ON THE HECKE-LANDAU L-SERIES

To Zvorr: SUETUNA on his 60th Birthday

TIKAO TATUZAWA

§1. Introduction
Let %2 be an algebraic number field of degree » = 7,427, with 7; real conju-
gates 2V (1<1<7) and 7, pairs of complex conjugates ™, ™" (r,+1<m
<7 +7). Let o be the integral domain consisting of all integers in 2 We
introduce a generalized module f composed of an ordinal integral ideal | in %

and an infinite part i~ which is a product of some infinite prime spots p{", say,

F=frfe, Ffo=p@pd -0 (0=g=m). (1)
For « €k, the (multiplicative) congruence
a=1 (mod 1) (2)

means that a =1 (mod {) and « is j«-positive namely «* >0, «® >0, ...,
a'?>>0. Let A be the multiplicative group constituted by ideals in % prime to
f and S be the group of principal ideals generated by « satisfying (2). From
an abelian character of the group A/S, we can define a character ¥ mod { in
a similar way as in the rational case. Let § be a divisor of J. We say that %
is also defined by @, whenever the assumption « =1 (mod §), («, 1) =0, entails
the conclusion 7(a) =1. There exists the minimal (with respect to the number
of prime factors) generalized module which defines 7. This is called the con-
ductor of ¥. If the conductor of ¥ mod { is ¥ itself, then X is called a primitive
character mod f.

From now on let ¥ be a primitive character mod §. Let b be the ramifi-
cation ideal (different) of £ Let ® be an absolute ideal class of k.. We denote
by £ the ideal class £7'®* where R* is an absolute ideal class containing bf.
Let s=o¢+it be a complex variable. Let L(s, &, #) and L(s, 7) be respectively
the functions defined by
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> Z(a)/N(a), S Z(a)/N(a)®

aeR, axo a,a%0

for ¢ > 1, the summation running over all non-zero integral ideals in & and in

k respectively. Similarly we define that

(s, §)= > 1/N(a)’, CG(s)= 21 1/N(a)°

asR, axo a,azo
for ¢ > 1. We put
A7) = "dN(Y),
where d = N(b) is the discriminant of 2. For convenience, we put

_jl 1=p=q
=10 q+1=p=n,

where ¢ has the same meaning as in (1). Further we define that

n

I'(s, 1) = S 'jexp( — Sz [ g tewre Gaidzs - - darss
0 p=1

p=1 2123 * * * 2r41
for ¢ >0, where 71+ 7 =741 and
2p = 2p+r, (r+1Sp=<r+n). (3)

We shall know in §3 that

ris » =27 r(SEL r($)  rer (@)
Now we put
o(s, 1) = —‘%’i}f—Amwrcs, DL 7).

This function is regular for all s with one exception s=1 (simple pole) in the
case of the Dedekind zeta-function ¢x(s) (T =0, Z principal), moreover it satisfies

the functional equation
o(s, =TI p(Ll—5s, 1) (5)

where I(Y) will be defined in §2.
For an integral ideal a we define that
I'(s, 7, a) = fwjexp( - 722;7) 1 gpsrapie G2102 *  * darey
p=1 v=1

2122 * * * Zr41

2> 0, ﬁlzp;N(a)z/A(Z) (6)
I
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for ¢ > 0 with (3). As we shall prove later, (6) and the series

(s, 7) = --f—f/%iA(z)m ST 2(0) I'(s, 2, @)/ N(a)* (7)
a,a%0

(the summation runs over all non-zero integral ideals in %) are absolutely con-

vergent for all s and represent integral functions. Further we obtain

21 Ry E(7) . o
wvad  s-s T DFIM¢A=s 1), (8)

ols, )= —

where R is the regulator of %, w is the number of roots of unity contained in
k, h is the class number of %, and
f1 if ¥=v, X principal

E() =
) lO otherwise.

Since

INK7) =1 (9)

(which will be proved in §2), (5) can be derived from (8), so that (8) is finer
than (5). In the case of the Riemann zeta-function, (8) implies

-s/2 S 1
(S )ets) = — o h
! 2 ( s(I—s)
@© o el @
—s/3 _ - - -1 - - - —1
4 slazn sj e zz(s/2) ldz—l-rr 1 s)/22n 1+sS e zz((l $)12) da.
n=1 nn? n=1 nn?

In this paper we shall prove (7) and (8).

§2. On the Gauss sum
For every £ =0 in k, y=%(¢) is defined such that
»=1 (mod ), 7=¢ (mod ).

Let a be any ideal (fractional or integral) in 2 and £ =a. We define

1(299) exo
¢(a, &) = 0 =0, Ixo0 (10)
Z(a) £=0,T=o
and put
@(&) = ¢(o, &), (11)
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When 7 is replaced by 7 in (10) and (11), we write ¢ instead of ¢. If o (11

<q) is an integer in & such that

n=1 (mod {)
w <o, 2™M>0 (m=xlL1=m=q),
then
L) = -1

Were it () =1, Z would be defined by T; where T:=1*is, T ==/p%’. Indeed,
if @ =1 (mod /) then a or ay, is congruent to 1 mod §, whence it follows that

Z(a) or Z(an) is equal to 1 and this implies Z(a) =1. If we write for £k

fg(l)e(z) e e . 5((1) q>0
P =
(¢) \1 0=0,

then we can prove that
Z(9(€)) =sgn P(¢) (12)

by the aid of auxiliary integers 7 (1=I=<gq) (see [2], p. 75).
We take 4, u# such that

4 jo-positive, A=0f-4, (6, ) =no,
u# Ye-positive, up=¢-+y, (4, 1) =y,

where g and Y are integral ideals in &, and set
F(1) = 1) 31(8) exp{ 2ris (L2 )}, (13)

where B runs over a complete system of residues mod } which are all f=-positive.
By the definition of b it is obvious that >) is independent of the choice of a

B
system. If » < (d})7), then (see [2], p. 76) we get, from (13),

I T D FE) »x0

| 7060 F(2) ) =0. (14)

%Z(ﬁ) exp {27iS(Bv)} =

We denote by F(», 7) the left-hand side of (14). There exists a number z, in
k such that
vo Je-positive, o= (b)) 7'ny,  (mg, ) =0, (15)

where n, is an integral ideal in k. Since

7(77(110) vobT) *x 0,
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F(%) is independent of choices of 4 and s.
Let p; (1=</7< N(D)) be a complete system of residues mod | which are all
f-positive. We put
vj = v0pj, n; = v; df.
Since the number of n; satisfying (nj, {) =0 is ¢(}), we get
N
SIF Gy, D P =e®IF) P (16)

=1

by (14). On the other hand,

yp e

1 |F(p;, P = ?;x(ﬁl)z(ﬁg) g}lexp {27iS((B1— B2) »j) ). (17)

7=

Now we prove that if « = (d])™! then

X [N Tl abi

>l exp{2niS(api)} = lO 4 b (18)
i=1 adf.

The first part is obvious. To prove the second part, we denote by T the left-
hand side of (18) and put adi=4¢. If {+4, then « does not belong to d™'. By
the definition of b~ there is an integer r such that exp {27iS(ya)} % 1. Since

R

exp {27iS(ar)} T = S_‘,Iexp 27iS(alr+ o)} =T,
o
we obtain T'=0 provided that {+4. It follows from (18) that

N . ‘ IN(f) Bi= [ (mod {)
Eexp{2mS((31"‘ﬁ2)voPJ‘)>= Lo Bust By (mod 1),

whence follows

N

Z_‘l. [F(v;, DI =;Z(B)7(B)N(T) =@ N
by (17). This combined with (16), we obtain
[F(1)| =VN() (19)
(see [3], p. 213). Now we define
I = (= DIF NN (20)

Since Z(7(»y)) =1 by (12) and (15),
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Xﬁ)l(ﬂ) exp {27iS(Bre) } = 1 (9(wo) no) F(X) = 7(ne) F(%). (21)
Similarly, since Z(y( — »)) = ( —1)9,
Zﬁ‘d—((ﬁ) exp {27iS( — Buo)} = L(7( = v ) F()) = (= D)X (n) F(}).  (22)

Because of Z(1n,) = 0 it follows from (21) and (22) that F(¥) and ( —1)?F(}) are
conjugate, so that

I7) = I().
Since [I(X¥)|=1 by (19) and (20), this implies (9).

For any ideal a in % (fractional or integral), we put
c(a) ={dN(a)’ N}y ™" (23)

Let t, (1<p <n) be real variables satisfying tp=tp+r, (n+1=<p=n+mn). If
we define

0t ; o, 1) = Sgla, &) P(&) exp { — ne(a) Sty |82 P,
rEa p=1

then we have the following generalized Hecke’s ©-formula

R, capy gt (1. 1z
6t 5 0, =10 e@ "M t™"0 (5 o 7)» (24)

which is due to Suetuna (see [5], p. 78). Landau’s formula is somewhat compli-

cated, because he does not use fractional ideals.

§3. Integral representation
Let ¢ be a positive and £ 0 be in k. Since
F(s'gql)(zm)"””’2 [Pt = S:exp (= ncl 8P Ptp) t, TP dt,  (1<p=<q)’
F(%)(nc‘)_m [P ]7° = f: exp (—nc|&P Pt tf*dt, (q+1=<p=n)
F(s)@re) 18252777 = (“exp (= 2mel$P P 7ty (n1SpS7i+r)
for ¢ > 0, we have

()it agmre (S L) P($)" ey ),

= P(9) [ [exp (= me 2380 1) T gorevis didls = 2 dlres (g5
0 r=1 p=1 tltz R tr+1
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If we put, in (25), c=n"7, £€=1 and #, = 25, then we obtain (4), so that the ex-

istence of the integral (6) is also established. Similarly, we have

~(ns+q)/29~7,s s+1Y\? s\ 2 77_1

ey o r (231 T (5) T ey
= .w.. . < (p) |2 i (s+ap)/2 dtldtg c e dtr+1
_Ip(g)]fo fexn me 353169 Pey) T1 15 1o A (26)

for ¢ > 0.
Let e, €2, ..., 6 (r=r;+7—1) be a system of fundamental units. For
brevity, we use @ =n2""'R which is the absolute value of the following

determinant

1, 2logle’l, ..., 2logle”

1, 2logle®], ..., 2logle®

------------------

(r+1),’ . (r+1)} {

1, 2logle ., 2loglef
After changing the variables in the right-hand side of (25) by
tp=ule® .- [P (1=p=sr+1), (27)

we put ¢ =c(a) (see (23)) and multiply both sides of (25) by ¢(a, §) and con-

struct the summation ), then we obtain for ¢>> 1
(D=4, t%0

{me(a)}y AT (s, ) L(s, &, %)
. ® {({ns+q)f2y— w
_Qjo st lduS_wS ST ¢(a, £)P(8)

(D20, 140
X exp { —nc(a)uE\&"’ai””“ .. s(rmx"lz}lP(ef‘efz e gy
p=1
X dxidxs - - - dx,. (28)
provided that a e £, since

_ ittt
= hbo Q.

i olhy, t, . . ;,z__lf,f:ri),
l o(u, %1, + - -, %r)

Similarly, from (26) we obtain

{re(@)} A (s, 1) Suls, &)
— ® ((ns+q)l2)-1d n P(
Qf uj__mfm POl

x exp { ——r:c(a)uzilf(mép’x" <o PPNV PR - - - )]
=

X deidx, + -+ dx, (29)
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for ¢ > 1.
Using the 6-formula (24) and proceeding on with the computation in the

same way as Landau, we get from (28) the following formula for ¢ > 1
AT (s, X) L(s, & %)

= - _Q 1 1

-~ 20 n (0 L er( L )y

l1-s
Y {rc(a)}qlzs ij(el LI &) dydys - - - dy,

xjju“"“"”“”( ¢(a, 0) P(0) +O(uler™ - - - |5 o, X)}du

+ vg’“{n'C( a?b }‘72 Z)jm ij( 7't 5;’)]dy1dyz ccdyr

® na-syequm-1f _ s 1 L, o). 1
Xj‘lu a { (b(m )P(0)+@((ul€ &y " Tb 17)}
(30)
where
jl g=0, f=0 namely f=o
°T lO otherwise.
Similarly we know from (29) that the integral
Q (rc(a))"'zf_l JlP(ef‘e%” <) dydys < - - dyy
XJ‘ “((no+q)/2)—1 Z IP(E)I
1 £, §40
x exp{ —mc (@) D) 8P |* o [eP1ef . o . (PIr 2} gy (31)
P=1

exists for ¢> 1. Since (31) is a monotone increasing function of s, two inte-
grals of the right-hand side of (30) are absolutely convergent for all s and

represent integral functions.

§4. Analogue to Siegel’s formulation
The first integral of (30) is equal to
Y- 1/2
% (7‘[6(0)}‘1123 u(("“q’/z)"duj' . 'XIP(ef‘e’X’ e s}")l
x > ¢la, 1) P(R) exp { - el a)u?_,‘l/l“”l2 [Pl o u . DIy

AEA, Ax0

X dyidys - * * dyr, (32)
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by the convergency of (31). If we put

A=toed ool

where p is a root of unity and ; (1<j<7) is an integer, then we obtain, using
(12),
¢la, DPQ) = | P(fe - - - e gla, £)P(S),

and (32) turns out to be equal to

® ® 1/2
Q(zc(a))qlzsl g rsrom=1 g, S 5 : ’SIP(Ef”y‘ Cee gbreany)

b1, b2y eeny ==V =1/2

x 23 ¢la, £)P(8) exp{ —nc(a)uE"}lIE‘p’eip’b"'y‘ o PRy
p=

(£)24a, T%0

X dyidyz * * * dy»r
= ql2 ® ((ns+q)/2)~1 m .
Q{nc(a)} x du - > ¢la, §)P(E)

(V)24 t%0

x exp { ——:rc(a)ug]é(p’e{p’x‘ s Py o | P(efteR - - - )]
X dx d%, - -+ d%r. (33)
Since the summation is absolutely and uniformly convergent for
2°su<2, agisx=aj+1 (1=2j=0),

where a is a non-negative integer and a; is an integer, (33) is equal to

Qre@)” 33 gla, OP® [ a1

(]S4, E%0
0 n
XS“'jeXP {=me(@u [P - - P}« | Plefe - -+ &)
- p=
x dxidxs - -+ dxr. (34)

By transformation of (27), (34) is changed into

{re@)” 33 g, P [+ [exp (= re(a) 3316 P1y)

sy Sa
(D24, =0 tp>0, ity EnZ1

O stapzy Ghidts ¢ ¢ dbriq
X (x:zl—:lltp )12y tho ot (35)
If € =ab, then
N(&) = N(a) N(b)
and

¢la, £)P(&) = 7(bn(&)) P(8) = X (b) | P(£)].
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Now we put
ze(a) 6P Pty=2, (1ZSp=<r+1).

Inserting these in (35), we can prove that the first integral of (30) is equal to

~r\S/2 7(5) b
LS ZACE A

Similarly we can prove that (31) is equal to

AR S

b
=8, b0 N(b)o waye Lo % 9),

so that this is also a monotone increasing function of ¢ (- c« < g < ). Hence
(7) is proved. We repeat the same argument with respect to the second integral
of (30), and finally we obtain

A (s, 1) L(s, & %)

= - 28 g (2L + 2B

=)

~r\S/2 X(b) b
+A(/{) bgﬁz}bxo N(b)s F(S, X )

A I g 3w,
+ (X) I X)begb#o N(b)l s ( s, X

whence follows (8) immediately.
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