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Abstract

By considering k-out-of-n systems with independent and nonidentically distributed
components, we discuss stochastic monotone properties of the residual life and the
inactivity time. We then present some stochastic comparisons of two systems based
on the residual life and inactivity time.
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1. Introduction

As a very popular type of redundancy in fault-tolerant structures, the k-out-of-n system,
which works if at least k components work or, equivalently, at most n − k components fail, has
been widely studied in electrical engineering, aviation industry, and weapon manufacturing,
and has received considerable attention during the past few decades. Readers are referred to
Kuo and Zuo (2002) for a comprehensive discussion on this structure and its properties. For
1 ≤ i ≤ n, let Xi be the lifetime of the ith component, and let Xk:n be the lifetime of the kth
failed component when failures are observed sequentially, and so it is the total lifetime of an
(n − k + 1)-out-of-n system. Hence, the study of order statistics naturally plays an important
role in the study of k-out-of-n systems.

In order to investigate the behavior of the lifetime of the system before it fails, many authors
have discussed the ageing properties of

Xk:n − Xk−1:n | (Xk−1:n = t),

the conditional residual life of an (n − k + 1)-out-of-n system, given that the (k − 1)th failure
occurred at time t . We refer the reader to Langberg et al. (1980), Belzunce et al. (1999), Li and
Zuo (2002), Li and Chen (2004), and Li and Zhao (2006), (2008) for some results in this regard.
Since in some practical situations the accurate time to failure of the component of a system is
often not observable and the only information that may be available is the total number of failed
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components, some authors also paid attention to

Xk:n − t | (Xl:n > t), n ≥ k > l ≥ 1, (1.1)

the general residual life of the system, given that the total number of failures till time t is not
greater than l. Bairamov et al. (2002) studied the mean residual life of a parallel system, given
no failure before time t ≥ 0. For some further work in this direction, interested readers are
referred to Asadi and Bairamov (2005), Li and Zhao (2006), and Khaledi and Shaked (2006).

For a system, which can be regarded as a black box in the sense that the exact failure
times of its components cannot be observed, it is often of great importance for engineers and
reliability analysts to make inference on the inactivity time t − X | (X ≤ t), the time elapsed
since the failure of the system. This notion has a close connection with the so-called autopsy
data which can be viewed as the information obtained by examining the status of components
of a failed system. For more details about autopsy data, we refer the reader to Meilijson
(1981) and Gȧsemyr and Natvig (1998), (2001). Asadi (2006) studied the mean inactivity time
E(t − Xn:n | Xn:n ≤ t) of a parallel system given that the system failed at or before time
t > 0. More generally, under the assumption that the remaining (n − k) components continue
to work and are still subject to failure after the failure of the system, Khaledi and Shaked (2006)
investigated

t − Xl:n | (Xk:n ≤ t), 1 ≤ l ≤ k ≤ n, (1.2)

the general inactivity time of the lth component of an (n−k+1)-out-of-n system given that the
failure of the system occurred at or before time t > 0. Recently, Li and Zhao (2008) carried out
a stochastic comparison on (1.1) and (1.2) of two (n− k +1)-out-of-n systems and generalized
the main results of Khaledi and Shaked (2006). It is worth mentioning here that Hu et al. (2007)
and Xie and Hu (2008) discussed conditional ordering of generalized order statistics, which
includes (1.1) and (1.2) as special cases and, hence, extends some of the related results.

It is important to mention here that all the above results are derived under the assumption
that components of systems are independent and identically distributed (i.i.d.). Due to the
complicated expression of the distribution in the non-i.i.d. case, very few results in this case
can be found in the literature. Under this more general setup, Sadegh (2008) first obtained some
properties of the mean residual life function and the mean inactivity time function of parallel
systems. Recently, Xu (2008) examined further the more general residual life of k-out-of-n
systems and the results derived there generalized some of the results of Li and Zhao (2006),
Khaledi and Shaked (2006), and Sadegh (2008).

In this paper, under the general non-i.i.d. setup, we study

RLl,k,n(t) = Xk:n − t | (Xl:n ≤ t < Xl+1:n),

the residual life (RL) of an (n − k + 1)-out-of-n system given that the lth (1 ≤ l < k ≤ n)
component has failed but the (l + 1)th component is working at time t ≥ 0. If a system is still
working at time t ≥ 0, the reliability engineer may initiate some preventive maintenance policy
or replacement policy to prevent the system from being damaged on a large scale or incurring
a catastrophic loss. For this reason, it will be of interest for the engineer to have a knowledge
of the properties of the conditional residual life of such systems so as to make a better decision
about the system’s design. Moreover, we also consider

ITl,k,n(t) = t − Xl:n | (Xk:n ≤ t < Xk+1:n),
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the inactivity time (IT) of an (n − k + 1)-out-of-n system given that the system had failed but
the (k + 1)th (1 ≤ l < k ≤ n) component is working at time t ≥ 0. This kind of IT is also of
importance in engineering reliability, since a knowledge of it may help the reliability engineer
to initiate preventive maintenance or a replacement of the whole system at some reasonable
epoch.

The rest of this paper is organized as follows. In Section 2 we present some stochastic
monotone properties of RLl,k,n(t) and ITl,k,n(t) with respect to parameters l, k, and n. In
Section 3 we discuss stochastic comparisons of the RLs and ITs from two similar (n − k + 1)-
out-of-n systems.

Throughout this paper, the term increasing stands for monotone nondecreasing and the term
decreasing stands for monotone nonincreasing.

2. Monotone properties

Before proceeding to the main results, let us first recall some stochastic orders that are most
pertinent to the main results developed here.

Definition 2.1. For two random variables X and Y , with their densities f and g and distribution
functions F and G, respectively, let F̄ = 1 − F and Ḡ = 1 − G be their survival functions. As
the ratios in the statements below are well defined, X is said to be smaller than Y in

(a) likelihood ratio order (denoted by X ≤lr Y ) if g(x)/f (x) is increasing in x;

(b) hazard rate order (denoted by X ≤hr Y ) if Ḡ(x)/F̄ (x) is increasing in x;

(c) reversed hazard rate order (denoted by X ≤rh Y ) if G(x)/F (x) is increasing in x;

(d) stochastic order (denoted by X ≤st Y ) if Ḡ(x) ≥ F̄ (x).

For a comprehensive discussion on these stochastic orders, we refer the reader to Shaked
and Shanthikumar (2007) and Müller and Stoyan (2002).

Since the joint density (distribution) function of order statistics from independent and
nonidentical observations can be represented as a permanent, we will now present a brief
introduction to permanents.

The permanent function was first introduced by Binet and Cauchy (independently) as early
as 1812, more or less simultaneously with the determinant function. We refer the reader to
Bapat and Beg (1989), Bapat and Kochar (1994), Hu and Zhu (2003), and Hu et al. (2006)
for some related discussion on this topic, and the recent review article by Balakrishnan (2007),
which serves as a nice reference source for readers who are interested in the theory of permanent
and its close connection to order statistics. If A = (ai,j ) is a square matrix of order n then
the permanent of A is calculated as

∑
σ

∏n
i=1 ai,σ (i), where the summation is taken over all

permutations σ = (σ (1), . . . , σ (n)) of (1, . . . , n). If di ∈ R
n for i = 1, 2, . . . , n, we denote

by [d1, . . . , dn] the permanent of the n × n matrix (d1 · · · dn). For convenience,

[ d1︸︷︷︸
r1

, d2︸︷︷︸
r2

, . . . ]

denotes the permanent having r1 copies of d1, r2 copies of d2, and so on, and

[ d1︸︷︷︸
r1

, d2︸︷︷︸
r2

]A
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denotes the permanent having those rows only in set A. If ri = 1, it is omitted in the notation
above. If ri = 0, di is understood not to appear in the permanent; if ri < 0 for some i then the
permanent is understood to be 0.

In this section we will further assume that the life Xi, i = 1, . . . , n, of the components of the
(n − k + 1)-out-of-n system are mutually independent, nonnegative random variables having
their respective underlying distribution functions Fi and survival functions F̄i = 1 − Fi . For
i = 1, . . . , n, let Xi,t = Xi − t | (Xi > t) denote the residual life of the component Xi with
distribution function Fi,t (x) and survival function F̄i,t (x), and let φi(t) = Fi(t)/F̄i(t). The
column vector (F1,t (x), . . . , Fn,t (x))� will be denoted simply by Ft (x), and F̄t (x) and φ(t)

are similarly defined.
Now, the main results of this section are as follows.

Theorem 2.1. For 1 ≤ l < k ≤ n and t ≥ 0, RLl,k,n(t) has the survival function

H̄l,k,n,t (x) =
∑

Pl

∏
m∈Pl

φjm(t)H̄
P c

l

k−l,n−l,t (x)∑
Pl

∏
m∈Pl

φjm(t)
(2.1)

with φjm(t) = Fjm(t)/F̄jm(t) and

H̄
P c

l

k−l,n−l,t (x) =
k−l+1∑
i=0

1

i! (n − l − i)! [Ft (x)︸ ︷︷ ︸
i

, F̄t (x)︸ ︷︷ ︸
n−l−i

]P c
l
,

where the summation Pl with size l extends over all subsets of {1, . . . , n} and P c
l denotes the

complement set of Pl .

Proof. For 1 ≤ l < k ≤ n and t ≥ 0, we have

P(Xk:n > t + x, Xl:n ≤ t < Xl+1:n)

=
k−l−1∑
i=0

P(exactly l observations in [0, t], i observations in (t, t + x],

and n − l − i observations in (t + x, ∞), respectively)

=
k−l−1∑
i=0

1

l! i! (n − l − i)!
×

∑
P

Fj1(t) · · · Fjl
(t)[Fjl+1(t + x) − Fjl+1(t)] · · · [Fjl+i

(t + x) − Fjl+i
(t)]

× F̄jl+i+1(t + x) · · · F̄jn(t + x)

=
n∏

i=1

F̄i(t)

k−l−1∑
i=0

1

l! i! (n − l − i)!
∑
P

φj1(t) · · · φjl
(t)Fjl+1,t (x) · · · Fjl+i ,t (x)

× F̄jl+i+1,t (x) · · · F̄jn,t (x),
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where P denotes the summation over all n! permutations (j1, . . . , jn) of (1, . . . , n). By the
definition of permanent and Laplace’s expansion, we further have

P(Xk:n > t + x, Xl:n ≤ t < Xl+1:n)

=
n∏

i=1

F̄i(t)

k−l−1∑
i=0

1

l! i! (n − l − i)! [φ(t)︸︷︷︸
l

, Ft (x)︸ ︷︷ ︸
i

, F̄t (x)︸ ︷︷ ︸
n−l−i

]

=
n∏

i=1

F̄i(t)

k−l−1∑
i=0

1

l! i! (n − l − i)!
∑
Pl

[φ(t)︸︷︷︸
l

]Pl
[Ft (x)︸ ︷︷ ︸

i

, F̄t (x)︸ ︷︷ ︸
n−l−i

]P c
l

=
n∏

i=1

F̄i(t)
∑
Pl

∏
m∈Pl

φjm

k−l−1∑
i=0

1

i! (n − l − i)! [Ft (x)︸ ︷︷ ︸
i

, F̄t (x)︸ ︷︷ ︸
n−l−i

]P c
l

=
n∏

i=1

F̄i(t)
∑
Pl

∏
m∈Pl

φjm

k−l−1∑
i=0

H̄
P c

l

k−l,n−l,t (x).

On the other hand, we also have (see David and Nagaraja (2003, p. 96))

P(Xl:n ≤ t < Xl+1:n)
= P(Xl+1:n ≥ t) − P(Xl:n > t)

=
l∑

i=0

∑
Pi

( ∏
m∈Pi

Fjm(t)
∏

m∈P c
i

F̄jm(t)

)
−

l−1∑
i=0

∑
Pi

( ∏
m∈Pi

Fjm(t)
∏

m∈P c
i

F̄jm(t)

)

=
∑
Pl

( ∏
m∈Pl

Fjm(t)
∏

m∈P c
l

F̄jm(t)

)

=
n∏

i=1

F̄i(t)
∑
Pl

∏
m∈Pl

φjm(t).

By combining the above two equalities, the expression in (2.1) follows immediately.

It can be readily seen that H̄
P c

l

k−l,n−l,t (x) is the survival function of the life of a (k − l)-out-
of-(n − l) system composed of n − l used units with residual life Xi,t = Xi − t | (Xi > t),

i ∈ P c
l . In the case with independent and identical components, it is evident that H̄l,k,n,t (x) =

H̄k−l,n−l,t (x), which is actually the survival function of the life of a (k − l)-out-of-(n − l)

system composed of n − l commonly used units with residual life Xt = X − t | (X > t).
We will now focus on stochastic monotone properties of the residual life RLl,k,n(t) with

respect to l, k, and n. The following lemma, due to Nanda and Shaked (2001), will be useful
in the sequel.

Lemma 2.1. Let X1, X2, . . . , Xm and Y1, Y2, . . . , Yn be absolutely continuous, independent
(not necessarily identical) random variables. For any m and n, if Xi ≤st Yi for all i then
Xi:m ≤st Yj :n whenever i ≤ j and m − i ≥ n − j .

The first result below reveals that the residual life RLl,k,n(t) is stochastically increasing in
k for any fixed l, n, and t .
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Theorem 2.2. For any t ≥ 0 and 1 ≤ l < k < n, RLl,k,n(t) ≤st RLl,k+1,n(t).

Proof. For any t ≥ 0, x ≥ 0, and k, l such that 1 ≤ l < k < n, we observe that

H̄l,k+1,n,t (x) − H̄l,k,n,t (x) =
∑

Pl

∏
m∈Pl

φjm(t)(H̄
P c

l

k−l+1,n−l,t (x) − H̄
P c

l

k−l,n−l,t (x))∑
Pl

∏
m∈Pl

φjm(t)
.

For any permutation (j1, . . . , jl) of Pl , denote by (jl+1, . . . , jn) the corresponding complement
permutation of P c

l . By Lemma 2.1 we then have

H̄
{jl+1,...,jn}
k−l+1,n−l,t (x) − H̄

{jl+1,...,jn}
k−l,n−l,t (x) ≥ 0,

which implies that H̄l,k+1,n,t (x) − H̄l,k,n,t (x) ≥ 0, and, hence, the required result follows
immediately.

The next result states that the residual life RLl,k,n(t) is stochastically decreasing in l for any
fixed k, n, and t .

Theorem 2.3. For any t ≥ 0 and 1 < l < k < n, RLl,k,n(t) ≤st RLl−1,k,n(t).

Proof. For any t ≥ 0, x ≥ 0, and k, l such that 1 ≤ l < k < n, we observe that

H̄l−1,k,n,t (x) − H̄l,k,n,t (x)

sgn=
∑
Pl−1

∏
m∈Pl−1

φjm(t)H̄
P c

l−1
k−l+1,n−l+1,t (x)

∑
Pl

∏
m∈Pl

φjm(t)

−
∑
Pl

∏
m∈Pl

φjm(t)H̄
P c

l

k−l,n−l,t (x)
∑
Pl−1

∏
m∈Pl−1

φjm(t)

=
∑
Pl−1

∑
Pl

∏
m∈Pl−1⊕Pl

φjm(t)H̄
P c

l−1
k−l+1,n−l+1,t (x) −

∑
P ′

l−1

∑
P ′

l

∏
s∈P ′

l−1⊕P ′
l

φjs (t)H̄
(P ′

l )
c

k−l,n−l,t (x),

where ‘
sgn= ’ means to have the same sign and A ⊕ B gives the stacking of all elements in two

sets A and B. Since there are the same number of terms in the above two summations, for any
given permutation Al−1 ⊂ Pl−1 and Al ⊂ Pl , there must exist corresponding A′

l−1 ⊂ P ′
l−1

and A′
l ∈ P ′

l such that Al−1 ⊂ A′
l and Al−1 ⊕ Al = A′

l−1 ⊕ A′
l . That is, for any term in the

summation of the first part, we can find a corresponding term in the summation of the second
part satisfying the relation

∏
m∈Al−1⊕Al

φjm(t)H̄
Ac

l−1
k−l+1,n−l+1,t (x) −

∏
s∈A′

l−1⊕A′
l

φjs (t)H̄
(A′

l )
c

k−l,n−l,t (x)

sgn= H̄
Ac

l−1
k−l+1,n−l+1,t (x) − H̄

(A′
l )

c

k−l,n−l,t (x).

Now, by using Lemma 2.1 and the fact that (A′
l )

c ⊂ Ac
l−1, we have

H̄
Ac

l−1
k−l+1,n−l+1,t (x) − H̄

(A′
l )

c

k−l,n−l,t (x) ≥ 0,

and so H̄l−1,k,n,t (x) − H̄l,k,n,t (x) ≥ 0. Hence, the result.
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Theorem 2.4. For any t ≥ 0 and 1 ≤ l < k < n, RLl,k,n(t) ≤st RLl+1,k+1,n(t).

Proof. For any t ≥ 0, x ≥ 0, and k, l such that 1 < l < k < n, we observe that

H̄l+1,k+1,n,t (x) − H̄l,k,n,t (x)

sgn=
∑
Pl+1

∏
m∈Pl+1

φjm(t)H̄
P c

l+1
k−l,n−l−1,t (x)

∑
Pl

∏
m∈Pl

φjm(t)

−
∑
Pl

∏
m∈Pl

φjm(t)H̄
P c

l

k−l,n−l,t (x)
∑
Pl+1

∏
m∈Pl+1

φjm(t)

=
∑
Pl+1

∑
Pl

∏
m∈Pl+1⊕Pl

φjm(t)H̄
Pl+1
k−l,n−l−1,t (x) −

∑
P ′

l+1

∑
P ′

l

∏
s∈P ′

l+1⊕P ′
l

φjs (t)H̄
(P ′

l )
c

k−l,n−l,t (x).

By Lemma 2.1, for any Al+1 ⊂ Pl+1 and A′
l ⊂ P ′

l , if A′
l ⊂ Al+1 then

H̄
Ac

l+1
k−l,n−l−1,t (x) − H̄

(A′
l )

c

k−l,n−l,t (x) ≥ 0.

By an argument similar to the proof of Theorem 2.3 and based upon the above fact, we can
conclude that H̄l+1,k+1,n,t (x) − H̄l,k,n,t (x) ≥ 0. Hence, the result.

The next result states that RLl,k,n(t) is stochastically decreasing in n for any l, k, and t .

Theorem 2.5. For any t ≥ 0 and 1 ≤ l ≤ k < n, RLl,k,n(t) ≤st RLl,k,n−1(t).

Proof. For any t ≥ 0, x ≥ 0, and k, l such that 1 < l < k < n, we observe that

H̄l,k,n−1,t (x) − H̄l,k,n,t (x)

sgn=
∑
P n−1

l

∏
m∈P n−1

l

φjm(t)H̄
(P n−1

l )c

k−l,n−l−1,t (x)
∑
P n

l

∏
m∈P n

l

φjm(t)

−
∑
P n

l

∏
m∈P n

l

φjm(t)H̄
(P n

l )c

k−l,n−l,t (x)
∑
P n−1

l

∏
m∈P n−1

l

φjm(t), (2.2)

where P n−1
l extends over all subsets of {1, . . . , n − 1} of size l. Note that, for a vector

(x1, . . . , xn) with positive components, we have∑
P n

l

∏
m∈P n

l

xjm =
∑
P n−1

l

∏
m∈P n−1

l

xjm + xn

∑
P n−1

l−1

∏
m∈P n−1

l−1

xjm.

From this fact, it follows that∑
P n

l

∏
m∈P n

l

φjm(t) =
∑
P n−1

l

∏
m∈P n−1

l

φjm(t) + φn(t)
∑
P n−1

l−1

∏
m∈P n−1

l−1

φjm(t) (2.3)

and∑
P n

l

∏
m∈P n

l

φjm(t)H̄
(P n

l )c

k−l,n−l,t (x)

=
∑
P n−1

l

∏
m∈P n−1

l

φjm(t)H̄
(P n−1

l )c∪n

k−l,n−l,t (x) + φn(t)
∑
P n−1

l−1

∏
m∈P n−1

l−1

φjm(t)H̄
(P n−1

l−1 )c

k−l,n−l,t (x). (2.4)
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Substituting (2.3) and (2.4) into (2.2), we obtain

H̄l,k,n−1,t (x) − H̄l,k,n,t (x)

sgn=
∑
P n−1

l

∏
m∈P n−1

l

φjm(t)H̄
(P n−1

l )c

k−l,n−l−1,t (x)

(∑
P n−1

l

∏
m∈P n−1

l

φjm(t) + φn(t)
∑
P n−1

l−1

∏
m∈P n−1

l−1

φjm(t)

)

−
∑
P n−1

l

∏
m∈P n−1

l

φjm(t)

(∑
P n−1

l

∏
m∈P n−1

l

φjm(t)H̄
(P n−1

l )c∪n

k−l,n−l,t (x)

+ φn(t)
∑
P n−1

l−1

∏
m∈P n−1

l−1

φjm(t)H̄
(P n−1

l−1 )c

k−l,n−l,t (x)

)

= A + B,

where

A =
∑
P n−1

l

∏
m∈P n−1

l

φjm(t)H̄
(P n−1

l )c

k−l,n−l−1,t (x)
∑
P n−1

l

∏
m∈P n−1

l

φjm(t)

−
∑
P n−1

l

∏
m∈P n−1

l

φjm(t)H̄
(P n−1

l )c∪n

k−l,n−l,t (x)
∑
P n−1

l

∏
m∈P n−1

l

φjm(t)

and

B = φn(t)
∑
P n−1

l

∏
m∈P n−1

l

φjm(t)H̄
(P n−1

l )c

k−l,n−l−1,t (x)
∑
P n−1

l−1

∏
m∈P n−1

l−1

φjm(t)

− φn(t)
∑
P n−1

l−1

∏
m∈P n−1

l−1

φjm(t)H̄
(P n−1

l−1 )c

k−l,n−l,t (x)
∑
P n−1

l

∏
m∈P n−1

l

φjm(t).

Now, it suffices to show that A ≥ 0 and B ≥ 0. Note that

A
sgn=

∑
P n−1

l

∏
m∈P n−1

l

φjm(t)(H̄
(P n−1

l )c

k−l,n−l−1,t (x) − H̄
(P n−1

l )c∪n

k−l,n−l,t (x)),

which is indeed nonnegative due to Lemma 2.1. Moreover,

B
sgn=

∑
P n−1

l

∑
P n−1

l−1

∏
m∈(P n−1

l ⊕P n−1
l−1 )

φjm(t)H̄
(P n−1

l )c

k−l,n−l−1,t (x)

−
∑
Qn−1

l−1

∑
Qn−1

l

∏
s∈(Qn−1

l−1 ⊕Qn−1
l )

φjs (t)H̄
(Qn−1

l−1 )c

k−l,n−l,t (x),

where Qn−1
l and Qn−1

l−1 are summations defined similarly to P n−1
l and P n−1

l−1 . Upon using an
argument similar to the proof of Theorem 2.3 and using Lemma 2.1 once again, it can be shown
that B ≥ 0, which completes the proof of the result.
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Theorem 2.6. For any t ≥ 0 and 1 ≤ l < k ≤ n, RLl,k,n(t) ≤st RLl,k+1,n+1(t).

Proof. For any t ≥ 0, x ≥ 0, and l, k such that 1 ≤ l < k ≤ n, we can express

H̄l,k+1,n+1,t (x) − H̄l,k,n,t (x)

sgn=
∑
P n+1

l

∏
m∈P n+1

l

φjm(t)H̄
(P n+1

l )c

k−l+1,n−l+1,t (x)
∑
P n

l

∏
m∈P n

l

φjm(t)

−
∑
P n

l

∏
m∈P n

l

φjm(t)H̄
(P n

l )c

k−l,n−l,t (x)
∑
P n+1

l

∏
m∈P n+1

l

φjm(t)

=
∑
P n

l

∏
m∈P n

l

φjm(t)

(∑
P n+1

l

∏
m∈P n+1

l

φjm(t)H̄
(P n

l )c∪(n+1)

k−l+1,n−l+1,t (x)

+ φn+1(t)
∑
P n

l−1

∏
m∈P n

l−1

φjm(t)H̄
(P n

l−1)
c

k−l+1,n−l+1,t (x)

)

−
∑
P n

l

∏
m∈P n

l

φjm(t)H̄
(P n

l )c

k−l,n−l,t (x)

(∑
P n

l

∏
m∈P n

l

φjm(t) + φn+1(t)
∑
P n

l−1

∏
m∈P n

l−1

φjm(t)

)

= C + D,

where

C =
∑
P n

l

∏
m∈P n

l

φjm(t)H̄
(P n

l )c∪(n+1)

k−l+1,n−l+1,t (x)
∑
P n

l

∏
m∈P n

l

φjm(t)

−
∑
P n

l

∏
m∈P n

l

φjm(t)H̄
(P n

l )c

k−l,n−l,t (x)
∑
P n

l

∏
m∈P n

l

φjm(t)

and

D = φn+1(t)
∑
P n

l−1

∏
m∈P n

l−1

φjm(t)H̄
(P n

l−1)
c

k−l+1,n−l+1,t (x)
∑
P n

l

∏
m∈P n

l

φjm(t)

− φn+1(t)
∑
P n

l

∏
m∈P n

l

φjm(t)H̄
(P n

l )c

k−l,n−l,t (x)
∑
P n

l−1

∏
m∈P n

l−1

φjm(t).

Following an argument similar to that used in Theorem 2.5, it follows from Lemma 2.1 that
C ≥ 0 and D ≥ 0. Hence, the desired result follows.

Combining Theorems 2.2–2.6, we obtain the following corollary, which provides a nice
summary of all the results established above.

Corollary 2.1. (i) For any t ≥ 0, 1 ≤ l < k ≤ n, and 1 ≤ s ≤ m ≤ n,

RLl,k,n(t) ≤st RLs,m,n(t) whenever k ≤ m and k − l ≤ m − s.

(ii) For any t ≥ 0, 1 ≤ l < k ≤ n, and 1 ≤ l ≤ p ≤ q,

RLl,k,n(t) ≤st RLl,p,q(t) whenever k ≤ p and n − k ≥ q − p.
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In concluding this section we present an analogous version of Corollary 2.1 for the inactivity
time defined in Section 1.

Corollary 2.2. (i) For 1 ≤ l < k ≤ n, 1 ≤ s ≤ m ≤ n, and t ≥ 0,

ITl,k,n(t) ≤st ITs,m,n(t) whenever l ≥ s and k − l ≤ m − s.

(ii) For 1 ≤ l < k ≤ n, 1 ≤ s < p ≤ q, and t ≥ 0,

ITl,k,n(t) ≤st ITs,p,q(t) whenever l ≥ s and n − l ≥ q − s.

Proof. We only prove part (i), while the proof of part (ii) can be established in a similar
manner. Although the random variables discussed here are all taken to be nonnegative, all the
results also hold for any random variables on the real line. Let (−X)r:n (1 ≤ r ≤ n) denote the
rth order statistic among −X1, . . . ,−Xn. Then, it is evident that (−X)r:n = −Xn−r+1:n. By
Corollary 2.1(i) we have, for 1 ≤ l < k ≤ n and 1 ≤ s < m ≤ n,

[(−X)k:n − y | (−X)l:n ≤ y < (−X)l+1:n] ≤st [(−X)m:n − y | (−X)s:n ≤ y < (−X)s+1:n]
whenever k ≤ m, k − l ≤ m − s, and y ∈ R, which is equivalent to

[−Xn−k+1:n | −Xn−l+1:n ≤ y < −Xn−l:n] ≤st [−Xn−m+1:n | −Xn−s+1:n ≤ y < −Xn−s:n]
whenever k ≤ m, k − l ≤ m − s, and y ∈ R. That is,

[t − Xn−k+1:n | Xn−l:n ≤ t < Xn−l+1:n] ≤st [t − Xn−m+1:n | Xn−s:n ≤ t < Xn−s+1:n]
whenever k ≤ m, k − l ≤ m − s, and t ∈ R. Moreover,

[t − Xl:n | Xk:n ≤ t < Xk+1:n] ≤st [t − Xs:n | Xm:n ≤ t < Xm+1:n]
whenever l ≥ s, n − l ≥ q − s, and t ∈ R for 1 ≤ l < k ≤ n and 1 ≤ s ≤ m ≤ n, which is just
the desired result.

3. Stochastic comparisons

It is important in reliability theory to compare the variability of coherent systems so as to
design more reliable systems. We now turn our attention to stochastic comparisons based on the
RLs of two k-out-of-n systems, both of which consist of independent (not necessarily identical)
components. Before stating our main result, we first present a useful lemma due to Lillo et al.
(2001) and Boland et al. (2002).

Lemma 3.1. Let X1, X2, . . . , Xm and Y1, Y2, . . . , Yn be absolutely continuous, independent
(not necessarily identical) random variables. For any m and n,

(a) if Xi ≤lr Yj for all i and j then Xi:m ≤lr Yj :n whenever i ≤ j and m − i ≥ n − j ;

(b) if Xi ≤hr Yj for all i and j then Xi:m ≤hr Yj :n whenever i ≤ j and m − i ≥ n − j .

For convenience, let us introduce some notation now. For 1 ≤ l ≤ k ≤ m and t ≥ 0,
let RLX

l,k,m(t) be the residual life of a k-out-of-m system with m independent (not necessarily
identical) components having Xi(1 ≤ i ≤ m) as their respective lifetimes. Similarly, for
1 ≤ s ≤ u ≤ n and t ≥ 0, let RLY

s,u,n(t) be the residual life of another u-out-of-n
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system with n independent (not necessarily identical) components having Yj (1 ≤ j ≤ n) as
their respective lifetimes. Let F̄i and Ḡj denote the corresponding survival functions of Xi

and Yj , respectively, and define φX
i = Fi/F̄i and φY

j = Gj/Ḡj . Also, let H̄X
l,k,m,t (x) and

H̄ Y
s,u,n,t (x) be the corresponding survival functions of RLX

l,k,m(t) and RLY
s,u,n(t), let HX

l,k,m,t (x)

and HY
s,u,n,t (x) be the corresponding distribution functions, and let f X

l,k,m,t (x) and f Y
s,u,n,t (x)

be the corresponding density functions, respectively.

Theorem 3.1. For two systems with independent (not necessarily identical) components X1,

X2, . . . , Xm and Y1, Y2, . . . , Yn,

(a) if Xi ≤lr Yj for all i and j then RLX
l,k,m(t) ≤lr RLY

s,u,n(t) whenever k − l ≤ u − s and
m − k ≥ n − u;

(b) if Xi ≤hr Yj for all i and j then RLX
l,k,m(t) ≤hr RLY

s,u,n(t) whenever k − l ≤ u − s and
m − k ≥ n − u.

Proof. (a) From (2.1), the density functions of RLX
l,k,m(t) and RLY

s,u,n(t) are given by

f X
l,k,m,t (x) =

∑
P m

l

∏
d∈P m

l
φX

jd
(t)f

(P m
l )c

k−l,m−l,t (x)∑
P m

l

∏
d∈P m

l
φX

jd
(t)

and

f Y
s,u,n,t (x) =

∑
P n

s

∏
d∈P n

s
φY

jd
(t)g

(P n
s )c

u−s,n−s,t (x)∑
P n

s

∏
d∈P n

s
φY

jd
(t)

,

where f
(P m

l )c

k−l,m−l,t (x) is the density function of the (k− l)th order statistic from independent (not

necessarily identical) sample Xi,t , i ∈ (P m
l )c, and g

(P n
s )c

u−s,n−s,t (x) is the density function of the
(u − s)th order statistic from independent (not necessarily identical) sample Yj,t , j ∈ (P n

s )c.
Their ratio can then be written as

f
(P m

l )c

k−l,m−l,t (x)

g
(P n

s )c

u−s,n−s,t (x)
∝

∑
P m

l

∏
d∈P m

l
φX

jd
(t)f

(P m
l )c

k−l,m−l,t (x)∑
P n

s

∏
d∈P n

s
φY

jd
(t)g

(P n
s )c

u−s,n−s,t (x)
. (3.1)

It is easy to verify that Xi ≤lr Yj implies that Xi,t ≤lr Yj,t for all i and j . For any choice
(i1, . . . , il) of P m

l , and any choice (j1, . . . , js) of P n
s , according to part (a) of Lemma 3.1, it

follows that ∏l
d=1 φX

id
(t)f

{il+1,...,im}
k−l,m−l,t (x)∏s

d=1 φY
jd

(t)g
{js+1,...,jn}
u−s,n−s,t (x)

is decreasing in x whenever k − l ≤ u− s and m− k ≥ n−u. On the other hand, if a1, . . . , am

and b1, . . . , bn are nonnegative univariate functions such that ai(x)/bj (x) is decreasing in x

for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, then
∑

i ai(x)/
∑

j bj (x) is decreasing in x. Based on this
fact, we now can conclude that the ratio in (3.1) is decreasing in x.

Since the assumption Xi ≤hr Yj implies that Xi,t ≤hr Yj,t for all i and j , part (b) can be
readily established by following a similar argument and then using part (b) of Lemma 3.1.

Finally, we present the corresponding result on the inactivity time. For 1 ≤ l < k ≤ m,
1 ≤ s < u ≤ n, and t ≥ 0, let ITX

l,k,m(t) and ITY
s,u,n(t) be the corresponding inactivity times.
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Theorem 3.2. For two systems with independent (not necessarily identical) components X1,

X2, . . . , Xm and Y1, Y2, . . . , Yn,

(a) if Xi ≥lr Yj for all i and j then ITX
l,k,m(t) ≤lr ITY

s,u,n(t) whenever l ≥ s and k−l ≤ u−s;

(b) if Xi ≥rh Yj for all i and j then ITX
l,k,m(t) ≤hr ITY

s,u,n(t) whenever l ≥ s and k−l ≤ u−s.

Proof. (a) For two random variables X and Y , it is well known that X ≥lr Y implies that
−X ≤lr −Y . Using this fact and part (a) of Theorem 3.1, it follows that, for 1 ≤ l < k ≤ m

and 1 ≤ s < u ≤ n,

[(−X)k:m − y | (−X)l:m ≤ y < (−X)l+1:m] ≤lr [(−Y )u:n − y | (−Y )s:n ≤ y < (−Y )s+1:n]
whenever k − l ≤ u − s, m − k ≥ n − u, and y ∈ R, which is equivalent to

[−Xm−k+1:m | −Xm−l+1:m ≤ y < −Xm−l:m] ≤lr [−Yn−u+1:n | −Yn−s+1:n ≤ y < −Yn−s:n]
whenever k − l ≤ u − s, m − k ≥ n − u, and y ∈ R. That is,

[t − Xm−k+1:m | Xm−l:m ≤ t < Xm−l+1:m] ≤lr [t − Yn−u+1:n | Yn−s:n ≤ t < Yn−s+1:n]
whenever k − l ≤ u − s, m − k ≥ n − u, and t ∈ R, which means that

[t − Xl:m | Xk:m ≤ t < Xk+1:m] ≤lr [t − Ys:n | Yu:n ≤ t < Yu+1:n]
whenever l ≥ s, k − l ≤ u − s for 1 ≤ l < k ≤ m and 1 ≤ s ≤ u ≤ n. This is the desired
result.

(b) By part (b) of Theorem 3.1 and the fact that X ≥rh Y implies that −X ≤hr −Y , the proof
can be completed using an argument similar to that of part (a).
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