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Some fixed-point theorems

on locally convex linear

topological spaces

E. Tarafdar

Let (E, T) be a locally convex l inear Hausdorff topological

space. We have proved mainly the following r e su l t s .

( i ) Let / be nonexpansive on a nonempty T-sequentially

complete, T-bounded, and starshaped subset M of E and l e t

(I-f) map T-bounded and T-sequentially closed subsets of M

into T-sequentially closed subsets of M . Then / has a

fixed-point in M .

( i i ) Let / be nonexpansive on a nonempty, T-sequentially

compact, and starshaped subset M of E . Then / has a

fixed-point in M .

( i i i ) Let (E, T) be T-quasi-complete. Let X be a

nonempty, T-bounded, T-closed, and convex subset of E and M

be a T-compact subset of X . Let F be a commutative family

of nonexpansive mappings on X having the property that for some

f,£F and for each x (. X , T-closure of the set

( „
: n - 1 , 2 , .

contains a point of M . Then the family F has a common fixed-

point in M .

Received 31 May 1975. Communicated by Sadayuki Yamamuro.

241

https://doi.org/10.1017/S0004972700024436 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700024436


242 E. T a r a f d a r

Introducti on

Some r e su l t s concerning fixed-point theorems for nonexpansive mappings

on l inear topological spaces have recently been obtained by Taylor [10] and

also Tarafdar [ 9 ] . These resul ts hold for nonexpansive mappings on a

complete bounded set of a linear topological space. In the f i r s t section

of t h i s paper we have shown that similar resu l t s can be obtained by

weakening the completeness condition to sequential completeness. The main

tool in t h i s paper wi l l be the Minkowski functional of a balanced, convex

(that i s , absolutely convex) bounded subset obtained from a given bounded

set of local ly convex l inear topological spaces.

Kakutani [ 6 ] , Markov [8 ] , and Day [2] have investigated the fixed-

point theorems for a commutative family of l inear continuous self mappings

on a compact convex subset of a l inear topological space. DeMarr [3 ] ,

Bel luce and Kirk [ 7 ] , and others, have considered the fixed-point theorems

for a commutative family of nonexpansive mappings (not necessarily l inear)

on a Banach space. In Section 2 of our paper we have established that the

resu l t of Bel luce and Kirk [ I ] , which includes that of DeMarr, can be

extended to the case of a locally convex l inear topological space. As in

[ ' ] our proof depends on a lemma of DeMarr and a theorem of Gohde [4] , To

suit our requirements we have also extended the above lemma and theorem to

the local ly convex l inear topological space s i tuat ion. These, par t icular ly

the extension of Gohde1s Theorem, have the i r own in te res t .

1 .

Throughout this paper each locally convex linear topological space

will be assumed Hausdorff. Let (E, x) be a locally convex linear

topological space. Then a family [p : a € j] of seminorms defined on E

is said to be an associated family of seminorms for x if the family

[pU : p > 0] , where U = (1 U and U = \x : p (x) < X> , forms a
i=l ai ai *• ai >

base of neighbourhoods of 0 for x . The set U is also given by

U = {x : p{x) < 1} where p(x) is the seminorm max p , p , ..., p

L ax
 a2 V

A family \p : a £ j] of seminorms defined on E is said to be an
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augmented associated family for T i f \jp : a € i] i s an associated

family for x and has the further property tha t , given a, 8 € I , the

seminorm max[p , Pp] € \p : a € j ] . We shall denote an associated

family and an augmented associated family for T by A(x) and A*(x)

respectively. I t i s well known (see [7 ] , p . 203) that given a local ly

convex l inear topological space {E, x) there always exists a family

\p : a £ l\ of seminorms defined on E such that [p : a € i ] = A*{x) .

Conversely each family [p : a € j ] of seminorms defined on E with the

property that for each x € E with x + 0 there is at leas t one a € J

such that p (x) # 0 always determines a unique local ly convex topology x

on E such that ^(x) = \p : a Z j] and A(x) can be extended to A*{x)

by adjoining to A(x) a l l seminorms of the form max p , p , . . . , p

for each f in i t e subset [a. , a a ] of the index set J .

DEFINITION. Let {E, x) be a local ly convex l inear topological

space. Then a mapping f of a subset M c E into i t s e l f i s said to be

A{i)- [A*(X))-nonexpansive on M if, for a l l x, y € M ,

Pa{fM-f{y)) S pa(x-y) for each p a € 4(x) (A*(T)) .

(For equivalent definitions see [70] and [9] .)

I t i s t r i v i a l to see that if f i s 4*(x)-nonexpansive then f i s

also A(x)-nonexpansive. I t i s also true (see [9]) that if / i s A(T)-

nonexpansive then / i s also A*(x)-nonexpansive. Hence, instead of

saying that f is A(x)- or .A*(x)-nonexpansive, we will simply say that

/ i s nonexpansive in ei ther case.

In what follows the following construction will be crucia l . Let M

be a x-bounded set of a local ly convex l inear topological space (E, x)

and l e t A*(x) = \j> : a € j ] . Let us consider the family {u : a € j}

where U= {x : Pa(x) - l } • Then the family {u : a £ i) i s a base of

closed absolutely convex neighbourhoods of 0 .

Since M i s x-bounded, we can select a number A > 0 for each

a (. I such that M c X U . Then clearly B = (\ \ V i s x-bounded,
Ct Ct n Q Q
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244 E. T a r a f d a r

T-closed and absolutely convex and M c B . The l inear span of B in E
CO

i s equal to £•_ = U nB and B is an absolutely convex a-body (that i s ,
n=l

has an algebraic in ter ior point) . The Minkowski functional of B i s a

norm ||*|L on Eu . Thus Ev i s a normed space with the norm ||*|L and
D D D D

the closed unit ball B . The norm topology on ff_ is finer than the
D

topology on £„ induced by T (for de ta i l s see [7 ] , p . 252 or [5 ] ,

pp. 207-208). Now since p is the Minkowski functional of U and

H'IID i s the Minkowski functional of B and B c \ U we can easily see
u 01 Ct

t h a t , for each x f £„ , p (a) 5 X ||x|L .

Thus, for each a € X , we have

(1) P

We now prove that

{ x\
(2) sup PJ—I = Ikllg f o r

 g

Let x € S_ . We assume t h a t sup p U— < i|~c|| _, and deduce a
a K or

f a;l fx l
contradict ion. Let sup p k— = A. Then we have p T— 5 X < ||x|L for

a a^ a> a>-V B

each a € J .

Now p U— £ X implies that T- € X U for each a € I ; that i s ,a(.AaJ A a a

Y € B • But IMID
 > A implies that a; ^ XB . Thus we have a

contradict ion.

We are now in a posit ion to prove the following theorem.

THEOREM 1.1. Let (E, T) be a locally convex linear topological

space and A*(T) = \p : a € l ] . If f is a nonexpansive mapping on a

T-bounded set M c: E , then f is also nonexpansive on M with respect to

the norm \\'\\B where II'IL has the meaning as explained above.
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Proof. Let x, y € M . Then since f i s nonexpansive on M ,

Pa{f(x)-f(y)) £ Pa(a:-y) for each a € I . Hence

x-y

Thus | | / (x)- / (y) | | B £ \\x-y\\B from (2) .

DEFINITION. A subset I of £ i s called starshaped i f there exists

a point p d X such that for each x € X and real t with 0 < t < 1 ,

tx + (l-t)p € X . p i s called a star centre of X . Each convex subset

of E i s thus starshaped.

The following r e su l t , with M assumed to be complete, is known (see

[70] and [9] ) . Here we have relaxed the completeness condition by

sequential completeness.

THEOREM 1.2. Let (E, x) be a locally convex linear topological

space and A*(x) = [p : a € ij . Let M be a nonempty, starshaped,

T-bounded, and x-sequentially complete subset of E , and f be a

nonexpansive mapping on ' M . Then 0 lies in II'IL - cl(I-f)M and hence

in x - cl(I-f)M where I is the identity map on M , cl A stands for

the closure of a subset A of E and II'IL has the meaning as explained

earlier.

Proof. We have already mentioned that £ is a normed space with the
D

norm j| • || and with B as the unit b a l l . Since the norm topology on £a B

has a base of neighbourhoods of 0 consisting of x-closed se t s , namely

the scalar multiples of B and M i s x-sequentially complete, we know

that M is a | | ' IL-sequentially complete subset of £ (apply 18, k .h (b)

of [7] to the topology on En induced by x and the ||*|| -topology on
D D

£"„ ) . Let p be the star centre of M . For each t , 0 < t < 1 , we

define

ft(x) = tf{x) + (l-t)p , x € M .

Then clearly f maps M into itself. Moreover,
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246 E. T a r a f d a r

= \\t[f(x)-f(y))\\B 5 t\\x-y\\

for a l l x, y € M as / is nonexpansive on M with respect to the norm

H'llg 'by Theorem 1.1. Thus / is a contraction on M with respect to

the norm ||*||D . Now since M i s || • || -complete, by Banach's contraction
D D

mapping principle, /, has a un

the definition of /, , we have

mapping principle, / , has a unique fixed-point a; , say, in M . By

Hence

| | ( J - / ) ( x , ) | L = 1 - 7 ( I k J L + l l p I L ) £ 2 x - t - 0 as * - l ,

Thusbecause x, and P are in the unit ball of EL .

0 € | | ' | | - cl(J-f)W c T - cl(I-f)M . The last inclusion follows from the

fact that the || *||--topology on E_ is finer than the topology induced on
D D

EB by x .

REMARK. This theorem includes Theorem 2.2 in [10] (also Lemma 3.1 in

[9]) when E i s a locally convex linear topological space. Also we note

that here we have obtained a stronger result under a weaker hypothesis.

COROLLARY 1.1. Let (E, T) be a locally convex linear topological

space and A*(i) = [pa : a e i] . Let f be nonexpansive on a nonempty,

T-sequentially complete, i~bowided, and starshaped subset of E , and let

(i-f) map T-bounded and T-sequentially closed subsets of M into

x-sequentially closed subsets of M . Then f has a fixed point in M .

A point p € x - cl M is a T-sequential limit point of M if there

exists a sequence {p } , p i M , such that p -*• p in the T-topology.

M i s called T-sequentially closed if each T-sequential limit point of M

belongs to U .

Proof. Since M i s T-sequentially complete and E i s Hausdorff, i t

follows that M is T-sequentially closed. (Let p -* p in the

T-topology and p ? M . Then {p } is a T-Cauchy sequence and,
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therefore, p £ M .) Hence, by hypothesis [I-f)M is x-sequentially

closed. By Theorem 1.2, 0 € ||«|L - cl(I-f)M . But

|| • || _ - cl(I-/)Mc T-sequential-cl(J-f)M because i t follows that each point
D

in ||«|L - cl(I-f)M is a x-sequential limit point of (I-f)M as a

|| • ||--topology is finer than the x-topology. Hence 0 d {I-f)M . This
D

completes the proof.
COROLLARY 1.2. Let (E, x) be a locally convex linear topological

space and A*(T) = [p : a € j ] . Let f be nonexpansive on a nonempty,

T-sequentially compact, and starshaped subset M of E . Then f has a

fixed-point in M .

Proof. M being x-sequentially compact is x-bounded and

x-sequentially complete. Hence, by Theorem 1.2 and by the reason given in

Corollary 1.1,

0 € ||«|L - cl{I-f)M c x-sequential-cl(r-/)M .
D

Thus there exists a sequence {y } , y € (I-f)M , such that y -»• 0 in

the x-topology. Now since f is nonexpansive on M , i t follows that /

is p -continuous for each a € J . Hence / is x-continuous and,

therefore, (1-f) is x-continuous. Then i t follows that (l-f)M is

sequentially compact as M i s . Now i t is easy to see that 0 € (I-f)M .

This completes the proof.

2 .

Before we prove the main resul t (Theorem 2.1) of t h i s section we need

to prove two lemmas. The following r e su l t , which we write as a lemma, was

proved by Gohde ( [4 ] , Theorem 5) in a normed space. We extend th i s to a

locally convex l inear topological space and also weaken the convexity

hypothesis to the starshaped convexity.

LEMMA 2.1 . Let (E, x) be a locally convex linear topologioal space

and A*{T) = [p : a € j ] . Let f be nonexpansive on a nonempty,

x-cloeed, T-bounded, and starshaped subset M of E . Further assume

that there exists a j-compact subset L of M such that, for each

x £ M ,
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248 E. T a r a f d a r

T - c l { / * ( z ) : n = 1 , 2 , . . . } n L * 0 .

Then there exists at least one fixed-point of f in L .

Proof. Let p be the star centre of M . For each t , 0 < t < 1 ,

we define

ft(x) = tf(x) + (l-t)p , x € M .

Then, in e x a c t l y t h e same way as in t h e proof of Theorem 1.2, we can show

t h a t / , i s a c o n t r a c t i o n on M with r e spec t t o the norm ll'lln wherev o

||*||g has the meaning as explained in the beginning of Section 1.

For any x € M , \fl(x) > i s a ||*|L-Cauchy sequence and there are
{ v ) °

points in M which are displaced by f, with respect to || ' | |D by an
v D

arbitrary small amount. Let

Then we have

ll/(*t)^giB = \\f{xt)-{tf{xt)+(i-t)p}+ft{xt)-xt\\B

5 \\f{xt)-tf{xt)\\B

as fix.) and p are in the unit ball of E . Thus there are points int B

M which w i l l be d i s p l a c e d by f (with r e spec t t o II*IIR ) by an a r b i t r a r y

small amount.

By t h e above i n e q u a l i t y and t h e || 'IID-nonexpansion of f on M (due
D

to Theorem l.l) we have that, for each positive integer n ,

-A*,)! = 3(1-*) •

Thus, from (l) of Section 1, we have

(3) p
X
a

£ 3(l-t) for each a € I .
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Now, by our hypothesis, there is a y € L such that y, is a

T-limit point of \f [xA > . Clearly 3/ is also a p -limit point of{ t ) t a

[ sir <\if [XJ } for each a d I . Now let a £ I be arbitrary. Then, since y
\. t j v

is a p -limit point of \f (x,) ̂  , for any £ > 0 , there is a positive
a I * J

integer n such that

(U) p.If'lx.)-V,l < £ .

Let £ "be arbitrarily chosen. Then since X > 0 , there is a positive

integer m such that

(5) i

From (3) , (5) , and the p -nonexpansion of / , we have

- V

< e + 3(l-t) + E

Since e is arbitrary, we must have

f{yt)-yt
(6) 5 3(1-*) •

Now we consider a sequence {t.} of real numbers such that 0 < t . < 1

for each i and lim t . = 1 .
•£-xo

As £ i s T-compact, the sequence \y \ has a T-cluster point j

in L . Clearly y i s also a p -c lus ter points of ly \ and hence we
V -7* J

can select a subsequence •(!/ k) such that as the
ni

p -topology sat isf ies the f i r s t axiom of countabili ty. In view of (6) we
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have

P j / | 2 / + j - 2 / t j S l l m 3 X j l - ^ ] = 0 .
l i n i

Again, since f i s p -nonexpansive on M , i t follows that / is

p -continuous on M . Hence f\y. •* /(j/) in the p -topology; that
a ^ n •' a

i

' lim PaM»* 1-^tf)] = ° •I S .

We now have

pa{f(y)-y) *Pa[ny)-f[yt )} - Pa[f[yt )-yt } * Pa[yt -v) ,} a[t^ ^ ̂  ^
where i = 1, 2, ... . Taking the limit as i -*- °° , we have

pa[f(y)-y) = o .

Since a is arbitrary, p [f(y)-y) = 0 for each a £ -T . Again, since E1

is Hausdorff, f(y) = i/ . This completes the proof.

REMARK. In proving the above theorem, if we start at the outset with

an arbitrary a € J , then i t is true that / , and {/.(x)} are

respectively a contraction and a Cauchy sequence with respect to the semi-
norm p . But then x. will depend on a and hence the technique of

ot v

Gohde's applied a-wise does not work. Thus i t seems that the use of

II'HD , as made in the above proof, is appropriate.

The next lemma was proved by DeMarr [3] in a Banach space.

LEMMA 2.2. Let (X, x) be a locally convex linear topological space

and A*{T) = \p : a (. j ] . Let M be a nonempty, -(-compact subset of X

and K the convex hull of M . If, for any 3 € I , the p^-diameter

, g) of M is greater than 0 , then there exists an element u (. K

such that

sup{pR(z-u) : x € M) < 9(M, g) .
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Proof. The proof of [3 ] , with slight adjustment, will do. Since M

i s T-compact, M i s p -compact for each a € X . Thus there exist

points xQ, x in M such that pAx-x^) = 3(Af, g) . Let M c M be

the maximal so that {xQ, x } c M. and p_(x-z/) = 3(Af, 6) for a l l

d is t inct x, y £. M- . M~ i s clearly nonempty. Also, since M i s

pR-compact, i t follows that M~ is f i n i t e . Let MR = {x_, x. , . . . , x } .

We define

Since M i s pg-compact, there exists a point j / _ (. M such that

Pp[y.-u) = sup{pR(x-w) : x € M] . Again, since Pp\y -x-A 5 3(M, 3) for

a l l fe = 0, 1 , . . . , n , w e have

n .

k=0 n

Now pAyo-u) = 3(M, 6) would imply that VAUQ-^-J] = 3(M, 6) > 0 for a l l

k = 0, 1, . . . , n • But t h i s would then imply, by definition of MQ , that

y € M- ; that i s , t/ = x, for some fe = 0, 1, . . . , n , which would

contradict that P O I I / A ^ J
 = 3(^> 3) > 0 for a l l k = 0, 1, . . . , w .

Hence pR(j/n-w] < d(M, 3) • This completes the proof.

REMARK. In [3] i t i s assumed that K i s closed. This i s extraneous.

We now state and prove our main theorem of th i s section.

THEOREM 2 . 1 . Let {E, T) be a quasi-complete locally convex linear

topological apace and A*(x) = [p : a Z i] . Let X be a nonempty,

T-bounded, x-alosed and convex subset of E and M be a x-compact

subset of X . Let F be a nonempty commutative family of nonexpansive

mappings on X having the property that for some f.ZF and for each

x C X ,

T - (x) : n = 1, 2, .. .\ n M * 0 .
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Then the family F has a oormon fixed point in M .

Proof. The proof proceeds in the general l ine of argument of the

proof of Theorem 1 in [!]• Let K be a nonempty, T-closed, and convex

subset of X such that f(K) c K for each f (. F . Let x € K . Then

^Co;) V S. K . By hypothesis we have K n M 3 T - cilfhx) \ n M + 0 .

Applying Zorn1s Lemma we obtain a subset X* of X which is minimal

with respect to being nonempty, T-closed, convex, and being mapped into

i t se l f by each f € F . We set M* = X* n M . M* # 0 by the above

inclusion re la t ion. By our Lemma 2.1 i t follows that / has a nonempty

T-closed fixed-point set H in M* . Now using commutativity of F and

proceeding exactly as in [ 7 ] we can find a subset B* of H which is

minimal with respect to being nonempty, T-closed, and mapped into i t se l f

by each f (. F . Let g € F . Then g , being nonexpansive on X , i s

p -continuous for each a € J and hence T-continuous on X . Therefore

g{H*) i s T-closed as H* is T-compact. Now for each f £ F ,

f[g{H*)) = g[f(H*)) c g(H*) . Hence the minimality of H* implies that

g(H*) = H* . Hence H* i s mapped onto i t se l f by each f € F .

Let W be the convex T-closure of H* . Then W is T-compact, as

H* is so, and E is quasi-complete. We now prove that 3(V, a) = 0 for

each a € J where 9(W, a) is the p -diameter of W . We assume that

>̂ B) > 0 for some 3 € J and deduce a contradiction. Then, by

applying our Lemma 2.2 to the compact set W , there is a point x € W

such that

sup{pg(x z) : z € W] = r < 3(V, 6) .

As in [7] we set

C^ = {w f V : Pg(w-s) 5 r for a l l 2 € #*}

and

C^ = {w € X* : pg(w-2) 5 r for a l l s € ff*} .

Then clj5 = C^ n W . Since f(ff*) = H* for each / € F , by using
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f 8l 6Po-nonexpansion of each f i F , we can show that / Cp c C . Clearly

8 8
C i s nonempty and convex. Also C? i s T-closed. (For l e t y be a

T-limit point of C% . Then since X* i s T-closed, z/ € X* . Also j /

O Q

being a T-limit point of C is a p--limit point of C^ . Let e be

n

arbitrarily given. Then there exists a w € C ? such that Pn(i/-^) < e •

Now for any z £ H* 9 pAy-z) - pAy-ti) + pAw-z) < £ + r . Since e is
n o

arbi t rary , pJy-z) 5 r . Hence j / € Ĉ  •) Hence Ĉ  = ^* fey t h e

o
minimality of .Jf* . Thus we obtain that Ĉ  = W . Let W be the convex

Po-closure of H* . Then we have d{W, 3) S 9((/ ' , 8) = 3(ff*, 3) as

W c W' , each T-limit point of a set being also a p^-limit point of the

set . Hence there must be points u and v in H* such that

Pg(u-f) > r . But since H* c W = C^ , pAu-v) - r . Thus we obtain a

contradiction. Hence d(W, a) = 0 for each a € J . Since £" is

Hausdorff, t h i s implies that H* consists of a single point which must be

a fixed point of each f £ F . This completes the proof.
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