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Topologies generated by relations

Raymond E. Smithson

Let R be a relation on a set X , and if A C j set

RA = {* | (x,a) e R for some a ^ A) and Afl1 = {a; | (a,x) e f?

for some a e 4} . Also A is called an antiset in case no two

distinct elements of A are related. If A is a collection of

antisets, then we generate a topology T(A) by taking sets of the

form RA or AR (or X or 0) as subbasic open sets. Then

conditions are given under which this topology satisfies

separation axioms, or is compact or connected. For example,

Theorem: Let A contain the singletons. If for each x € X and

y e X \ x , there is a z e X such that (x,z) e R ((z,x) e R)

and (y,z) 4 R ((z,y) ̂  W , then T(A) is a Tj-topology. The

conditions used to obtain compactness or connectedness are

analogous to the conditions used to get the same properties for

the order topology on a totally ordered set. Finally, by modifying

the definition of T(A) slightly, we obtain conditions so that if

X is a tree and R the cutpoint order, then T(A) is the

original topology.

1. Introduction

Let X be a set and let R be a relation on X (i.e. if C X x X) .

A subset A C X is an antiset (with respect to R) iff no two distinct

elements of A are i? related. Let A c X ; we shall use the following

notation:

RA = {x \(x,a.) e R for some a e A) ,

AR = ix \ (a,x) G i? for some a € A} .
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Also x R y iff (x,y) e R . A set A such that RA C A is called

decreasing and a set A such that AR C A is called increasing. Let A

"be a collection of subsets of X . Let D(A) = {RA \ A € A} and

JCA; = {AR | 4 e A} . For A e A , set I (A) = v4i? and D(A) = RA . If A

is a collection of antisets of X , set S = OCA; U I(A) V {X} V {0} . Then

T(R,A) (or TYAJ when the relation R is fixed) is the topology with S

as a subbase for the closed sets. If X is the real numbers and R the

usual reflexive order, the topology T(A) , where A is the set of

singletons, is the usual topology.

2. Separation axioms

In the following we shall assume that R is a relation on a set X

and that A is a collection of i?-antisets.

PROPOSITION 1. Suppose that for each pair x =f y € X there exists a

z e X such that either

(i) (x,z) e if and (y,z) £ R ((s,x) e R and (z,y) ^ R) or

(ii) (y,z) e R and (x,z) $R ((z,y) e j? and (z,x) $ R) .

Then if A contains the singletons, T(A) is a T -topology.

Proof. Let x \ y . If s is an element such that (x,z) £ R and

(y}z) ^ R , then R{z} is a closed set containing x but not y , hence

y ^ {x} . If (ii) holds, R{z} is a closed set containing y and not x .

P R O P O S I T I O N 2 . L e t A c o n t a i n t h e s i n g l e t o n s . I f f o r e a c h x & X

and y 6 X \ x ., there is a z e X swe?z tfart ('XjZJ e i? ((z,x) e i?j a?̂ J

('̂ jSy' ^ •# ((z,y) ^ R) j then T(k) is a Ti-topology.

Proof. As above y £ {x} for all y € X \ x ; hence {x} = {x} and

so T(A) is a T\-topology.

COROLLARY. If R is reflexive and antisymmetric, and if A contains

the singletons, then T(A) is a T\-topology.

Proof. If y ^ x , then (x,y) ^ R or (y,x) £ R . In either case

let z = x and Proposition 2 implies that T(A) is a T^-topology.

DEFINITION. A collection A of antisets is called separating (or

separates X) if and only if for x G X and z/ e X \ x there is an A € A

such that x € I(A) and y 4 I W or x e PW and y
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PROPOSITION 3. If A is separating, then T(A) is a Ti-topology.

DEFINITION. A collection A of antisets separates points of X iff

for x 4 y there exist A\^2
 e A such that x e Ai \ A2 and

y G A2 \ Ai .

COROLLARY. If R is reflexive, transitive, and antisymmetric, (i.e.,

a partial order), and if A separates points of X , then- T(k) is a

T\-topology.

Proof. Suppose y e I(A) and y e D(A) then there is a Z\ 6 A and

a z2
 G A such that Z\ R y and y R z2 , then si if 22 (by transitivity)

and hence, Z\ = s2 , but then by antisymmetry 2j = y € 4 which is a

contradiction. Since R is reflexive, we get A separating, and hence

T(k) is a Tj-topology.

If i? is a relation on X and x ^ # , then there is a maximal

antiset A such that x e 4 and y 4 ^ • Thus, it will be possible to

construct collections of antisets which satisfy the following definition.

In order to simplify the notation we let B or B. denote either I(A) or
Is

D(A) where A is some antiset in some collection A .

DEFINITION. A collection A of antisets completely separates points
k

of X iff for x ^ y there exist Bj,...,B, such that X = 0 B. and
i=l

x G B. implies y ̂  B^ .

THEOREM 4. J/ A completely separates points of X , then (X, T(A))

is T2 •

Proof. Let Xx = U{B. I y 4 B-) , an^ X2 = U{B. | j/ e B-} . Then

X = Xi U JT2» A . -̂ 2 a r e closed, x € Jfi , y e X2 , y $ Xi and a; ^ ^2 •

Hence (X, T(k)) is T2 •

DEFINITION. A relation is called full iff whenever x is not related

to y there are elements Z\ \ x , z2 \ y such that z\ and z2 are not

related and either x e D(z\) , ̂  € I(z2) or x S Ifsi-) , jy e D(z2) •

THEOREM 5. If R is a full partial order, and if A contains the

maximal antisets, then A completely separates points of X . Hence,
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(X, T(A)) is T2 •

Proof. Let x =|= y and suppose that x R y . We have two subcases.

First suppose there exists a z such that x =j= z % y , x R z , and z R y .

Let A be a maximal antiset containing 2 . Let B\ = D(A) and B2 = KA) .

Then x £ Bj , y £ B 2 , and AT = B^ U B2 • Also by applying the transitivity

and antisymmetry we find that y ^ Bj and x ^ B 2 , and we are done. Now

suppose that no such 2 exists. Let A be a maximal antiset containing

x . Let Ai = (A \ x) U {j/} and let 4 2 be a maximal antiset in ^i which

contains y . Then let A3 be a maximal antiset in X containing A2 •

If D(AX) U IY/53; = X , we choose Bi = D(A1) and B 2 = KA3) and we are

done. So let z e X \ (D(A\) U I(A3)) . Let C be the maximal antiset in

X \ (D(x) U I(y)) containing z . If 1 is not related to any element of

C , then C U {x} = Ci is a maximal antiset and y 4 D(C\) follows from

the transitivity and the choice of C • Similarly if y is not related to

any element of C , then C\ = C U {y} is maximal and x 6 KC2) • Then

take Bi = D(C\) and B 2 = I(C2) and Bj , B 2 are the desired sets. If

y € I(C) , we take B± = D(Ci) and B2 = I(A3) . If x e flW and

1/ € I(C) U ore; we take Bj = 0 ^ ^ and B2 = I(C2) . Finally, if

x e PCC; and 1/ £ JfC9 , C is already maximal and Bj = D(C) , B2 = JTC;

will work. Note that x € TCCV and 2/ € D(C) are impossible by the choice

of C . We can verify in all cases that B\ and B 2 are the desired sets.

This completes the case with x R y .

Now suppose that x is not related to y . Let z\ , z2 be such that

x G V(z\) , t/ e I(z2) (similar arguments will work when x e I(z\) ,

y £ D(z2)) . Since 2j and 2 2 are not related let A be a maximal

antiset containing Z\ and z2 . Then set Bj = D(A) and B 2 = I(A) , and

we are done.

By assuming a richer collection A of antisets we can obtain the same

result without requiring that the relation be full. Therefore an antiset A

is nearly maximal iff the addition of a finite number of points to A will

produce a maximal antiset. We shall use the convention that the empty set

is finite and hence, that each maximal antiset is nearly maximal.

THEOREM 6. Suppose that R is a partial order and that A contains

the nearly maximal antisets. Then A completely separates points of X .

Hence, (X, T[k)) is T2 .

https://doi.org/10.1017/S0004972700042167 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700042167


Topologies generated by relations 301

Proof. First suppose that x =j= y and x R y . Then proceed as in the

first part of Theorem 5- Next suppose that x and y are not related, and

let A be a maximal antiset containing x and y . Let A\ = A \ y and

A2 = A \ x . Then let BY = D(AX) , B2 = I(AX) , B3 = D(A2) and

Bh = I(A2) • Now x e Bj n B2 , y e B3 n Bn but y $ Bi U B2 and

x ^ B3 U Bt, . Finally J = Bj U B2 U B3 U B4 and we are done.

Suppose that R is a partial order and that A contains the maximal

antisets. If A e A is maximal, then we can show that D(A) \ A and

I(A) \ A are open sets. We can then get results similar to Theorems 5 and

6. In fact in the case of a linear order we obtain the usual result that

(X, T(k)) is T2 , when A is the set of singletons.

3. Compact spaces

In this section we shall develop conditions under which the space

(X, T(K)) is compact. In the following we shall assume that we have a

fixed relation R on a set X . For this note that if A is the set of

singletons, if Aj is the finite antisets and if A C A C Aj , then

T(A ) = T(A) = T(Ai) . Thus whenever we are using a set of finite antisets

which includes the singletons to generate the topology, we may assume that

it is the singletons. Generally we shall use the terminology of bounded

ordered sets for a general relation R . For example, a set is i?-bounded

above iff there is a point x such that a R x for all a € A .

THEOREM 7. Let R be transitive, and let X be bounded and aomplete.

If A is the singletons, then (X, J(A)) is compact.

Proof. Let F be a collection of closed subbasic sets with the finite

intersection property. Since A is the singletons we may write

F = Fj U F2 where Fx = {I(x )\ a € Tx} and F2 = [D(x )\ a£ T2] . Let

X be the supremum of {x I a £ Til . Then a: e I(x ) for all a e I\ .
0 r a ' l o a l

Let Y e T2 ; then by f.i.p. KxJ n D(x ) 4 0 for all ae T1 . Thus,

for a e T7 , there is a z such that x R z and z R x . Hence,

x R x by the transitivity of R . Therefore x is an upper bound of

{x | a e /4j} and thus, x R x • Consequently, x € D(x ) for all
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a e T2 , and so X Q €f)F • Therefore, (X, T(k)) is compact by the

Alexander subbase Lemma.

EXAMPLES. It is relatively easy to find examples of noncompact spaces

(X, T(A)) where A is not restricted to finite sets but where R is

reflexive and transitive, and where X is complete and bounded. We now

sketch an example which shows that we cannot drop the assumption of

transitivity in Theorem 7.

In the above let X = {(n,i) | n G to , i = 0,1,2} U {(0,-1;} U {(1,3)} ,

where u is the positive integers. Define R as follows:

(i) R is reflexive with (1,3; as largest element and (0,-i; as

smallest element.

(ii) (n,0) R (m,~L) for all m > n .

(iii) (m,l) R (n,2) for all m > n .

(iv) (n,l) R (m,l) for all m > n .

Then X is complete and bounded, and R is reflexive but not

transitive. Further the following collection has the f.i.p:

8 = {JfO.o;} U {D(n,2) | n e a)} . But rfi = 0 •

REMARK. If Aj is any collection of finite antisets and if A is the

singletons, then T(k\) CT(k) , hence the identity map

i : (X, T(A)) •+ (X, T(kx)) is continuous and (X, T(Al)) is compact

whenever (X, Ilk)) is compact.

4. Connected Spaces

In this section we shall derive conditions similar to the well known

conditions on totally ordered spaces under which the space is connected.

Simple examples show that it is necessary to assume that the relation R

must contain points other than the diagonal in order to get connectedness.

A subset C C X is an R-ohain (or chain for short) iff for each

x,y£CjX^y, either x R y or y R x . By a chain between two

points x\ j a?2 , with X\ R xi , we mean a chain C with x\ as smallest

element and a?2 as largest element. The set X is strongly complete if

and only if X is complete, and if C C X is a maximal chain, and if

A C C is bounded, then sup A and inf A are members of C . The set X
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is R-derwe iff, whenever x 4 U a n d x R y , there is a z \ {x,y} such

that x R z and z R y . Further, if y R x is false, then z R x and

y R z are false. A relation R is nondisarete iff whenever X = Xi U X2 >

with Xi , X2 nonempty, there exist points X\ e X\ and x2 £ X2 such

that either x\ R X2 or x2 i? X; .

We are now ready to state the main theorem of this section.

THEOREM 8. Let R be a reflexive, transitive, nondisarete relation

on the set X . Let A be the singletons. If X is strongly complete and

R-dense, then (X, T(k)) is connected.

Proof. Suppose that X is not connected, then X = X\ u X2 with

X\ , Xz nonempty, closed sets. Since R is nondiscrete, there exist

points X\ e X\ and X2 e X2 such that xi R X2 (in case x2 R
 xi we

change the subscripts). Let C be the maximal chain between xi and x2 .

(The chain C is contained in a maximal chain and hence is complete.) Let

A={x€.C\zRx and z € C implies z e X\} . Note that A contains

Xi and hence is nonempty. Let x be the supremum of A . We now show

that XQ € A , and hence XQ e X\ . If xQ ^ A , then there must be a

finite number of subbasic closed sets, say Bi,...,B, , such that
k k

AC U B. , but x i s . for all i = 1 k . Since x = sup A , and
i=l o •

since R is transitive, each B. must be of the form, B. = D(b.) . Now

let 4. = {a; G 4|a; £ 5.} and let a- be the supremum of A. (necessarily

in C) . If i 4 3 , then a. i? a. or a. R a- . If a. i? a. , then
t - 3 3 i' * - 3

a. R b. , and x R b. for all a; £ A. U J . . Consequently, there is a 3
<- 3 3 ^ 3

such that A c B. = D(b.) . But then b • is an upper bound for A . But
3 3 3

by the hypothesis that X is strongly complete, x R b. , which is a

contradiction. Thus it follows that x e A C X\ , and hence x e A . Let

B = {a; e C\x e Af2} and let 2 = inf B . By an argument similar to the

above s e B C X2 . Hence a; 4 2 O • Then there exists a y such that

a; R y , y R z with a : + y + z • I f s i f x , then any closed set
o ° " o 0 ' ' o 0 0

which contains x , contains a and conversely. So (z ,x ) t R and we
O 0 0 0 '

may choose y so that (yux ) f R and (z ,y) f R . But then y ^ Xx
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and y k %2 > a contradiction. (That y ̂  X2 follows from the definition

of z , and y ̂  Xi since y e X\ implies there exists z such that

z R y and z ̂  X\ , since y 4 A . But then z R z and z R y , another

contradiction.) Consequently we conclude that X is connected.

We can obtain a corollary analogous to the corollary in the preceding

section.

REMARK. Simple examples show that the condition that X be strongly

complete, or a similar condition, is needed. Also, other examples show that

the particular way in which the concept of i?-density was defined is also

Justified. Further we note that in the case of a totally ordered space,

i?-dense becomes order dense. Finally, it is conjectured that the

transitivity is necessary in order to assure the validity of Theorem 8.

However, no example is available to show this.

5. Relations in topological spaces

Suppose (X,l) is a topological space and R is a relation on X .

In this section we investigate the relationship between T and T(A) for

certain classes of antisets A . In particular, if X is a tree, R the

cutpoint order (see Ward [?]), and A suitably chosen, then T = T(A) .

LEMMA 9. Suppose that (X,T) is a T2 space, and that R is a

reflexive, oompaot relation on X . Let A be any closed subset of X .

Then D(A) and I(A) are closed sets.

Proof. Let x € c±(D(A)) . If x € A , then, since R is reflexive,

x G D(A) . Hence, we may assume that x ^ A . Let V be any open set

containing x . We may assume that V C X \ A . Since x G cl(D(A)) ,

there is a y £ V n D(A) . Thus we can find a net (y ,a ) where

if •*• x , a e A , and u R a . Since R is compact, there is a limit

point (y ,a ) of this set in R , but since (X,T) is T2 , y = x and

since A is closed, a G A . Thus x £ D(A) and we are done.

Ward [J] has shown that the cutpoint order is closed, hence compact.

Thus for any collection A of closed antisets of a tree (X,T) , we have

T(A) C T .
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REMARK. Since we have a topology on X , we can broaden the class of

sets which are used to construct the topology T(A.) . For example, we might

use the closures of antisets and in fact we do this in the next result.

THEOREM 10. Let (X3T) be a tree and let R be the outpoint order

with minimal element e . Let A consist of the finite antisets, and the

closures of sets of maximal elements. Then T(k) = T .

Proof. We have T(k) C T and so we must show that T C T(K) . Let

x e X and let U be an open set containing x . Let V be an open set

such that x € V C U , and such that the boundary of V is finite. Let

M = {y | y is maximal and x R y is false} . Since I(x) \ x is open

(see Ward [2]), M n I(x) = $ . Let b(V) = {xx,.. . ,xfe} be the boundary of

V . Consider the following TfAJ-closed set:

B = D(M) U (U{D(xk) | x $ D(xk)}) U <U{I(xk) \ x $ I(xk)}) .

We claim x € X \ B C V ; that x G X \ B is clear. Let y G X \ B . If

y e I(x) \ V , then the arc from x to y meets b(V) , and hence some

point in b(V) is smaller than y . So y ̂  X \ B contrary to assumption.

If y e D(x) \ V , then y must be smaller than some element of

b(V) . Finally if y ̂  D(x) or Jfe; , y must be in D(M) , and hence

j/ ̂  ̂  \ B . Thus y e X \ B implies that y e V and we are done.

That we must assume that A contains more than the singletons is shown

by the following example. Let XQ = [0,1] . At 1/2W erect an interval

of length l/2n . Let e = 0 . Then if A is the finite antisets, each

neighborhood of 1 (with respect to T(A)) contains points arbitrarily

close to 0 . Thus, T(k) is not the same as the usual topology for this

space.
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