ON THE HECKE-LANDAU L-SERIES

To ZYOITI SUETUNA on his 60th Birthday

TIKAO TATUZAWA

§1. Introduction

Let k be an algebraic number field of degree $n = r_1 + 2r_2$ with r_1 real conjugates $k^{(l)}$ $(1 \le l \le r_1)$ and r_2 pairs of complex conjugates $k^{(m)}$, $k^{(m+r_2)}$ $(r_1 + 1 \le m$ $\le r_1 + r_2)$. Let 0 be the integral domain consisting of all integers in k. We introduce a generalized module \tilde{f} composed of an ordinal integral ideal \tilde{f} in k and an infinite part \tilde{f}_{∞} which is a product of some infinite prime spots $p_{\infty}^{(l)}$, say,

$$\widetilde{\mathfrak{f}} = \mathfrak{f} \cdot \mathfrak{f}_{\infty}, \qquad \mathfrak{f}_{\infty} = \mathfrak{p}_{\infty}^{(1)} \mathfrak{p}_{\infty}^{(2)} \cdots \mathfrak{p}_{\infty}^{(q)} \qquad (0 \leq q \leq r_1).$$
(1)

For $\alpha \in k$, the (multiplicative) congruence

$$\alpha \equiv 1 \pmod{\widetilde{\mathfrak{f}}} \tag{2}$$

means that $\alpha \equiv 1 \pmod{\dagger}$ and α is \mathfrak{f}_{∞} -positive namely $\alpha^{(1)} > 0, \alpha^{(2)} > 0, \ldots, \alpha^{(q)} > 0$. Let A be the multiplicative group constituted by ideals in k prime to \mathfrak{f} and S be the group of principal ideals generated by α satisfying (2). From an abelian character of the group A/S, we can define a character $\chi \mod{\mathfrak{f}}$ in a similar way as in the rational case. Let \mathfrak{g} be a divisor of \mathfrak{f} . We say that χ is also defined by \mathfrak{g} , whenever the assumption $\alpha \equiv 1 \pmod{\mathfrak{g}}, (\alpha, \mathfrak{f}) = \mathfrak{0}$, entails the conclusion $\chi(\alpha) = 1$. There exists the minimal (with respect to the number of prime factors) generalized module which defines χ . This is called the conductor of χ . If the conductor of $\chi \mod{\mathfrak{f}}$ is \mathfrak{f} itself, then χ is called a primitive character mod \mathfrak{f} .

From now on let χ be a primitive character mod $\tilde{\mathfrak{f}}$. Let \mathfrak{d} be the ramification ideal (different) of k. Let \mathfrak{R} be an absolute ideal class of k. We denote by $\hat{\mathfrak{R}}$ the ideal class $\mathfrak{R}^{-1}\mathfrak{R}^*$ where \mathfrak{R}^* is an absolute ideal class containing $\mathfrak{d}\mathfrak{f}$. Let $s = \sigma + \mathfrak{i}\mathfrak{t}$ be a complex variable. Let $L(s, \mathfrak{R}, \chi)$ and $L(s, \chi)$ be respectively the functions defined by

Received September 7, 1959.

$$\sum_{\mathfrak{a} \in \mathfrak{R}, \mathfrak{a}_{\pm 0}} \chi(\mathfrak{a}) / N(\mathfrak{a})^{\mathfrak{s}}, \qquad \sum_{\mathfrak{a}, \mathfrak{a}_{\pm 0}} \chi(\mathfrak{a}) / N(\mathfrak{a})^{\mathfrak{s}}$$

for $\sigma > 1$, the summation running over all non-zero integral ideals in \Re and in k respectively. Similarly we define that

$$\zeta_k(s, \ \Re) = \sum_{\mathfrak{a} \in \mathfrak{R}, \mathfrak{a} \neq \mathfrak{0}} 1/N(\mathfrak{a})^s, \qquad \zeta_k(s) = \sum_{\mathfrak{a}, \mathfrak{a} \neq \mathfrak{0}} 1/N(\mathfrak{a})^s$$

for $\sigma > 1$. We put

$$A(\chi) = \pi^{-n} dN(\mathfrak{f}),$$

where d = N(b) is the discriminant of k. For convenience, we put

$$a_p = egin{cases} 1 & 1 \leq p \leq q \ 0 & q+1 \leq p \leq n, \end{cases}$$

where q has the same meaning as in (1). Further we define that

$$\Gamma(s, \chi) = \int_{0}^{\infty} \cdots \int \exp(-\sum_{p=1}^{n} z_p) \prod_{p=1}^{n} z_p^{(s+a_p)/2} \frac{dz_1 dz_2 \cdots dz_{r+1}}{z_1 z_2 \cdots z_{r+1}}$$

for $\sigma > 0$, where $r_1 + r_2 = r + 1$ and

$$z_p = z_{p+r_2}$$
 $(r_1 + 1 \le p \le r_1 + r_2).$ (3)

We shall know in §3 that

$$\Gamma(s, \chi) = 2^{-r_2 s} \Gamma\left(\frac{s+1}{2}\right)^q \Gamma\left(\frac{s}{2}\right)^{r_1 - q} \Gamma(s)^{r_2}.$$
(4)

Now we put

$$\phi(s, \chi) = \frac{(2\pi)^{r_2}}{\sqrt{d}} A(\chi)^{s/2} \Gamma(s, \chi) L(s, \chi).$$

This function is regular for all s with one exception s = 1 (simple pole) in the case of the Dedekind zeta-function $\zeta_k(s)$ ($\tilde{j} = 0, \chi$ principal), moreover it satisfies the functional equation

$$\phi(s, \chi) = I(\chi) \phi(1-s, \overline{\chi})$$
(5)

where $I(\chi)$ will be defined in §2.

For an integral ideal a we define that

$$\Gamma(s, \chi, a) = \int \cdots \int \exp(-\sum_{p=1}^{n} z_p) \prod_{p=1}^{n} z_p^{(s+a_p)/2} \frac{dz_1 dz_2 \cdots dz_{r+1}}{z_1 z_2 \cdots z_{r+1}}$$
$$z_p > 0, \ \prod_{p=1}^{n} z_p \ge N(a)^2 / A(\chi)$$
(6)

for $\sigma > 0$ with (3). As we shall prove later, (6) and the series

$$\psi(s, \chi) = \frac{(2\pi)^{r_2}}{\sqrt{d}} A(\chi)^{s/2} \sum_{\mathfrak{a}, \mathfrak{a} \neq \mathfrak{d}} \chi(\mathfrak{a}) \Gamma(s, \chi, \mathfrak{a}) / N(\mathfrak{a})^s$$
(7)

(the summation runs over all non-zero integral ideals in k) are absolutely convergent for all s and represent integral functions. Further we obtain

$$\phi(s, \chi) = -\frac{2^{r_1+r_2}\pi^{r_2}Rh}{w\sqrt{d}} \frac{E(\chi)}{s(1-s)} + \phi(s, \chi) + I(\chi)\phi(1-s, \overline{\chi}), \qquad (8)$$

where R is the regulator of k, w is the number of roots of unity contained in k, h is the class number of k, and

$$E(\chi) = \begin{cases} 1 & \text{if } \tilde{\mathfrak{f}} = \mathfrak{v}, \ \chi \text{ principal} \\ 0 & \text{otherwise.} \end{cases}$$

Since

$$I(\chi)I(\overline{\chi}) = 1 \tag{9}$$

(which will be proved in $\S2$), (5) can be derived from (8), so that (8) is finer than (5). In the case of the Riemann zeta-function, (8) implies

$$\pi^{-s/2} \Gamma\left(\frac{s}{2}\right) \zeta(s) = -\frac{1}{s(1-s)} + \pi^{-s/2} \sum_{n=1}^{\infty} n^{-s} \int_{\pi n^2}^{\infty} e^{-z} z^{(s/2)-1} dz + \pi^{-(1-s)/2} \sum_{n=1}^{\infty} n^{-1+s} \int_{\pi n^2}^{\infty} e^{-z} z^{((1-s)/2)-1} dz.$$

In this paper we shall prove (7) and (8).

§2. On the Gauss sum

For every $\xi \neq 0$ in k, $\eta = \eta(\xi)$ is defined such that

$$\eta \equiv 1 \pmod{\mathfrak{f}}, \qquad \eta \equiv \mathfrak{F} \pmod{\mathfrak{f}_{\infty}}.$$

Let a be any ideal (fractional or integral) in k and $\xi \in \mathfrak{a}$. We define

$$\psi(\mathfrak{a}, \,\xi) = \begin{cases} \chi\left(\frac{\xi}{\mathfrak{a}}\eta(\xi)\right) & \xi \neq 0\\ 0 & \xi = 0, \, \mathfrak{f} \neq 0\\ \overline{\chi}(\mathfrak{a}) & \xi = 0, \, \mathfrak{f} = 0 \end{cases}$$
(10)

and put

$$\psi(\boldsymbol{\xi}) = \psi(\boldsymbol{\mathfrak{o}}, \ \boldsymbol{\xi}). \tag{11}$$

When χ is replaced by $\overline{\chi}$ in (10) and (11), we write $\overline{\psi}$ instead of ψ . If η_l $(1 \leq l \leq q)$ is an integer in k such that

$$\begin{split} \eta_l &\equiv 1 \pmod{\mathfrak{f}} \\ \eta_l^{(l)} < 0, \qquad \eta_l^{(m)} > 0 \qquad (m \neq l, \ 1 \leq m \leq q), \end{split}$$

then

14

 $\chi(\eta_l)=-1.$

Were it $\chi(\eta_l) = 1$, χ would be defined by $\tilde{\mathfrak{f}}_l$ where $\tilde{\mathfrak{f}}_l = \mathfrak{f} \cdot \mathfrak{f}_{l\infty}$, $\mathfrak{f}_{l\infty} = \mathfrak{f}_{\infty}/\mathfrak{p}_{\infty}^{(l)}$. Indeed, if $\alpha \equiv 1 \pmod{\tilde{\mathfrak{f}}_l}$ then α or $\alpha \eta_l$ is congruent to 1 mod $\tilde{\mathfrak{f}}$, whence it follows that $\chi(\alpha)$ or $\chi(\alpha \eta_l)$ is equal to 1 and this implies $\chi(\alpha) = 1$. If we write for $\xi \in k$

$$P(\xi) = \begin{cases} \xi^{(1)}\xi^{(2)} \cdots \xi^{(q)} & q > 0\\ 1 & q = 0, \end{cases}$$

then we can prove that

$$\chi(\eta(\xi)) = \operatorname{sgn} P(\xi) \tag{12}$$

by the aid of auxiliary integers η_l $(1 \leq l \leq q)$ (see [2], p. 75).

We take λ , μ such that

$$\lambda \quad \mathfrak{f}_{\infty}\text{-positive}, \quad \lambda = \mathfrak{d}\mathfrak{f} \cdot \mathfrak{g}, \qquad (\mathfrak{g}, \mathfrak{f}) = \mathfrak{o},$$

$$\mu \quad \mathfrak{f}_{\infty}\text{-positive}, \qquad \mu = \mathfrak{g} \cdot \mathfrak{y}, \qquad (\mathfrak{y}, \mathfrak{f}) = \mathfrak{o},$$

where \mathfrak{g} and \mathfrak{h} are integral ideals in k, and set

$$F(\chi) = \chi(\mathfrak{y}) \sum_{\beta} \chi(\beta) \exp\left\{2\pi i S\left(\frac{\beta\mu}{\lambda}\right)\right\},\tag{13}$$

where β runs over a complete system of residues mod \dagger which are all \dagger_{∞} -positive. By the definition of δ it is obvious that \sum_{β} is independent of the choice of a system. If $\nu \in (\delta \dagger)^{-1}$, then (see [2], p. 76) we get, from (13),

$$\sum_{\beta} \chi(\beta) \exp\left\{2\pi i S(\beta\nu)\right\} = \begin{cases} \overline{\chi}(\eta(\nu)\nu \delta \mathfrak{f}) F(\chi) & \nu \neq 0\\ \overline{\chi}(\delta \mathfrak{f}) F(\chi) & \nu = 0. \end{cases}$$
(14)

We denote by $F(\nu, \chi)$ the left-hand side of (14). There exists a number ν_0 in k such that

 $\nu_0 \quad \mathfrak{f}_{\infty}\text{-positive,} \qquad \nu_0 = (\mathfrak{d}\mathfrak{f})^{-1}\mathfrak{n}_0, \qquad (\mathfrak{n}_0, \ \mathfrak{f}) = \mathfrak{o}, \tag{15}$

where n_0 is an integral ideal in k. Since

$$\overline{\chi}(\eta(\nu_0)\,\nu_0\,\mathrm{df}) \neq 0,$$

 $F(\chi)$ is independent of choices of λ and μ .

Let ρ_j $(1 \le j \le N(\mathfrak{f}))$ be a complete system of residues mod \mathfrak{f} which are all \mathfrak{f}_{∞} -positive. We put

$$\nu_j = \nu_0 \rho_j, \qquad \mathfrak{n}_j = \nu_j \, \mathfrak{d}\mathfrak{f}.$$

Since the number of n_j satisfying $(n_j, f) = 0$ is $\varphi(f)$, we get

$$\sum_{j=1}^{N(\mathfrak{f})} |F(\nu_j, \chi)|^2 = \varphi(\mathfrak{f}) |F(\chi)|^2$$
(16)

by (14). On the other hand,

$$\sum_{j=1}^{N(\tilde{f})} |F(\nu_j, \chi)|^2 = \sum_{\beta_1} \sum_{\beta_2} \chi(\beta_1) \overline{\chi}(\beta_2) \sum_{j=1}^{N(\tilde{f})} \exp\left\{2\pi i S((\beta_1 - \beta_2) \nu_j)\right\}.$$
(17)

Now we prove that if $\alpha \in (\delta \mathfrak{f})^{-1}$ then

$$\sum_{j=1}^{N(\mathfrak{f})} \exp\left\{2\pi i S(\alpha \rho_i)\right\} = \begin{cases} N(\mathfrak{f}) & \mathfrak{f} \mid \alpha \mathfrak{d}\mathfrak{f} \\ 0 & \mathfrak{f} \nmid \alpha \mathfrak{d}\mathfrak{f}. \end{cases}$$
(18)

The first part is obvious. To prove the second part, we denote by T the lefthand side of (18) and put $\alpha \delta \mathfrak{f} = \mathfrak{g}$. If $\mathfrak{f} + \mathfrak{g}$, then α does not belong to δ^{-1} . By the definition of δ^{-1} there is an integer γ such that $\exp\{2\pi i S(\gamma \alpha)\} \neq 1$. Since

$$\exp\left\{2\pi i S(\alpha\gamma)\right\}T = \sum_{j=1}^{N(\dagger)} \exp\left\{2\pi i S(\alpha(\gamma+\rho_j))\right\} = T$$

we obtain T = 0 provided that $f \neq g$. It follows from (18) that

$$\sum_{j=1}^{N(\mathfrak{f})} \exp\left\{2\pi i S((\beta_1 - \beta_2)\nu_0\rho_j)\right\} = \begin{cases} N(\mathfrak{f}) & \beta_1 \equiv \beta_2 \pmod{\mathfrak{f}} \\ 0 & \beta_1 \equiv \beta_2 \pmod{\mathfrak{f}}, \end{cases}$$

whence follows

$$\sum_{j=1}^{N(\mathfrak{f})} |F(\nu_j, \chi)|^2 = \sum_{\beta} \chi(\beta) \,\overline{\chi}(\beta) \, N(\mathfrak{f}) = \varphi(\mathfrak{f}) \, N(\mathfrak{f})$$

by (17). This combined with (16), we obtain

$$|F(\chi)| = \sqrt{N(\mathfrak{f})} \tag{19}$$

(see [3], p. 213). Now we define

$$I(\chi) = (-i)^q F(\chi) / \sqrt{N(\dagger)}.$$
(20)

Since $\chi(\eta(\nu_0)) = 1$ by (12) and (15),

TIKAO TATUZAWA

$$\sum_{\beta} \chi(\beta) \exp\left\{2\pi i S(\beta \nu_0)\right\} = \overline{\chi}(\eta(\nu_0) \,\mathfrak{n}_0) F(\chi) = \overline{\chi}(\mathfrak{n}_0) F(\chi). \tag{21}$$

Similarly, since $\chi(\eta(-\nu_0)) = (-1)^q$,

$$\sum_{\beta} \overline{\chi}(\beta) \exp\left\{2\pi i S(-\beta\nu_0)\right\} = \chi(\eta(-\nu_0)\eta_0) F(\overline{\chi}) = (-1)^q \chi(\eta_0) F(\overline{\chi}).$$
(22)

Because of $\chi(\mathfrak{n}_0) \neq 0$ it follows from (21) and (22) that $F(\chi)$ and $(-1)^q F(\overline{\chi})$ are conjugate, so that

$$\overline{I(\chi)} = I(\overline{\chi}).$$

Since $|I(\chi)| = 1$ by (19) and (20), this implies (9).

For any ideal a in k (fractional or integral), we put

$$c(\mathfrak{a}) = \{ dN(\mathfrak{a})^2 N(\mathfrak{f}) \}^{-1/n}.$$
(23)

Let t_p $(1 \le p \le n)$ be real variables satisfying $t_p = t_{p+r_2}$ $(r_1 + 1 \le p \le r_1 + r_2)$. If we define

$$\Theta(t ; \mathfrak{a}, \chi) = \sum_{\xi \in \mathfrak{a}} \psi(\mathfrak{a}, \xi) P(\xi) \exp \left\{ -\pi c(\mathfrak{a}) \sum_{p=1}^{n} t_p |\xi^{(p)}|^2 \right\},$$

then we have the following generalized Hecke's Ø-formula

$$\Theta(t ; \mathfrak{a}, \chi) = I(\chi) c(\mathfrak{a})^{-q} \prod_{p=1}^{n} t_p^{-1/2-a_p} \Theta\left(\frac{1}{t} ; \frac{1}{\mathfrak{a}\dagger \mathfrak{b}}, \overline{\chi}\right), \qquad (24)$$

which is due to Suetuna (see [5], p. 78). Landau's formula is somewhat complicated, because he does not use fractional ideals.

§3. Integral representation

Let c be a positive and $\xi \neq 0$ be in k. Since

$$\Gamma\left(\frac{s+1}{2}\right)(\pi c)^{-(s+1)/2} |\xi^{(p)}|^{-s-1} = \int_{0}^{\infty} \exp\left(-\pi c |\xi^{(p)}|^{2} t_{p}\right) t_{p}^{((s+1)/2)-1} dt_{p} \quad (1 \le p \le q) \\
\Gamma\left(\frac{s}{2}\right)(\pi c)^{-s/2} |\xi^{(p)}|^{-s} = \int_{0}^{\infty} \exp\left(-\pi c |\xi^{(p)}|^{2} t_{p}\right) t_{p}^{(s/2)-1} dt_{p} \quad (q+1 \le p \le r_{1}) \\
\Gamma(s)(2\pi c)^{-s} |\xi^{(p)}\xi^{(p+r_{2})}|^{-s} = \int_{0}^{\infty} \exp\left(-2\pi c |\xi^{(p)}|^{2} t_{p}\right) t_{p}^{s-1} dt_{p} \quad (r_{1}+1 \le p \le r_{1}+r_{2})$$

for $\sigma > 0$, we have

$$(\pi c)^{-(ns+q)/2} 2^{-r_2 s} \Gamma\left(\frac{s+1}{2}\right)^q \Gamma\left(\frac{s}{2}\right)^{r_1-q} \Gamma(s)^{r_2} \frac{\chi(\eta(\xi))}{|N(\xi)|^s} = P(\xi) \int_0^\infty \int \exp\left(-\pi c \sum_{p=1}^n |\xi^{(p)}|^2 t_p\right) \prod_{p=1}^n t_p^{(s+a_p)/2} \frac{dt_1 dt_2 \cdots dt_{r+1}}{t_1 t_2 \cdots t_{r+1}}.$$
 (25)

If we put, in (25), $c = \pi^{-1}$, $\xi = 1$ and $t_p = z_p$, then we obtain (4), so that the existence of the integral (6) is also established. Similarly, we have

$$(\pi c)^{-(ns+q)/2} 2^{-r_2 s} \Gamma\left(\frac{s+1}{2}\right)^q \Gamma\left(\frac{s}{2}\right)^{r_1 - q} \Gamma(s)^{r_2} \frac{1}{|N(\xi)|^s} = |P(\xi)| \int_0^\infty \int \exp\left(-\pi c \sum_{p=1}^n |\xi^{(p)}|^2 t_p\right) \prod_{p=1}^n t_p^{(s+a_p)/2} \frac{dt_1 dt_2 \cdots dt_{r+1}}{t_1 t_2 \cdots t_{r+1}}$$
(26)

for $\sigma > 0$.

Let $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_r$ $(r = r_1 + r_2 - 1)$ be a system of fundamental units. For brevity, we use $Q = n2^{r_1-1}R$ which is the absolute value of the following determinant

1,
$$2 \log |\varepsilon_1^{(1)}|$$
, ..., $2 \log |\varepsilon_r^{(1)}|$
1, $2 \log |\varepsilon_1^{(2)}|$, ..., $2 \log |\varepsilon_r^{(2)}|$
1, $2 \log |\varepsilon_1^{(r+1)}|$, ..., $2 \log |\varepsilon_r^{(r+1)}|$

After changing the variables in the right-hand side of (25) by

$$t_p = u \left| \varepsilon_1^{(p)} \right|^{2x_1} \cdots \left| \varepsilon_r^{(p)} \right|^{2x_r} \qquad (1 \leq p \leq r+1), \tag{27}$$

we put c = c(a) (see (23)) and multiply both sides of (25) by $\psi(a, \xi)$ and construct the summation $\sum_{(\xi) \subseteq a, \xi \neq 0}$, then we obtain for $\sigma > 1$

$$\{\pi c(\mathfrak{a})\}^{-q/2} A(\chi)^{s/2} \Gamma(\mathfrak{s}, \chi) L(\mathfrak{s}, \mathfrak{R}, \chi)$$

$$= Q \int_{0}^{\infty} u^{((ns+q)/2)-1} du \int_{-\infty}^{\infty} \int_{(\mathfrak{t}) \subseteq \mathfrak{a}, \mathfrak{t} \neq 0} \sum_{\mathfrak{t} \neq 0} \psi(\mathfrak{a}, \mathfrak{t}) P(\mathfrak{t})$$

$$\times \exp\{-\pi c(\mathfrak{a}) u \sum_{p=1}^{n} |\xi^{(p)} \varepsilon_{1}^{(p)x_{1}} \cdots \varepsilon_{r}^{(p)x_{r}}|^{2}\} |P(\varepsilon_{1}^{x_{1}} \varepsilon_{2}^{x_{2}} \cdots \varepsilon_{r}^{x_{r}})|$$

$$\times dx_{1} dx_{2} \cdots dx_{r}.$$
(28)

provided that $a \in \mathbb{R}^{-1}$, since

$$\left|\frac{\partial(t_1, t_2, \ldots, t_{r+1})}{\partial(u, x_1, \cdots, x_r)}\right| = \frac{t_1 t_2 \cdots t_{r+1}}{u} Q.$$

Similarly, from (26) we obtain

$$\{\pi c(\mathfrak{a})\}^{-q/2} A(\chi)^{s/2} \Gamma(s, \chi) \zeta_k(s, \mathfrak{K})$$

$$= Q \int_0^\infty u^{((ns+q)/2)-1} du \int_{-\infty}^\infty \int_{(\mathfrak{k}) \in \mathfrak{A}, \mathfrak{k} \neq 0} |P(\mathfrak{k})|$$

$$\times \exp\{-\pi c(\mathfrak{a}) u \sum_{p=1}^n |\mathfrak{\xi}^{(p)} \varepsilon_1^{(p) x_1} \cdots \varepsilon_{r}^{(p) x_r}|^2\} |P(\varepsilon_1^{x_1} \varepsilon_2^{x_2} \cdots \varepsilon_{r}^{x_r})|$$

$$\times dx_1 dx_2 \cdots dx_r$$
(29)

for $\sigma > 1$.

Using the 0-formula (24) and proceeding on with the computation in the same way as Landau, we get from (28) the following formula for $\sigma > 1$

$$\begin{aligned} A(\chi)^{s/2} \Gamma(s, \chi) L(s, \Re, \chi) \\ &= -\frac{2Q}{nw} E_{0} \Big(\overline{\chi}(\mathfrak{a}) \frac{1}{s} + \chi \Big(\frac{1}{\mathfrak{a}^{\dagger}\mathfrak{b}} \Big) \frac{1}{1-s} \Big) \\ &+ \frac{Q}{w} \{ \pi c(\mathfrak{a}) \}^{q/2} \int_{-1/2}^{1/2} \int |P(\varepsilon_{1}^{y_{1}} \varepsilon_{2}^{y_{2}} \cdots \varepsilon_{r}^{y_{r}})| \, dy_{1} dy_{2} \cdots dy_{r} \\ &\times \int_{1}^{\infty} u^{((ns+q)/2)-1} \{ -\psi(\mathfrak{a}, 0) P(0) + \Theta(u|\varepsilon_{2}^{2y_{1}} \cdots \varepsilon_{r}^{2y_{r}}|; \mathfrak{a}, \chi) \} \, du \\ &+ \frac{Q}{w} \{ \pi c \Big(\frac{1}{\mathfrak{a}^{\dagger}\mathfrak{b}} \Big) \Big\}^{q/2} I(\chi) \int_{-1/2}^{1/2} \int |P(\varepsilon_{1}^{y_{1}} \varepsilon_{2}^{y_{2}} \cdots \varepsilon_{r}^{y_{r}})| \, dy_{1} dy_{2} \cdots dy_{r} \\ &\times \int_{1}^{\infty} u^{((n(1-s)+q)/2)-1} \Big\{ -\overline{\psi} \Big(\frac{1}{\mathfrak{a}^{\dagger}\mathfrak{b}} , 0 \Big) P(0) + \Theta \Big((u|\varepsilon_{1}^{2y_{1}} \cdots \varepsilon_{r}^{2y_{r}}|; \frac{1}{\mathfrak{a}^{\dagger}\mathfrak{b}} , \overline{\chi} \Big) \Big\} \, du \end{aligned} \tag{30}$$

where

$$E_0 = \begin{cases} 1 & q = 0, \ f = 0 \text{ namely } \tilde{f} = 0 \\ 0 & \text{otherwise.} \end{cases}$$

Similarly we know from (29) that the integral

$$\frac{Q}{w} \{ \pi c(a) \}^{q/2} \int_{-1/2}^{1/2} \int |P(\varepsilon_1^{y_1} \varepsilon_2^{y_2} \cdots \varepsilon_r^{y_r})| dy_1 dy_2 \cdots dy_r \\
\times \int_{1}^{\infty} u^{((n\sigma+q)/2)-1} \sum_{\xi \in a, \ \xi \neq 0} |P(\xi)| \\
\times \exp\{ -\pi c(a) u \sum_{p=1}^{n} |\xi^{(p)}|^2 \cdot |\varepsilon_1^{(p)y_1} \varepsilon_2^{(p)y_2} \cdots \varepsilon_r^{(p)y_r}|^2 \} du$$
(31)

exists for $\sigma > 1$. Since (31) is a monotone increasing function of σ , two integrals of the right-hand side of (30) are absolutely convergent for all s and represent integral functions.

§4. Analogue to Siegel's formulation

The first integral of (30) is equal to

$$\frac{Q}{w} \left\{ \pi c\left(\mathfrak{a}\right) \right\}^{q/2} \int_{1}^{\infty} u^{\left((ns+q)/2\right)-1} du \int_{-1/2}^{1/2} \int \left| P\left(\varepsilon_{1}^{y_{1}} \varepsilon_{2}^{y_{2}} \cdots \varepsilon_{r}^{y_{r}}\right) \right| \\
\times \sum_{\lambda \in \mathfrak{a}, \ \lambda \neq 0} \psi(\mathfrak{a}, \ \lambda) P(\lambda) \exp \left\{ -\pi c(\mathfrak{a}) u \sum_{p=1}^{n} |\lambda^{(p)}|^{2} \cdot |\varepsilon_{1}^{(p)y_{1}} \varepsilon_{2}^{(p)y_{7}} \cdots \varepsilon_{r}^{(p)y_{r}}|^{2} \right\} \\
\times dy_{1} dy_{2} \cdots dy_{r},$$
(32)

by the convergency of (31). If we put

$$\lambda = \xi \rho \varepsilon_1^{\boldsymbol{b}_1} \cdot \cdot \cdot \varepsilon_r^{\boldsymbol{b}_r},$$

where ρ is a root of unity and b_j $(1 \le j \le r)$ is an integer, then we obtain, using (12),

$$\psi(\mathfrak{a}, \lambda)P(\lambda) = |P(\varepsilon_1^{b_1} \varepsilon_2^{b_2} \cdots \varepsilon_r^{b_r})| \psi(\mathfrak{a}, \xi)P(\xi),$$

and (32) turns out to be equal to

$$Q\{\pi c(a)\}^{q/2} \int_{1}^{\infty} u^{((ns+q)/2)-1} du \sum_{b_{1}, b_{2}, \dots, b_{r}=-\infty}^{\infty} \int_{-1/2}^{1/2} \int |P(\varepsilon_{1}^{b_{1}+y_{1}} \cdots \varepsilon_{r}^{b_{r}+y_{r}})|$$

$$\times \sum_{(\xi) \subseteq a, \ \xi \neq 0} \psi(a, \ \xi) P(\xi) \exp\{-\pi c(a) u \sum_{p=1}^{n} |\xi^{(p)} \varepsilon_{1}^{(p)b_{1}+y_{1}} \cdots \varepsilon_{r}^{(p)b_{r}+y_{r}}|^{2}\}$$

$$\times dy_{1} dy_{2} \cdots dy_{r}$$

$$= Q\{\pi c(a)\}^{q/2} \int_{1}^{\infty} u^{((ns+q)/2)-1} du \int_{-\infty}^{\infty} \int_{(\xi) \subseteq a, \ \xi \neq 0} \sum_{p=1}^{\infty} \psi(a, \ \xi) P(\xi)$$

$$\times \exp\{-\pi c(a) u \sum_{p=1}^{n} |\xi^{(p)} \varepsilon_{1}^{(p)x_{1}} \cdots \varepsilon_{r}^{(p)x_{r}}|^{2}\} \cdot |P(\varepsilon_{1}^{x_{1}} \varepsilon_{2}^{x_{2}} \cdots \varepsilon_{r}^{x_{r}})|$$

$$\times dx_{1} dx_{2} \cdots dx_{r}.$$
(33)

Since the summation is absolutely and uniformly convergent for

$$2^a \leq u \leq 2^{a+1}, \quad a_j \leq x_j \leq a_j+1 \quad (1 \leq j \leq r),$$

where a is a non-negative integer and a_j is an integer, (33) is equal to

$$Q\{\pi c(\mathfrak{a})\}^{q/2} \sum_{(\mathfrak{f}) \subseteq \mathfrak{a}, \ \mathfrak{f} \neq \mathfrak{0}} \psi(\mathfrak{a}, \ \mathfrak{f}) P(\mathfrak{f}) \int_{1}^{\infty} u^{((n\mathfrak{f}+q)/2)-1} du$$

$$\times \int_{-\infty}^{\infty} \int \exp\{-\pi c(\mathfrak{a}) u \sum_{p=1}^{n} |\mathfrak{f}^{(p)} \varepsilon_{1}^{(p)x_{1}} \cdots \varepsilon_{r}^{(p)x_{r}}|^{2}\} \cdot |P(\varepsilon_{1}^{x_{1}} \varepsilon_{2}^{x_{2}} \cdots \varepsilon_{r}^{x_{r}})|$$

$$\times dx_{1} dx_{2} \cdots dx_{r}. \tag{34}$$

By transformation of (27), (34) is changed into

$$\{\pi c(\mathfrak{a})\}^{q/2} \sum_{(\xi) \subseteq \mathfrak{a}, \ \xi \neq 0} \psi(\mathfrak{a}, \ \xi) P(\xi) \int \cdots \int \exp\{-\pi c(\mathfrak{a}) \sum_{p=1}^{n} |\xi^{(p)}|^{2} t_{p}\}$$

$$\times (\prod_{p=1}^{n} t_{p}^{(s+a_{p})/2}) \frac{dt_{1} dt_{2} \cdots dt_{r+1}}{t_{1} t_{2} \cdots t_{r+1}}.$$

$$(35)$$

If $\xi = ab$, then

$$N(\boldsymbol{\xi}) = N(\mathfrak{a}) N(\mathfrak{b})$$

and

$$\psi(\mathfrak{a}, \xi) P(\xi) = \chi(\mathfrak{b}_{\eta}(\xi)) P(\xi) = \chi(\mathfrak{b}) |P(\xi)|.$$

Now we put

$$\pi c(\mathfrak{a}) |\xi^{(p)}|^2 t_p = z_p \qquad (1 \leq p \leq r+1).$$

Inserting these in (35), we can prove that the first integral of (30) is equal to

$$A(\chi)^{s/2} \sum_{\mathfrak{b} \in \mathfrak{N}, \mathfrak{b} \neq \mathfrak{o}} \frac{\chi(\mathfrak{b})}{N(\mathfrak{b})^s} \Gamma(s, \chi, \mathfrak{b}).$$

Similarly we can prove that (31) is equal to

$$A(\chi)^{\sigma/2} \sum_{\mathfrak{b} \in \widehat{\mathfrak{N}}, \ \mathfrak{b} \neq \mathfrak{o}} \frac{1}{N(\mathfrak{b})^{\sigma}} \Gamma(\sigma, \ \chi, \ \mathfrak{b}),$$

so that this is also a monotone increasing function of σ ($-\infty < \sigma < \infty$). Hence (7) is proved. We repeat the same argument with respect to the second integral of (30), and finally we obtain

$$\begin{aligned} A(\chi)^{s/2} \Gamma(s, \chi) L(s, \Re, \chi) \\ &= -\frac{2Q}{nw} E_0 \Big(\chi(\Re) \frac{1}{s} + \overline{\chi}(\widehat{\Re}) \frac{1}{1-s} \Big) \\ &+ A(\chi)^{s/2} \sum_{\mathfrak{b} \in \widehat{\Re}, \ \mathfrak{b} \neq 0} \frac{\chi(\mathfrak{b})}{N(\mathfrak{b})^s} \Gamma(s, \chi, \mathfrak{b}) \\ &+ A(\chi)^{(1-s)/2} I(\chi) \sum_{\mathfrak{b} \in \widehat{\Re}, \ \mathfrak{b} \neq 0} \frac{\overline{\chi}(\mathfrak{b})}{N(\mathfrak{b})^{1-s}} \Gamma(1-s, \overline{\chi}, \mathfrak{b}), \end{aligned}$$

whence follows (8) immediately.

- 10

References

- E. Hecke, Über die L-Funktionen und den Dirichletschen Primzahlsatz für einen beliebigen Zahlkörper, Aus den Nachrichten von der K. Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse (1917), 1-20.
- [2] E. Landau, Über Ideale und Primideale in Idealklasse, Mathematische Zeitschrift, 2 (1918), 52-154.
- [3] K. Prachar, Primzahlverteilung, Springer, 1957.
- [4] C. L. Siegel, Über die Klassenzahl quadratischer Zahlkörger, Acta Arithmetica, 1 (1935), 83-86.
- [5] Z. Suetuna, Analytic number theory (in Japanese), Iwanami, 1950.

Mathematical Institute Nagoya University