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§ 1. Introduction

Let k be an algebraic number field of degree n = n + 2 r2 with n real conju-

gates k{l) ( 1 ^ / ^ n ) and n pairs of complex conjugates k{m\ k{m+r2) (n + l^m

^rι + r2). Let o be the integral domain consisting of all integers in k. We

introduce a generalized module \ composed of an ordinal integral ideal ί in k

and an infinite part f» which is a product of some infinite prime spots p{l\ say,

* ) . (l)

For a<=k, the (multiplicative) congruence

aτΞ=l (mod f) (2)

means that a = 1 (mod f) and # is fco-positive namely α{1) > 0, α:(2) > 0, . . . ,

a{q) > 0. Let A be the multiplicative group constituted by ideals in k prime to

f and S be the group of principal ideals generated by <x satisfying (2). From

an abelian character of the group A/S, we can define a character X mod ] in

a similar way as in the rational case. Let 5 be a divisor of f. We say that X

is also defined by Q, whenever the assumption a=l (mod δ), (or, j) = o, entails

the conclusion YΛa) =1. There exists the minimal (with respect to the number

of prime factors) generalized module which defines X. This is called the con-

ductor of Z. If the conductor of X mod f is f itself, then X is called a primitive

character mod f.

From now on let X be a primitive character mod f. Let b be the ramifi-

cation ideal (different) of k. Let $ be an absolute ideal class of k. We denote

by § the ideal class .ίΓ1^* where β* is an absolute ideal class containing bf.

Let s = <7 + it be a complex variable. Let L(s, $, X) and L(s, Z) be respectively

the functions defined by
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12 TIKAO TATUZΛWA

Σ Y.(a)/N(aY, Σ

for a > 1, the summation running over all non-zero integral ideals in $ and in

k respectively. Similarly we define that

»)= Σ 1/Mα)s, C*(s)= Σ 1/Mα)s

for a > 1. We put

where d = Nib) is the discriminant of k. For convenience, we put

_ / l l^P^Q
P lθ q + l^p^n,

where q has the same meaning as in (1). Further we define that

ί
° ° Λ n n j _ j . . . / I M

• * A exp ( - Σ zp) Π 2/,(s G p ) / -—— -2 —JL-L

Q J p = i p = i Z\Z% Zr+i

for ί7 > 0, where n 4- r2 = r + 1 and

We shall know in §3 that

Now we put

0(s, Z) = (2/4--A(Z)s/2Γ(s, Z)L(s, X).
S d

This function is regular for all 5 with one exception 5 = 1 (simple pole) in the

case of the Dedekind zeta-function Ck(s) (f = o, X principal), moreover it satisfies

the functional equation

φ(Sf X)=I{X)φ(l-s, X) (5)

v/here I(X) will be defined in §2.

For an integral ideal a we define that

Πs, X, a) = f fexpί - ±zp)ήzp{s+ap)/2^Zi^z^~dz^
J J P = I p=i Z\Zi ' ' ' Zr+i

zp>0, Hzp^N(a)2/A(X) (β)
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for a > 0 with (3). As we shall prove later, (6) and the series

φ(s, X) = - ( 4 ή — Λ(X)sl2 Σ XMΓ(s, X, α)/Mα)s (7)
V d α,α#o

(the summation runs over all non-zero integral ideals in k) are absolutely con-

vergent for all s and represent integral functions. Further we obtain

φ(s9 X) = - ^llf^L -f^Q-- + 0( s, X) + 7000(1 - s, X), (8)
tt v ^ s ( l - s )

where R is the regulator of k, w is the number of roots of unity contained in

k, h is the class number of k, and

( ) J l if t = o, Z principal

10 otherwise.

Since

I(X)KX) = 1 (9)

(which will be proved in §2), (5) can be derived from (8), so that (8) is finer

than (5). In the case of the Riemann zeta-function, (8) implies

In this paper we shall prove (7) and (8).

§2. On the Gauss sum

For every ξ =% 0 in k, q = y(ξ) is defined such that

η = l (mod f), T?Ξ£ (mod f»).

Let α be any ideal (fractional or integral) in k and ϊG(i. We define

5 = 0, ί^o (10)

and put

= 0(0, ς). (11)
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When Z is replaced by 1 in (10) and (11), we write ψ instead of ψ. If yι ( 1 ^

<; q) is an integer in k such that

ηι = l (mod f)

y\l) < 0, y\m) > 0 (m*hl£m£q),

then

= ~ 1.

Were it X(yι) = 1, Z would be defined by f/ where f/ = J f/«, f/« = W p ^ Indeed,

if a = 1 (mod f'/) then or or ayt is congruent to 1 mod f, whence it follows that

Z(αr) or YAocQi) is equal to 1 and this implies %{a) = 1. If we write for ξ^k

11 ^ = 0,

then we can prove that

YΛy(ξ))=sgnP(ξ) (12)

by the aid of auxiliary integers yι (l^l^q) (see [2], p. 75).

We take λ, μ such that

λ too-positive, λ = bf fl, (G, f) = o,

/4 too -positive, μ = 9 t), (t), f) = o,

where (1 and t) are integral ideals in kf and set

(^)} (13)

where )9 runs over a complete system of residues mod f which are all f«>-positive.

By the definition of b it is obvious that Σ is independent of the choice of a
P

system. If v e (bf)"1, then (see [2], p. 76) we get, from (13),

X(y(v)vtf)F(X) v*0

We denote by F(v, 7) the left-hand side of (14). There exists a number v0 in

k such that

vo foo-positive, 7̂0 = (bf)~1π0, (τt0, ϊ) = 0, (15)

where π0 is an integral ideal in k. Since
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F(X) is independent of choices of λ and μ.

Let p; (l^j^NC\)) be a complete system of residues mod f which are all

too-positive. We put

Since the number of ty satisfying (ny, f) = o is ^( | ) , we get

*Σ\F(vj, X)\* = φ(\)\F(X)\* (16)

by (14). On the other hand,

Σ l2

Now we prove that if ore (bf)*"1 then

^ m J M O tlαrbt

M * ' l θ f + αrbf.

The first part is obvious. To prove the second part, we denote by T the left-

hand side of (18) and put α:bί = Q. If f + 8, then a does not belong to b"1. By

the definition of b"1 there is an integer γ such thatexρ{27rίS(rα)} ^ 1. Since

exp {2πiS(aγ)\ T = Σ exp {2πiS{a(γ + pj))} = Γ,

we obtain T = 0 provided that f + β. It follows from (18) that

^ , ίiV(f) ft = ft (modf)

^ = 1 l 2 P0 J 1 0 ft* ft (mod f),

whence follows

*V(f)

by (17). This combined with (16), we obtain

\F(X)\ = ViVφ (19)

(see [3], p. 213). Now we define

Since X(y(po)) = l by (12) and (15),
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)no)F(X) ^χ(no)F(Z). (21)
P

Similarly, since %(η{ - pQ)) = ( - I)'7,

Σχ(j9) exp {2πiS{ - jW} = Z(r,( - »0)n0) F(χ) = ( - D'Zίtio) Fφ. (22)
p

Because of X(n0) # 0 it follows from (21) and (22) that F(X) and ( - l)*Fφ are

conjugate, so that

Since | J(£) | = 1 by (19) and (20), this implies (9).

For any ideal α in k (fractional or integral), we put

/rt. (23)

Let tp (l^p^n) be real variables satisfying tp = tp+r2 {ri + l^p ^n + r2). If

we define

Θ(t α, Z)= Σ Λ f)P(f) exp {-

then we have the following generalized Hecke's Θ-formula

Θ(t α, Z) = /(Z
αfb /

which is due to Sue tuna (see [5], p. 78). Landau's formula is somewhat compli-

cated, because he does not use fractional ideals.

§ 3. Integral representation

Let c be a positive and ξ ̂  0 be in k. Since

Γ(s){2πcrs\^ψp+^rs=Γexp(-2πc\ξ{p)\2tp)ts

P'1dtP

Jo

for a > 0, we have

2
S

t

= Pίί) p f exp ( - TΓCΣ |fw |2^) Π t Γ ^ - i ^ ^ β ^ (25)
Jp J p = l v = l ΐlh ' ' ' tr + l
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If we put, in (25), c = π \ £ = 1 and tp = zp, then we obtain (4), so that the ex-

istence of the integral (6) is also established. Similarly, we have

(πc) ~(ns+

(26)

for <? > 0.

Let ej, e2, . , er (r = n + ̂ 2 — l) be a system of fundamental units. For

brevity, we use Q-n2rί'1R which is the absolute value of the following

determinant

1, 21og!βί1 >! 2 1 o g l e £ υ |

1, 2 1 o g | e ί l ) l , . . . . 21og|ε$. 3 )i

After changing the variables in the right-hand side of (25) by

(27)

we put c = c(a) (see (23)) and multiply both sides of (25) by ψ{at ξ) and con-

struct the summation Σ , then we obtain for a > 1

, X)L(s, 8, X)

Σ ψ{a,ξ)P{ξ)

x exp { — πc

provided that flgff"1, since

Similarly, from (26) we obtain

' εx/εx/)\

(28)

s, st)

x exp { -

X (29)
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for a > 1.

Using the Θ-formula (24) and proceeding on with the computation in the

same way as Landau, we get from (28) the following formula for a > 1

A(X)s/2Γ(s, X)L(s, ^, X)

* • dyr

4*-!; o, 7.)}du

*I ί ^ ~ , 7.)}du

(30)
where

ί l g = 0, f = o namely f = o
•EΌ = i

10 otherwise.
Similarly we know from (29) that the integral

g { w ( ) } j J | P ( e i e f e^ldyirf* dyr

x [ 2 I < £ !

x e x p { - ^ ( α ) M Σ l ί w | 2 Uί^ e ^ tfv\2}du (31)

exists for <y > 1. Since (31) is a monotone increasing function of σ, two inte-

grals of the right-hand side of (30) are absolutely convergent for all s and

represent integral functions.

§4. Analogue to SiegeΓs formulation

The first integral of (30) is equal to

ί*00

2 u{ins¥")l2)-χ

Jl !/2
x Σ Φ(a, λ)P{λ) exp { - irc(o)«isUw |* US ί)3"4 ί)y' e<ί)ΛΊ2}

(S2)
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by the convergency of (31). If we put

I = ξ ^ sb/f

where p is a root of unity and bj (l^j^r) is an integer, then we obtain, using

(12),

φia, λ)P(λ) = \P(εb

ι

1εb

2

i - - - fr)\φ(a, f)P(f),

and (32) turns out to be equal to

Q{πc(a)}°l2\ u^w-'du Σ •••flP(e?I+JI' •• &+*)]

x Σ <>(α, ξ)P(ξ) exp { - τ:c(α)«Σ I f w ε ? ) δ l + Λ β^**! 1 }
(ξ)§ct, ξ#o p=i

x dfyiΦa m m m dyr

= Q(πc(a))Q/2Cu^+'^^duf ϊ Σ 0(α, f)P(f)
J i J - c o J (ξ)iα, ξφo

xexp{ -πc(a)uib\?p)tf>Xι ' ' e^' f } iPί f'β? &)\
p = l

x dxidx2 - - ' dXr. (33)

Since the summation is absolutely and uniformly convergent for

where 0 is a non-negative integer and #/ is an integer, (33) is equal to

Q{πc(a)r12 Σ φ(a, ζ)P(ξ) Cu^+'^du
ιϊ)§α, ξ=¥0 J i

X Γ fexp { "-TΓcίαJnill^eί^ - e?)x*\2} iPίβf̂ e? e?')l

x JΛ I J ^ dXr. (34)

By transformation of (27), (34) is changed into

iπc(a)}1"2 Σ tf(α, ̂ P φ f ίexpί- rcWΣI^Pfί}

x ( Π #'*">»*) rf^f2 ' ' ' ' d t r + ± . (35)
p = i Γ1Γ2 ΐr + i

If f = αb, then

and
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Now we put

Inserting these in (35), we can prove that the first integral of (30) is equal to

ACXY12 Σ

Similarly we can prove that (31) is equal to

so that this is also a monotone increasing function of a ( — oo < a < oo ). Hence

(7) is proved. We repeat the same argument with respect to the second integral

of (30), and finally we obtain

A(X)s/2Γ(s, X)L{s, ft, X)

nw

.-s , χ, b),

whence follows (8) immediately.
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