ SL2 (Z)
\ (((1/?), WF, WF, I).

Lemma 4. We have \♯ (F, I) = ?\ (I)
(

1
?1/2

∑
9∈Z/?Z \ (F,

I+? 9

?2 ) + \ (F, I)
)
.

Proof. Abbreviate q := qF,F,I , q
0 := q0

F,I . By definition,

\♯ (F, I) =
∑

W∈Γ0 (?)\ SL2 (Z)

∑

U∈W−1( (1/?)W
q(U), \ (F, I) =

∑

V∈(0

q0(V).

For each W ∈ SL2 (Z), we have ( ⊆ W−1((1/?)W ⊆ ?−1(. Conversely, let U ∈ ?−1(. By applying
the lemma of Section 5.1 to the image of ?U under reduction modulo ?, we see that U belongs to
W−1((1/?)W for some W ∈ SL2 (Z) if and only if trace(U) ∈ Z and det(U) ∈ ?−1Z, and in that case,

#{W ∈ Γ0(?)\SL2(Z) : U ∈ W−1((1/?)W} =
{

1 if U ∉ (,

? + 1 if U ∈ (.

Thus

\♯ (F, I) =
∑

U∈?−1(:
tr(U) ∈Z,

det(U) ∈?−1Z

q(U) + ?
∑

U∈(
q(U).

Using the decomposition (3.1) and the identity (3.2), we obtain
∑

U∈(
q(U) =

∑

<∈Z,V∈(0

H1/44(<2I)q0(V) = \ (I)\ (F, I),

∑

U∈?−1(:
tr(U) ∈Z,

det(U) ∈?−1Z

q(U) = \ (I)
∑

V∈?−1(0:
det(V) ∈?−1Z

q0(V),

∑

V∈?−1(0:
det(V) ∈?−1Z

q0(V) =
∑

V∈(0:
det(V) ∈?Z

q0(?−1V) = ?1/2
∑

9∈Z/?Z
\ (F, I + ? 9

?2
).

These identities combine to yield the required identity. �

5.3. Period identities

We now prove (2.10). Note first that we may explicitly pushforward the !2-mass of i down to SL2 (Z)\H
before we integrate it against Ψ:

〈Ψi, i〉 = 1

? + 1

∫

F ∈SL2 (Z)\H
Ψ(F)

∑

W∈Γ0 (?)\ SL2 (Z)
|i|2 (WF) 3`(F). (5.2)

This identity motivates finding a formula for the inner sum over W. To that end, we begin by applying the
substitution I ↦→ −1/I to the integral representation for i(F1)i(F2) given by the lemma of Section 3.5.
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Using the formulas (2.8) and (3.3) describing the behavior of the integrand under I ↦→ −1/I, we obtain

i(F1)i(F2) =
±1

?

∫

I∈Γ0 (1/?)\H
\ ('(1/?);F1, F2, I)i( I

? ) 3`(I). (5.3)

Next, we observe that '(1/?) = {U/2 : U ∈ ((1/?), nr(U) ≡ 0 (4)}. From this, the identity

qF1 ,F2 , (I+? 9)/4(U) = (1/4)4(? 9 det(U)/4)qF1 ,F2 ,I (U/2),

and finite Fourier inversion, we deduce that

\ ('(1/?);F1, F2, I) =
∑

9∈Z/4Z
\ (((1/?);F1, F2,

I+? 9
4 ). (5.4)

We choose a congruence subgroup Γ of Γ0(1/?) that contains {±1} but is otherwise small enough that
each integral displayed below is well-defined. Since i( I−? 9

? ) = i( I
? ), the substitution I ↦→ I − ? 9

followed by I ↦→ 4I gives

∫

I∈Γ\H
\ (((1/?);F1, F2,

I+? 9
4 )i( I

? ) 3`(I)

=

∫

I∈Γ\H
\ (((1/?);F1, F2,

I
4 )i(

I
? ) 3`(I)

=

∫

I∈Γ\H
\ (((1/?);F1, F2, I)i( 4I

? ) 3`(I)

We introduce the shorthandEI∈Γ\H(· · · ) for [SL2 (Z) : Γ]−1
∫
I∈Γ\H (· · · ). Using the above computations,

the identity [(!2 (Z) : Γ0(1/?)] = ? + 1, and the formula (5.3), we deduce that

i(F1)i(F2) =
±4(? + 1)

?
EI∈Γ\H\ (((1/?);F1, F2, I)i( 4I

? ) 3`(I). (5.5)

Setting F1 = F2 =: F in (5.5) gives

∑

W∈Γ0 (?)\ SL2 (Z)
|i|2 (WF) = ±4(? + 1)

?
EI∈Γ\H\

♯ (F, I)i( 4I
? ) 3`(I).

Applying the lemma of Section 5.2, we obtain

∑

W∈Γ0 (?)\ SL2 (Z)
|i|2 (WF) = ±4(? + 1)EI∈Γ\H\ (I)

1

?1/2

∑

9∈Z/?Z
\ (F, I+? 9

?2 )i( 4I
? ) 3`(I). (5.6)

(We have used here that \ (I)\ (F, I) is old at ? and i is new at ? to discard the contribution of the
second term in the lemma of Section 5.2.) We note that

∫

F ∈SL2 (Z)\H
Ψ(F) 1

?1/2

∑

9∈Z/?Z
\ (F, I+? 9

?2 ) 3`(F) = ℎ♯ (F). (5.7)

Combining (5.2) and (5.7) with (5.6) integrated over F against Ψ(F) gives

〈Ψi, i〉 = ±4EI∈Γ\H\ (I)ℎ♯ (I)i( 4I
? ) 3`(I) = ±4〈\ (I)i( 4I

? ), ℎ
♯ (I)〉,

as required.
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6. The basic inequality

We now prove (2.13). Set Γ := Γ0(4/?). Define � : Γ\H→ R≥0 by � (I) := ht(I)1/2 |ℎ♯ (I) |2. By (2.1)
and the estimate [SL2(Z) : Γ] ≍ ?, our task (2.13) reduces to showing for ) ≥ 1 that

∫

Γ\H
� :=

∫

I∈Γ\H
� (I) 3`(I) ≪ ?)1/2 + ?1/2', (6.1)

where ' is as in Section 2.9 and the implied constant is uniform in ?, ) . Using the fundamental domain
from Section 3.4.4, we may write

∫
Γ\H � = �0 +

∑
W∈C � (W), where

�0 :=

∫

I∈Γ\H:ht(I) ≤)
� (I) 3`(I) =

∫

I∈Γ\H:
ht(I) ≤)

ht(I)1/2 |ℎ♯ (I) |2 3`(I),

� (W) : =

∫ ∞

H=)

∫ F (W)

G=0
� (W(G + 8H)) 3G 3H

H2

=

∫ ∞

H=)
H1/2

∫ F (W)

G=0
|ℎ♯ (W(G + 8H)) |2 3G 3H

H2
.

The adequate estimate �0 ≪ ?)1/2 follows as indicated in Section 2.9 from the estimate ‖ℎ♯‖2 =

‖ℎ‖2 ≪ 1.
It remains to estimate � (W8) for 8 = 1, . . . , 6. We start with the most important case 8 = 1. Substituting

the formula (2.6) for ℎ♯ and appealing to Parseval followed by the substitution H ↦→ ?H/=, we obtain

� (W1) = ?
∫ ∞

H=)
H1/2

∑

=

|1(?=) |2
|=|

����,
(
=

?
H

)����
2
3G 3H

H2
(6.2)

= ?1/2
∑

=

|1(?=) |2
|=|1/2

+

(
=

?/)

)
, + (D) :=

∫ ∞

H=D
H1/2 |, (H) |2 3H

H2
. (6.3)

The estimate (3.4) for , implies that + (D) ≪ min(1, |D |−100), which leads to the adequate estimate
� (W1) ≪ ?1/2'.

Using Section 3.4.5, we may similarly estimate � (W2), � (W3).
Since F(W8) ≤ 4 = $ (1) for 8 = 4, 5, 6, the ‘trivial bound’ � (W8) ≪ F(W8)‖ℎ♯‖2

∞ ≪ ?F(W8) suffices
for our purposes.

7. A converse estimate

We finally prove Theorem 6. The non-constant Fourier components of \ decay rapidly near the cusp, so
we may find some fixed H0 ≥ 1 so that

\ (I) ≫ H1/4 if H = Im (I) ≥ H0. (7.1)

Assuming (1.7) or (1.10), and arguing as in Section 6, we derive the lower bound

?1+> (1) ≫ ?‖\ℎ♯‖2 ≫
∫ ∞

H=H0

H1/2
∫ ?

G=0
|ℎ♯ (W(G + 8H)) |2 3G 3H

H2
(7.2)

= ?1/2
∑

=

|1(?=) |2
|=|1/2

+ (H0=/?), (7.3)
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with+ as defined in (6.3). Assuming that !(Ψ, 1
2 ) ≠ 0, the form ℎ is nonzero, and its Whittaker function

, is not identically zero on any interval. In particular, + (D) ≫ 1 for D ≤ H0. The required estimate
(1.15) follows.

Acknowledgements. We gratefully acknowledge the support of NSF grant OISE-1064866 and SNF grant SNF-137488 during
the work leading to this paper. Most of this article was written while the author was in residence at the Mathematical Sciences
Research Institute in Berkeley, California, during the Spring 2017 semester, supported by the National Science Foundation under
Grant No. DMS-1440140. We would like to thank the anonymous referee for helpful feedback and corrections, and Valentin
Blomer, Philippe Michel, Etienne Le Masson, Maksym Radziwill, K. Soundararajan, Raphael Steiner, and Matthew Young for
helpful feedback and encouragement.

Conflict of Interest: None.

References

[1] Joseph Bernstein and Andre Reznikov, ‘Subconvexity bounds for triple !-functions and representation theory’, Ann. of
Math. (2) 172(3): 1679–1718, 2010.

[2] András Biró, ‘A relation between triple products of weight 0 and weight 1
2 cusp forms’, Israel J. Math. 182: 61–101, 2011.

[3] Valentin Blomer, ‘Period integrals and Rankin-Selberg !-functions on GL(=)’, Geom. Funct. Anal. 22(3): 608–620, 2012.
[4] Y. Colin de Verdière, ‘Ergodicité et fonctions propres du laplacien’, In Bony-Sjöstrand-Meyer seminar, 1984–1985, pages

Exp. No. 13, 8 ( École Polytech., Palaiseau, 1985).
[5] J. B. Conrey and H. Iwaniec, ‘The cubic moment of central values of automorphic !-functions’, Ann. of Math. (2) 151(3):

1175–1216, 2000.
[6] NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/, Release 1.0.26 of 2020-03-15, F. W. J. Olver, A. B.

Olde Daalhuis D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M.
A. McClain, eds.
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