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Some fixed-point theorems
on locally convex linear

topological spaces

E. Tarafdar

Let (E, T) be a locally convex linear Hausdorff topological

space. We have proved mainly the following results.

(i) Let f Dbe nonexpansive on a nonempty T-sequentially
complete, T-bounded, and starshaped subset M of E and let
(I-f) map Tt-bounded and T-sequentially closed subsets of M
inte T-sequentially closed subsets of M, Then f has a

fixed-point in M .

(ii) Let f Ve nonexpansive on a nonempty, T-sequentially
compact, and starshaped subset M of E . Then f has a

fixed-point in M .

(iii) ret (E, t) be T-quasi-complete. Let X be a

nonempty, T-bounded, T-closed, and convex subset of F and M
be a T-compact subset of X . Let F be a commutative family
of nonexpansive mappings on X having the property that for some

fi € F and for each &« € X , T-closure of the set

{ff(x) tn=1, 2, }

contains a point of M . Then the family F has a common fixed-

point in M .
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Introduction

Some results concerning fixed-point theorems for nonexpansive mappings
on linear topological spaces have recently been obtained by Taylor [10] and
also Tarafdar [9]. These results hold for nonexpansive mappings on a
complete bounded set of a linear topological space. In the first section
of this paper we have shown that similar results can be obtained by
weakening the completeness condition to sequential completeness. The main
tool in this paper will be the Minkowski functional of a balanced, convex
(that is, absolutely convex) bounded subset obtained from a given bounded

set of locally convex linear topological spaces.

Kakutani [6], Markov [§], and Day [Z] have investigated the fixed-
point theorems for a commutative family of linear continuous self mappings
on a compact convex subset of a linear topological space. DeMarr [3],
Belluce and Kirk [1], and others, have considered the fixed-point theorems
for a commutative family of nonexpansive mappings (not necessarily linear)
on a Banach space. 1In Section 2 of our paper we have established that the
result of Belluce and Kirk [1], which includes that of DeMarr, can be
extended to the case of a locally convex linear topological space. As in
[1] our proof depends on a lemma of DeMarr and a theorem of Gohde [4]. To
suit our requirements we have also extended the above lemma and theorem to
the locally convex linear topological space situation. These, particularly

the extension of Gohde's Theorem, have their own interest.

1.

Throughout this paper each locally convex linear topological space
will be assumed Hausdorff. Let (E, T) be a locally convex linear

topological space. Then a fanmily [?a o € 1] of seminorms defined on E

is said to be an associated family of seminorms for Tt if the family

n
[pU : p > 0] , where U= N U and U = {x :p. (x) < l} , forms a
R TN 0. 0.
=1 "7 1 1

base of neighbourhoods of O for T . The set U 1is also given by

U= {x: p(x) <1} where p(z) is the seminorm max[?a s Py > ce*o Py ]
1 2 7

A family [p, : @ € I] of seminorms defined on E is said to be an
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augmented associated family for T if Epu o € I] is an associated

family for T and has the further property that, given o, B8 € I , the

seminorm ma.x[pa, pB] € [__pa o € I] . We shall denote an associated

family and an augmented associated family for T by A4(T) and A4*(1)
respectively. Tt is well known (see [7], p. 203) that given a locally
convex linear topological space (E, T) there always exists a family
[pa : a € I|] of seminorms defined on E such that fpa sa € I] = A%(1) .

Conversely each family [pa : o € J] of seminorms defined on E with the

property that for each x € £ with & # 0 there is at least one o € I

such that (x) # 0 always determines a unique locally convex topology T
Py

on E such that A4(T) = [pa o € J] and A(T) can be extended to A*(71)

by adjoining to A(t) all seminorms of the form max[pa

-
1 % °.

n

for each finite subset [oal, a2, fees an] of the index set J .

DEFINITION. rLet (EF, T) be a locally convex linear topological
space. Then a mapping f of a subset M CF into itself is said to be

A(1)- (4*(1))-nonexpansive on M if, for all x, y €M ,

Pa(f(x)—f‘(y)) < pa(:c—y) for each p ¢ Alt)  (a*(0)) .

(For equivalent definitions see [70] and [9].)

It is trivial to see that if f 1is A*(T)-nonexpansive then f is
also A(T)-nonexpansive. It is also true (see [9]) that if f is A(1)-
nonexpansive then f 1is also A*(tT)-nonexpansive. Hence, instead of
saying that f is A(T)- or A*(tT)-nonexpansive, we will simply say that

f 1is nonexpansive in either case.

In what follows the following construction will be crucial. Let M
be a T-bounded set of a locally convex linear topological space (E, T)

and let A*(1) = [p, : @ € I] . Let us consider the family {u, : o« €1}

A

where U, = {x : pa(x) =1} . Then the family {Ua : o € I} is a base of
closed absolutely convex neighbourhoods of 0 .
Since M 1is T1-bounded, we can select a number }‘a > 0 for each

o € T such that MC A U . Then clearly B =0 AU is T-bounded,
a‘a a4 aa
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T—closed and absolutely convex and M C B , The linear span of B in E

©

is equal to EB = U nB and B is an absolutely convex o-body (that is,
n=1

has an algebraic interior point). The Minkowski functional of B 1is a

norm ”'”B on EB . Thus Eb is a normed space with the norm ”.”B and

the closed unit ball B . The norm topology on EB is finer than the

topology on Ep induced by T (for details see [7], p. 252 or [51,

pp. 207-208). Now since pa is the Minkowski functional of Ua and
”.”B is the Minkowski functional of B and B C )\OLUOL we can easily see

that, for each « € Ep , pa(x) = )\allxIIB .

Thus, for each o € I , we have
Z| <
(1) pa()\a] < llal -

We now prove that

x —
(2) sup pa{T] = Hx”B for each x € Ej .
o o
Let x € Ep . We assume that sup pa[)\i] < IIxIIB and deduce a
o o

contradiction. Let sup pa[j\x—] = A. Then we have pa[}\i] <A< ||x||B for
o o o

each o € I .

X

€EAU for each o € I ;3 that is,
A o o

Now pa[)\i] = X implies that
o

X € B . But Hx”B > A implies that x ¢ AB . Thus we have a
contradiction.

We are now in a position to prove the following theorem.

THEOREM 1.1. Let (E, 1) be a locally convex linear topological

space and A*(T) [pa 0o € I] . If f <s a nonexpansive mapping on a

1-bounded set M C E , then f 4is also nonexpansive on M with respect to

the norm ||-||B where ||-||B has the meaning as explained above.
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Proof. Let x, y € M. Then since f is nonexpansive on M ,

pa(f(x)-f(y)) < pa(x-y) for each o € I . Hence

oup Pa[ (m{ ( )] < sup pa[%-l]
o a o [0

Thus ”f(x)—f(y)HB < Hx—yHB from (2).

DEFINITION. A subset X of E is called starshaped if there exists
a point p € X such that for each x € X and real ¢ with 0 < ¢ <1,
te + (1-t)p € X . p 1is called a star centre of X . Each convex subset

of E 1is thus starshaped.

The following result, with M assumed to be complete, is known (see
[70] and [9]). Here we have relaxed the completeness condition by

sequential completeness.

THEOREM 1.2. Let (E, t) be a locally convex linear topological
space and A*(t1) = [?a : 0 €I . Let M be a nonempty, starshaped,

1-bounded, and t-sequentially complete subset of E , and f be a
nonexpansive mapping on "M . Then 0 Lies in ”.“B - cl(I-f)M and hence

in 1 - cl(I-f)M where I 1is the identity map on M, cl A stands for
the closure of a subset 4 of E and ”.”B has the meaning as explained

earlier.
Proof. We have already mentioned that EB is a normed space with the

norm ”.”B and with B as the unit ball. Since the norm topology on Ey

has a base of neighbourhoods of 0 consisting of Tt-closed sets, namely
the scalar multiples of B and M 1is t-sequentially complete, we know

that ¥ is a ”'HB—sequentially complete subset of £ (apply 18, k.h (b)
of [7] to the topology on Ey induced by T and the ”-HB—topology on

EB ]. Let p Dbe the star centre of M . For each ¢, 0< ¢t <1, we

define

felz) = tf(z) + (1-t)p , = €M .

Then clearly fE maps M 1into itself. Moreover,
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I (2)=F )l = I (F @)= Nl = tla-yll,
for all x, y € M as f 1is nonexpansive on M with respect to the norm
II'IIB by Theorem 1.1. Thus ft is a contraction on M with respect to
the norm II'HB . Now since M is ||°||B-complete, by Banach's contraction
mapping principle, f% has a unique fixed-point T, , say, in M . By

the definition of ft » We have

(1) (z,) = 2, - 36, (e)-o00) = 1 - H (o) -
Hence

I )l = 1 = Y el <2f -3 >0 as o1,

because x, and P are in the unit ball of FE, . Thus

t B
0 € II-IIB - cl(I-f)M © T - c1(I-f)M . The last inclusion follows from the

fact that the H'IIB—topology on E

B is finer than the topology induced on

E’B by T .

REMARK. This theorem includes Theorem 2.2 in [10] (also Lemma 3.1 in
[9]) when E is a locally convex linear topological space. Also we note

that here we have obtained a stronger result under a weaker hypothesis.

COROLLARY 1.1. Let (E, t) be a locally convex linear topological
space and A*(T) = [pa ta €I . Let f be nonexpansive on a nonempty,

T-sequentially complete, T-bounded, and starshaped subset of E , and let
(I-f) map 1-bounded and T-sequentially closed subsets of M into
T-sequentially closed subsets of M . Then [ has a fized point in M .

A point p € T -cl M is a T-sequential limit point of M if there
exists a sequence {pn} » P, € M , such that p, =+ p 1in the T-topology.

M is called T-csequentially closed if each T-sequential limit point of M

belongs to M .

Proof. Since M 1is T-sequentially complete and E is Hausdorff, it

follows that M is T-sequentially closed. (Let p =+ p in the

T-topology and pn € M . Then {pn} is a T1-Cauchy sequence and,
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therefore, p € M .) Hence, by hypothesis (I-f)¥ is T-sequentially
closed. By Theorem 1.2, 0 € ”.”B - cl(I-f)¥ . But

H-HB - cl(I-f)M C T-sequential-cl(I-f)M because it follows that each point
in “.”B - cl(I-f)M is a T-sequential limit point of (I-f)¥ as a

H-HB—topology is finer than the T-topology. Hence 0 € (I-f)M . This

completes the proof.

COROLLARY 1.2. Let (E, 1) be a locally convex linear topological

space and A*(t) = [p, : o € Il . Let f be nonexpansive on a nonempty,

o
T-sequentially compact, and starshaped subset M of E . Then f has a
fixed-point in M .

Proof. M being T-sequentially compact is T-bounded and
T-sequentially complete. Hence, by Theorem 1.2 and by the reason given in

Corollary 1.1,

0 € II-IIB - ¢l (I-f)M C T-sequential-cl(I-f)M .

Thus there exists a sequence {yn} > Y, € (I-f)M , such that Y, > 0 in

the Tt-topology. Now since f is nonexpansive on M , it follows that f

is pa-continuous for each o € I . Hence f 1is T-continuous and,

therefore, (I-f) is T-continuous. Then it follows that (I-f)M is
sequentially compact as M is. Now it is easy to see that 0 € (I-f)¥ .
This completes the proof.

2.

Before we prove the main result (Theorem 2.1) of this section we need
to prove two lemmas. The following result, which we write as a lemma, was
proved by Gohde ([4], Theorem 5) in a normed space. We extend this to a
locally convex linear topological space and also weaken the convexity

hypothesis to the starshaped convexity.

LEMMA 2.1. Let (E, t) be a locally convex linear topological space
and A*(t) = [pa :a €I] . Let f be nonexpansive on a nonempty,

t-cloged, T-bounded, and starshaped subset M of E . Further assume
that there exists a T-compact subset L of M such that, for each
x €M,
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T - cl{fn(x) tn=1, 2, ...} NL#+@.
Then there exists at least one fixed-point of f in L .

Proof. Let p Dbe the star centre of M . For each ¢t , 0 < ¢t <1,

we define

flx) = tflz) + (1-t)p , = €M .

Then, in exactly the same way as in the proof of Theorem 1.2, we can show

.|B

”.”B has the meaning as explained in the beginning of Section 1.

that f% is a contraction on M with respect to the norm | where

For any « € M , {fﬁ(m)} is a H'HB—Cauchy sequence and there are
points in M which are displaced by f% with respect to ”.”B by an
arbitrary small amount. Let

I, (2,) =2l = (1-2)
Then we have
If (=)~ Mg = If (=) -{t5 (=) +-t)p}e7, (2,) <,
If(=,)-tr (), + Q-8)lplly + IF, ()=, I,
(1-8) (I, 5 +pll g+1)

= 3(1-¢) ,

A

A

as f@rt) and p are in the unit ball of EB .

M which will be displaced by f (with respect to “.“B ) by an arbitrary

Thus there are points in

small amount.
By the above inequality and the H*HB—nonexpansion of f on M (due

to Theorem 1.1) we have that, for each positive integer n ,
+1
|74 =) -] = 3000

Thus, from (1) of Section 1, we have

n (”tj ()

J < 3(1-t) for each a € I .

(3) Py,
o
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Now, by our hypothesis, there is a Yy € L such that yt is a
T-limit point of {fn(xt)} . Clearly Yy is also a pa—limit point of
{fn(xt)} for each o € I . Now let o € I Dbe arbitrary. Then, since Yy

is a pu-limit point of {fn(xt)} , for any € > 0 , there is a positive

integer #n such that

- < .
1) po| (), <
Let € be arbitrarily chosen. Then since Aa > (0 , there is a positive

integer m such that
(5) Pl 0,) < e -

From (3), (5), and the pa-nonexpansion of f , we have

Fl)-ve) (Pl ")) (),
Py A J = Py X J * Py A J
a o o
(=) -y
+pa__(i3_i <eg+ 3(1-t) + e .
Since € 1is arbitrary, we must have
fly)-v,
(6) o Aa = 3(1-t)

Now we consider a sequence {ti} of real numbers such that 0 < ti <1

for each 7 and lim¢t. =1
i *

As [ 1is Tt-compact, the sequence {yt } has a T-cluster point y
1
in L[ . Clearly y 1is also a pa—cluster points of {yt } and hence we
i
can select a subsequence {yt } of {yt } such that yt + Yy as the
n 7 n

7 7

p,~topology satisfies the first axiom of countability. In view of (6) we
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have
lim p [f[y ]-y ] = 1im 3A [1—15 ] =0 .
g U UL, J T8, ) e T AU Yy
7 7
Again, since f is pa—nonexpansive on M , it follows that [ is
pa-continuous on M . Hence f(yt ]*f(y) in the pa-topology; that
n.
1

o v ey, Jo) -0

7o .
1

We now have

Py (F(y)-y) Spa[f(y)—f[yt )] + pa[f[yt ]—yt ] + pa[yt -y] >
n. n. n. n.
7 i i 7

where ¢ =1, 2, ... . Taking the limit as ¢ - « , we have
P (Fly)-y) =0 .

Since o 1is arbitrary, pa(f(y)—y) = 0 for each o € I . Again, since F
is Hausdorff, f(y) =y . This completes the proof.

REMARK. In proving the above theorem, if we start at the outset with
an arbitrary o € I , then it is true that ft and {ft(x)} are

respectively a contraction and a Cauchy sequence with respect to the semi-

norm pa . But then xt will depend on 0o and hence the technique of

Gohde's applied o-wise does not work. Thus it seems that the use of
||°||B , as made in the above proof, is appropriate.

The next lemma was proved by DeMarr [3] in a Banach space.

LEMMA 2.2. Let (X, 1) be a locally convex linear topological space
and A*(1) = [pa : o €I . Let M be a nonempty, Tt-compact subset of X

and K the convex hull of M . If, forany B € I , the pB-diameter

3(M, B) of M <dis greater than 0 , then there exists an element u € K
such that

sup{ps(x-—u) :x € M} < 3(M, B) .
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Proof. The proof of [3], with slight adjustment, will do. Since ¥

is T—compact, M is pu—compact for each o € I . Thus there exist

points x., x. in M such that pB(xo—:z:l) =93(M, B) . Let M, C M be

0> 71 B

the maximal so that {xo, :z:l} C My and pB(x—y) = 3(M, B) for all
distinct =x, y € MB . MB is clearly nonempty. Also, since M is
pB—compact, it follows that MB is finite. Let MB = {xo, Dy eees xn}

We define
n
1
u= Yy ——zx, €K.
k=0 n+l "k

Since M 1is ps—compact, there exists a point Yy € M such that
ps(yo—u) = sup{pe(x—u) : x € M} . Again, since pB(yo—xk] = 3(M, B) for

all x=0,1, ..., n , we have
L
pglyy-d) = kgo 7 Palygz) = o, 8) .

Now pB(yO—u) = 3(M, B) would imply that pB(yo—xk) = 3(M, B) >0 for all
k=0,1, ..., n . But this would then imply, by definition of MB , that
Yo € MB 3 that is, Yo = Ty for some k=0,1, ..., n , which would
contradict that pB(yo—mk) =3(M,B) >0 forall k=0,1, ..., n.
Hence ps(yo—u) < 3(M, B) . This completes the proof.

REMARK, 1In [3] it is assumed that X 1is closed. This is extraneous.
We now state and prove our main theorem of this section.

THEOREM 2.1. Let (E, 1) be a quasi-complete locally convex linear
topological space and A*(t) = ba :a €I]. Let X be a nonempty,

T-bounded, t-closed and convex subset of E and M be a T-compact
subset of X . Let F be a nonempty commutative family of noneapansive
mappings on X having the property that for some fl € F and for each

x €X,

r-cl{f’{(x):n=1, 2, ...}nM;eo.
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Then the family F has a common fized point in M .

Proof. The proof proceeds in the general line of argument of the
proof of Theorem 1 in [1]. Let X be a nonempty, T-closed, and convex
subset of X such that f(X) € X for each f €F . Let x € K. Then

{f:(x)} C K . By hypothesis we have KN MD>D T - cl{f};(x)} nNM+@ .

Applying Zorn's Lemma we obtain a subset X* of X which is minimal
with respect to being nonempty, T-closed, convex, and being mapped into
itself by each f € F. We set Mt =X*nM. Mt # @ by the above

inclusion relation. By our Lemma 2.1 it follows that fl has a nonempty

T-closed fixed-point set H in M* . Now using commutativity of F and
proceeding exactly as in [1] we can find a subset H* of H which is
minimal with respect to being nonempty, T-closed, and mapped into itself
by each f €F . Let g € F. Then g , being nonexpansive on X , is

pa—continuous for each o € I and hence T-continuous on X . Therefore

g(#*) 1is T-closed as KH* is T-compact. Now for each f € F ,
flg(a*)) = g(f(#*)) < g(H*) . Hence the minimality of H* implies that
g(H*) = H* , Hence H* 1is mapped onto itself by each f € F .

Let ¥ be the convex T~closure of H* . Then W is T-compact, as
H* is so, and E is quasi-complete. We now prove that d(W, a) = 0 for

each a € I where 3(W, o) is the p,-diameter of ¥ . We assume that

3(W, B) >0 for some B € I and deduce a contradiction. Then, by
applying our Lemma 2.2 to the compact set W , there is a point x € W
such that

sup{pB(x z) 1z €W} =pr<3W,B) .
As in [1] we set
cﬁ = {wew: pB(w—z) =r for all z € H*}
and

c ={w€X*:pB(w-z)5r for all z € H*} .

8

B _
Then Cl = 02

N W . Since f(H*) = H* for each f € F , by using
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pB—nonexpansion of each f € F , we can show that f{CS) = CS . Clearly
Cg is nonempty and convex. Also Cg is T-closed. (For let y Dbe a

B8

T-limit point of 02 . Then since X* is 7T-closed, y € X* . Also y

being a T-limit point of Cg is a pB-limit point of Cg . Let € be

arbitrarily given. Then there exists a w € Cg such that pB(y4ﬂ) <g.

Now for any z € H* , p,(y-z) = py(yw) + p,(w-z) < € +r . Since ¢ Iis
B B 8

arbitrary, (y=2) <= r . Hence y € CB .] Hence CB = X* by the
pB Y > 2

minimality of X* . Thus we obtain that CE =W . Let W' be the convex
=

W', B) = 3(H*, B) as
W< W , each T-limit point of a set being also a pB—limit point of the

pB—closure of H* . Then we have 3{(W, B)

set. Hence there must be points u# and v in H* such that

ps(u—v) >y . But since H* C W = CB

I pB(u-v) < » . Thus we obtain a

contradiction. Hence 3(W, o) = 0 for each o € I . Since FE is
Hausdorff, this implies that H* consists of a single point which must be

a fixed point of each f € F . This completes the proof.
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